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Abstract

For N=2 SUSY theories with non vanishing �-function and a one dimensional quantum
moduli, we study the representation on the special coordinates, of the group of motions
on the quantum moduli de�ned by �W =Sl(2;Z)=�M , with �M the quantum monodromy
group. �W contains both the global symmetries and the strong-weak coupling duality. The

action of �W on the special coordinates is not part of the symplectic group Sl(2;Z). After
coupling to gravity, namely in the context of non-rigid special geometry, we can de�ne
the action of �W as part of Sp(4;Z). To do that requires singular gauge transformations
on the "scalar" component of the graviphoton �eld. In terms of these singular gauge
transformations the topological obstruction to strong-weak duality can be interpreted as

a �-model anomaly, indicating the possible dynamical role of the dilaton �eld in S-duality.
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1. Introduction. Given a N = 2 supersymmetric gauge theory, the geometry of the

moduli parametrizing the di�erent vacuum expectation values allowed by the at poten-

tial, as a consequence of the non-renormalization theorems [1], is determined by all the

quantum corrections. The exact quantum moduli for N=2, SU(2) pure Yang-Mills, was

�rst obtained by Seiberg and Witten in reference [2], extended to N = 2 SQCD-SU(2)

with Nf � 4 in [3] and to N = 2 SU(Nc) pure Yang-Mills in references [4, 5]. In all

these solutions a beautiful geometrical picture emerges. Namely associated with the four

dimensional theory there exits an hyperelliptic curve �U , of genus r equal to the rank

of the gauge group, parametrized by the quantum moduli, whose points we denote as

U=(u1; :::ur).

For N =2 supersymmetry the geometry of the quantum moduli is forced to be rigid

special K�ahler [6] which implies, for a gauge group of rank r, the existence of 2r holo-
morphic sections (ai(U); aDi(U)) i= 1; :::; r of the Sl(2r;Z) bundle de�ned by the �rst
homology group H1(�U ;C) of the curve �U . The physical spectrum is given by the mass
formula

M =
p
2jZj

Z =
rX
i=1

(neiai(U) + nmi aDi(U)) (1)

where nei and nmi are the electric and magnetic charges respectively, and the sections

(ai(U); aDi(U)) can be represented as the periods of some meromorphic 1-form � over a
basis of 1-cycles i; ~i

ai =
I
i

� ; aDi =
I
~i

� (2)

The mass formula (1,2) already implies that when the curve degenerates some particle in
the spectrum can become massless.

Reducing ourselves to the elliptic case, the metric on the quantum moduli, given by
the rigid special K�ahler relation

� (u) =
daD=du

da=du
(3)

turns out to be the elliptic modulus of the curve �u. The function � (u) de�ned by (3) is

the F-term of the low energy lagrangian and therefore can be used to de�ne the wilsonian

e�ective coupling and �-parameter as follows

� (u) = i
4�2

g2eff (u)
+
�eff(u)

2�
(4)

Being � (u) the modulus of an elliptic curve, the positivity of the coupling constant is

automatically assured. Moreover the Montonen-Olive [7] duality transformations

� ! a� + b

c� + d
;

 
a b

c d

!
2 Sl(2;Z) (5)
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coincides with the modular group of the elliptic curve. De�ning the curve �u by the

vanishing locus of a cubic polynomial in P 2

W (x; y; z;u) = 0 (6)

the modular group Sl(2;Z), of the elliptic curve de�ned by (6), appears naturally de-

composed into two pieces3 : i) the group �M
4 of monodromy transformations around

the singularities in the u-plane, and ii) the group �W of the coordinate transformations

satisfying

W (x0; y0; z0;u0) = f(u)W (x; y; z;u) (7)

i.e. transformations on the "target" coordinates which can be, up to a global factor,

compensated by a change in the quantum moduli coordinated u. The explicit relation
between �M , �W and Sl(2;Z), which is known in the context of Landau-Ginzburg theories
[10], is

�W =
Sl(2;Z)

�M
(8)

