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1. Introduction

For c < 1 non-critical string theories, there exists a remarkable description of the

generating function in terms of one-matrix models of Kontsevich type[1][2][3]. These give

rise to a graphical expansion which corresponds to the “fat-graph” cell-decomposition of

the moduli spaces Mg,n of Riemann surfaces[4]. These models play an important role in

understanding topological gravity and hence, one hopes, the fundamental formulation of

string theory.

One way to infer the equivalence of the c < 1 string theory and the corresponding

Kontsevich-type models is to show that the latter satisfy the Virasoro andWn constraints[5]

which encode the complete perturbative solution of the former[6].

The solution of c = 1 string theory is given by W∞ identities[7]. For the compactified

theory at the self-dual radius, the singlet sector perturbation series is neatly encoded in

the W∞ recursion relations obtained by Dijkgraaf, Moore and Plesser[8] directly from

matrix quantum mechanics via a coherent-state representation of the tachyon scattering

process[9]. In this paper we will show that this solution can be used to directly derive a

matrix-model of Kontsevich type, for the c = 1 string at the self-dual radius.

A Kontsevich-type matrix model for c = 1 (which we refer to below as the DMP

model) was actually presented in Ref.[8], where it was obtained again from the coherent-

state description. The model that we derive below differs from theirs in several distinctive

ways. We examine very carefully the DMP model and show that it is incorrect – their

model does not in fact satisfy the W∞ constraints. We demonstrate this first by general

arguments, and then by explicit computation of some tachyon correlators. Next we identify

an error in their paper, after correcting which we indeed recover our model.

An earlier proposal for a Kontsevich-type model to describe c = 1 string theory, due

to Chekhov and Makeenko[10] turns out to be somewhat closer to the correct model that

we present here, although it is not quite right either.

The matrix model that we obtain is astonishingly simple, and we analyse it in some

detail. In Section 2 we derive the model from W∞. In Section 3 we compare it with

previous proposals and show that the latter do not describe c = 1 string theory. In Section

4 we give an alternative derivation of our model following the technique of Refs.[11],[8]. In

Section 5 we examine the relation of our model to the Penner matrix model describing the

Euler characteristic of punctured surfaces, and to the original Kontsevich model describing

intersection theory on moduli space. In Section 6 we derive the quantum effective action

1



and show that it generates c = 1 string amplitudes via tree graphs. In Section 7 we

observe that our Kontsevich-type model can be thought of as a background-independent

string field theory coupled to an external source. Expanding about various possible minima

then leads to the c = 1 and c < 1 strings, the latter arising from condensation of particular

negative-momentum tachyons.

2. The c = 1 Kontsevich Model from W∞

The tachyon operators Tn of 2D string theory compactified on a circle of unit radius

are labelled by the integer-valued momentum n. It is