For generic N =2 theories the Montonen-Olive duality (5) is lost, mainly due to the
fact that the �-function is non-vanishing and that electrically and magnetically charged
particles transform in di�erent representations under supersymmetry. Nevertheless it was

shown in [2, 3] that the monodromy subgroup �M of the Sl(2;Z) transformations (5), is
actually an exact symmetry of the quantum theory. This is in general a non perturbative
symmetry if the monodromy subgroup, as is the case for the examples in [2, 3] contains
elements with entry c 6=0. The fact that the N=2 theory is only dual with respect to the
monodromy subgroup, means, in particular, that the four dimensional physics depends

not only on the moduli of the curve but also on its geometry. This is quite di�erent to
what we are used to �nd in string theory where the string only feels the moduli (complex
or K�ahler) of the target space5, the di�erence being the non vanishing �-function for the
N=2 theory.

2. The meaning of �W . On the quantum moduli it is also de�ned the action of the

global U(1)R-symmetries which are broken to some discrete group by instanton e�ects, so
Z2 for pure SU(2) Yang-Mills and Z3, Z2 for massless SQCD with Nf =1; 2 respectively.

These global symmetries are automatically part of the group �W .

3The analysis we are using here is the algebraic approach to the moduli problem. This approach is

familiar in the study of mirror symmetry, see for instance [8]. In that case � (u) will have the meaning of

the mirror map.
4The monodromy group �M is the monodromy group of the Picard-Fuchs equation for the cycles of

the curve �u [9].
5Notice that if we consider, following reference [4], the formal type II string whose target space is

de�ned by multiplying the algebraic curves de�ning the quantum moduli, then for this string, Sl(2;Z)

will be its target space duality and it will contain both �M and �W .
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Each element  2 �W is acting on the quantum moduli by (u) = u0, where u and

u0 are determined by equation (7). It is clear from the de�nition of �W that (pi) = pj
for pi, pj singular points in the u-plane. The role of �W in the characterization of the

monodromies around the di�erent singularities is as follows. For each singular point pi
we can choose local special coordinates in such a way that in the neighborhood of the

singularity, aD(u) is determined by the one loop contribution of the particles becoming

massless at that singular point. The monodromy of the so de�ned aD(u) function will be

T ki, for some ki depending on the quantum numbers of the particles that become massless

at that singular point. Now we can look for the element i 2 �W such that (1) = pi.

Then the monodromy Mi around pi will be given by

Mi = �iT
ki��1i (9)

where

� (i(u)) =
a� (u) + b

c� (u) + d
; �i =

 
a b

c d

!
(10)

Notice that (10) reects the fact that two points u, u0 related by any element in �W
correspond to the same complex structure of the curve �u. Equation (9) clari�es the
physical meaning of �W at least the part of �W which maps the singularity at1 into the
rest of the singularities. In fact this part of �W relates the local weak coupling description
around the singular points pi with the original coordinates used in the description of the
asymptotically free weak coupling regime at 1. Therefore they play the role of de�ning

the dual weak coupling description of a naturally strong coupling regime. This form of
duality is crucial when we want to argue that the monodromy subgroup is actually an
exact symmetry. In fact in the appropriate dual variables, the monodromy is always
a T -transformation which only changes �eff=2� by an integer number. We observe, in
consequence, that the curve �u contains in a natural and uni�ed way both the information

about the non perturbative symmetries of the physical system �M , and about its dual
strong-weak coupling descriptions, enclosed in �W .

3. The action of �W on the special coordinates. Let us now consider more closely why
the Montonen-Olive duality (5) is actually broken to �M . This will be another way to see

the dependence of the four dimensional physics on the geometry of the curve �u and not

only on its moduli. In order to do that, we will consider an element i2�W such that

� (i(u)) = �
1

� (u)
(11)

and we will compare a(i(u)) with aD(u). More precisely we will lift to the bundle the
action of �W on the u-plane. Notice that if a(i(u)) = aD(u) we would get a strictly

strong-weak duality, namely that the physics in i(u) is dual to the physics in u, where

i(u) and u correspond by (4) and (11) to strong and weak coupling regimes respectively.
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We will consider �rst the case of pure SU(2) Yang-Mills. The exact solution for the

quantum moduli is given by the elliptic curve [2]

y2 = (x+ �2)(x��2)(x� u) (12)

which becomes singular at u=��2;1, and where � is the dynamically generated scale.

The monodromy around the singularities generates the group �2 of unimodular matrices

congruent to 1 modulo 2. The group �W in this case is the dihedral group of six elements

[11] ([Sl(2;Z) :�2]=6), which on the u-plane interchanges the three singularities

u ! �u
u ! u+3

u�1
(13)

The transformation (13.1) is the part of �W corresponding to the global U(1)R-
symmetry spontaneously broken to Z2, while the transformation (13.2) maps the sin-
gularity at 1 into the point u=1. The fact that any two points of the quantum moduli

related by an element in �W correspond to the same complex structure of the curve �u,
together with the de�nitions (2), (3) of the sections (a; aD) as periods of some 1-form �

and of the elliptic modulus � , imply that

d�

du
� �1 (14)

with the proportionality factor determined by the asymptotic behaviour and where �1=
dx=y is the unique everywhere non-zero holomorphic 1-form, in terms of which the param-
eter � is represented by

� =
b2

b1
; bi =

I
i

�1 ; i = 1; 2 (15)

The solution [2] for � is

� =

p
2

2�
(�2 � u�1) (16)

with �2=xdx=y. De�ning u0=(u)= u+3
u�1 and x0 as in (7), we observe that

� ((u)) = � 1

� (u)
(17)

where we have used that

�(x0; (u)) � �(x; u) =

p
2

2�

�
2

1 � u

�1=2 dx
p
x+ 1q

(x� 1)(x� u)
(18)
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The lift of the action of  on the holomorphic sections is then given by

a((u)) =
H u
1 �

()(u) = �
�

2

1�u

�1=2 �
aD(u) +

u+1p
2�
b2(u)

�
� aD(u)

aD((u)) =
H 1
�1 �

()(u) = �
�

2

1�u

�1=2 �
a(u) + u+1p

2�
b1(u)

�
� a(u)

(19)

We observe that, in spite of (17), a((u)) is not equal to aD(u). This is the mathematical

manifestation of the failure of the full Montonen-Olive duality for N = 2 theories with

a non vanishing �-function. Moreover (19) is not even a symplectic change of special

coordinates.

The previous description can be easily generalized to an arbitrary elliptic curve. In

general, for each 2�W we get
d�

du
= ~f(u)�1 (20)

with

~f(u) =
d(u)

du
f(u) (21)

where f(u) is determined by
d�1

du
= f(u)�1 (22)

From the above expressions, we obtain

 
aD
a

!
((u)) =

 H
0 �

H
~0 �



!
(u) = (23)

= g(u)�

" 
aD
a

!
(u) + h(u)

 
b2
b1

!
(u)

#
� �

 
a

D

a

!
(u)

with � de�ned by (10) and where g(u) and h(u) are determined by (20) in terms of
~f(u). In particular it is easy to see that f=g�1 .

The special property of the elements  2 �W corresponding to global symmetries, is

that for them a = a and a

D = aD, i.e. they lift to the bundle as good transformations

in Sl(2;Z)6. Before going into a more detailed analysis of the transformations (23), let

us make the following comment on the interplay between strong-weak coupling duality

6As was already pointed out in [2], equation (2) de�nes the sections (a; aD) up to a sign. This

ambiguity appears explicitly when we express the elliptic modulus � ((u)) in terms of � (u). If we strictly

use (2) and (18) we get that, while � (u)2H+, � ((u))2H�, where H� are respectively the upper and

lower half complex plane

� ! a0� + b0

c0� + d0
; �0 =

�
a0 b0

c0 d0

�
(24)

The matrix �0 does not belong to Sl(2;Z), but satisfy (�0 )
2=1 as a consequence that  permutes two

singularities. In order to recover a positive � ((u)), a or aD should be rede�ned in a sign. Then equation

(10) is veri�ed, with �2Sl(2;Z) being the matrix appearing in (23). Notice that this is already evident

from (19), where we obtain a!aD, aD!a which di�ers in a sign from an S transformation.
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and scale invariance. We will consider as an example SU(2) SQCD with Nf =1. In the

massless case there exits three singularities (p1; p2; p3) related by a global Z3 symmetry

[3]. When a mass term for the quark is added one of these singularities, let us say p1,

moves, continuously with the mass, to 1 while the others become the singularities of

the Nf =0 theory. For �nite mass, the element  2�W relating p1 with the singularities

(p2; p3) transform the holomorphic sections (a; aD) in the way described by (23) (plus a

constant shift due to the fact that, when a mass term is present, the 1-form � has non

vanishing residues [3]). Geometrically this just means that the monodromy M1 around

p1 will not be T -conjugated of the monodromies M2 or M3. What this teaches us is

that a �nite mass breaks the global U(1)R symmetries, as they are represented in �W , in

formally the same way as the non vanishing �-function, i.e. a non zero scale �, breaks

the Montonen-Olive duality, namely inducing on the holomorphic sections (a; aD) changes
of the type (23) with h 6=0. This fact strongly indicates that, at least for SUSY gauge
theories, a necessary condition for duality will be to have, in addition to scale invariance,
a non anomalous U(1)R-symmetry7. In a di�erent language equation (23) reects the
dependence of the four dimensional physics on the geometry of the elliptic curve, i.e. the

way it changes for two points u; (u) which describe the same moduli.

4. Coupling to gravity. A natural way to try to make sense to equation (23) is consid-
ering the coupling to gravity. Intuitively we can think of (23) as a Sp(4;Z) transformation
by interpreting the extra piece in the periods bi, as contributions from the gravitational

sector associated to the additional U(1) �eld present in N=2 supergravity: the gravipho-
ton. Due to the presence of the graviphoton, it is necessary to introduce a new (non
dynamical) special coordinate (a0; aD0) and to de�ne the special manifold (quantum mod-
uli) projectively. In this picture the transformation from u to (u),  2�W , will become
a good element in Sp(4;Z) if at the same time we perform a, in general singular, U(1)

gauge transformation of the K�ahler-Hodge line bundle which we have naturally de�ned
when we pass from rigid to non rigid special geometry8[16].

More precisely, denoting V = (a; aD), the rigid special geometry for a 1-dimensional

moduli space, is de�ned by
duV = U

DuU = CuuuG
�1
u�u

�U

du �U = 0
(25)

7The existence of non-anomalous U (1)R symmetries together with scale invariance implies that even

for N=1 SUSY theories, the conformal phase shares many aspects of N =2 theories. This fact is crucial

in the N=1 duality between SU (Nc) and SU (Nf�Nc) with Nf quarks [12].
8Another reason supporting this idea comes from Landau-Ginzburg theories. For Landau-Ginzburg

models, it is possible to built all gravitational descendants �elds inside the matter sector [13]. This

allows to interpret the reparametrizations of the superpotential W as contributions from gravitational

descendants [14, 15]. Therefore transformations (23) should admit a natural representation when gravity

is turned on, i.e. should be elements in Sp(4;Z).
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where Gu�u = Im� (u) is the metric over the moduli space, the Yukawa coupling Cuuu is

given by

Cuuu =
d�

du

 
da

du

!2

(26)

and the covariant derivative is

Du = du � �u ; �u = G�1u�u (duGu�u) (27)

For each 2�W we de�ne V =(a; a

D) with a, a


D given by (23). It is easy to verify

that V  satisfy (25) with

D
u = Du � duln ~f

U = ~fU
(28)

where ~f is given by (21) and the quantities C
uuu; G


u�u are de�ned according to (26)

and (27) in terms of V  instead of V . This modi�cation of Du is not allowed in rigid

special geometry, which is showing again that changing from V to V  is not a symplectic
transformation. However (28) can be naturally interpreted from the point of view of non
rigid special geometry, whose de�ning relations are

DuV = U

DuU = eKCuuuG
�1
u�u

�U
du �U = Gu�u

�V
du �V = 0

(29)

with V =(a0; a1; aD1; aD0) and the covariant derivative

Du = du �G�1u�u (duGu�u) + duK (30)

where the piece duK,K(u; �u) being the K�ahler potential, is the U(1) connection associated
to the H�odge line bundle over the quantum moduli, present when we couple to gravity.

Notice that the vector U acquires now a non holomorphic part

U = duV + duK V (31)

which is at the origin of the third equation in (29).
From (28) we observe that working with the sections (a; aD) amounts, at the level of

the vector U , �U , to multiply by a global factor. In the framework of special geometry,
this can be interpreted as a change in the projective coordinate

a0 = 1! a

0 = ~f (32)

or, equivalently, as the gauge transformation

K ! K � ln ~f � ln
�~f (33)

7



and therefore as a change in the covariant derivative (30) of the form required by (28).

In special geometry, we can now de�ne � by the equation

D
u�

 = ~f�1 (34)

with D
u de�ned by (28.1) and (30). Equation (34) is motivated by the �rst relation (29).

We now de�ne the sections a and a

D by the corresponding integrals around 1-cycles of

the solution to (34). They satisfy a = ~fa, a

D = ~faD, and therefore the action of  on

the special geometry coordinates is given by

0
BBB@

a

D0

a

D1

a

1

a0

1
CCCA = ~f

0
BBB@

1 0 0 0

0 a b 0

0 c d 0
0 0 0 1

1
CCCA
0
BBB@

aD0

aD1

a1
a0

1
CCCA ;

 
a b

c d

!
= � (35)

with � given by (10). Equation (35) implies that the action of �W can be represented,

once we couple to gravity, by an element of Sp(4;Z) plus the K�ahler gauge transformation
(33).

Notice that in rigid special geometry, the action of  on (a; aD) was de�ned by the
condition a(u)=a((u)), aD(u)=aD((u)), which was at the origin of the non symplectic
transformations (23). It is important to analyze to what extent this condition is veri�ed by
the non rigid  transformations (35). Let us consider an element 2�W that interchanges

the singularity at 1 with a �nite singular point, let's say p1, while leaving the rest �xed.
In the case of zero masses for the quarks, the asymptotic behaviour of the sections (a; aD)
at 1 is given by [2, 3]

a(u0) =
1

2

p
2u0 ; aD(u

0) = i
k1

4�

p
2u0 ln

u0

�
(36)

At the singular point p1 some particle in the spectrum becomes massless. Using the dual

description and up to an Sl(2;Z) rotation, the special coordinates behaves as

a(u) = c0(u� p1) ; aD(u) = c1 �
ik1

2�
a ln(u� p1) (37)

with c0; c1 constants. Comparing both limits, equation (23) implies9

g(u) �
p
u0 (38)

The map u0=(u) is, of course, singular at u=p1. Taking into account only its singular
part, and for a certain constant C, we have

u0 = C(u� p1)
�k ; k > 0 (39)

9In fact, from (23) we get gh �
p
u0 instead of (38). However it can be seen that the function h is

regular at u = p1 and therefore it is enough to consider (38) in following computations.

8



where k is determined again from (23), by correctly reproducing the monodromy at 1

k = k1=k1 (40)

Substituting now (38,39) in the expression of the function ~f, we obtain

~f =
du0

du
g�1 �

p
u0

u� p1
(41)

Therefore the special coordinates a

1; a


D1 de�ned by (35) have the expected asymptotic

behaviour at u! p1, namely, they tend to a((u)); aD((u)). Notice also that, if V =

(a0; a1; aD1; aD0) satisfy the special geometry relations (29), the vector V  de�ned by (35)

so does, with U= ~fU as we should expect from (28.1).

In our previous construction the extra special coordinate (a0; aD0) associated with the
graviphoton play a similar role to the mass in SQCD. In fact when a mass term is added,
monodromies which are not in Sp(2;Z) (v ! Mv + c;M 2 Sl(2;Z)) appear. These
monodromies have perfect sense once we treat formally the mass as a �eld [3]. In the
case of non vanishing �-function we are trying to give sense to the strong-weak duality

transformations 2 �W as element in Sp(4;Z) by including as an extra degree of freedom
the graviphoton multiplet.

5. Duality and �-model anomalies. From physical grounds we should expect that if
the N = 2 theories we are working with are some low energy limit of an string theory,
then the stringy e�ects will be able to restore the whole duality invariance. The picture

that emerges from our previous construction seems to indicate a possible way to achieve
this goal.

In N = 2 SUGRA, and this is specially clear when we formulate the theory starting
with conformal supergravity and we pass later to Poincar�e supergravity, the projective
coordinate a0 is not a real degree of freedom. Equivalently, the chiral U(1) gauge �eld A�

of the Weyl supermultiplet10 is an auxiliary �eld that can be eliminated by solving the
constrains in the same way as we are used to do in non-linear �-models. Up to fermionic
terms, the �eld A� can be expressed in terms of the K�ahler potential as follows

A� =
i

2
(@�z (dz=du)

�1
duK + @��z (d�z=d�u)

�1
d�uK) (42)

where z=a1=a0 is the homogeneous special coordinate. The transformation (33) over the
K�ahler potential can be interpreted as a gauge transformation on A� corresponding to

10The Weyl supermultiplet appears in the context of conformal gravity. It contains [17] the gauge

�elds associated with the superconformal symmetries, namely, general coordinates and local Lorentz

transformations, dilatations, special conformal boots and local supersymmetries. In addition, for N =2,

there exit a local chiral SU (2) and U (1). Notice that this chiral U (1) is the gauge symmetry de�ning the

K�ahler-Hodge line bundle of special geometry.
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pass from a coordinate patch, in the quantum moduli space, around u = p1 to a local

coordinate patch u0= (u) around 1, for  2 �W . This transformation is characterized

by the parameter k in (39), which is di�erent from zero as consequence that � is not in

the abelian subgroup generated by 1 and T .

As we have shown in the previous paragraph, once we use non rigid special coordinates

we get for the action of � the representation (35), which in particular means that if

� ((u)) = �1
�(u)

then a((u)) = ~faD(u), i.e. strong-weak coupling duality if the special

coordinates a and ~fa can be considered as gauge equivalent. The fact that the gauge

transformation (33) de�ned by ~f is in general singular can be at the origin of a topological

obstruction to mod by �W of the type found in �-model anomalies [18]. Using the �eld

A�, equation (33 and assuming that the quantum corrections corresponding to integrate

over the fermions have been already taken into account in the geometry, singularities,

of the quantum moduli, we can use, for a compacti�ed quantum moduli, the following
quantity as an indication of this topological obstruction11

� =
1

2�i

I
C1

d ln ~f = 1 +
X
i

ki

2k1
(43)

where C1 encircles the singularity at1 and the coe�cients k1, ki are given in (36), (37)
respectively. Equation (43) was obtained up to the normalization factors which can be
derived from (42). The sum in (43) is over the singular points at which the function ~f
has a pole, namely (pi)=112.

The quantity (43) is showing the existence of an anomaly to de�ne the theory on the
moduli space of complex structures of the curve, i.e. to mod by the action of �W . Once
we have interpreted (43) as an anomaly, it will be natural to look for some compensating
WZ term. This is general not possible for �-model anomalies [18]. In our case, the
introduction of the dilaton will, very likely, play that role. In fact, the anomaly (43) is

heuristically indicating that a0 can not be globally gauged away, which is strongly asking
for an extra scalar degree of freedom in the gravity sector. We hope to address these
problems in more detail elsewhere.

This work was partially supported by european community grant ERBCHRXCT920069,
by PB 92-1092 and by OFES contract number 93.0083. The work of E.L. is supported by

M.E.C. fellowship AP9134090983.

11For �-model anomalies, the topological obstruction is de�ned by
R
S2�Sd

�̂�Ch(TM), with d the

dimension of the space-time and TM the tangent bundle to the �-model manifold. The map �̂ should

de�ne a non contractible two parameter family of �-model con�gurations. In our case, heuristically,

is the compacti�ed u-plane and their singularities the ones de�ning the "non-contractible" two sphere,

determining the reparametrizations and in this way the con�guration of the auxiliary gauge �eld A� on

the quantum moduli.
12It is worth recalling that equations (38-41) and (43) could be di�erent for an element 2�W mapping

�nite singular points among themselves.
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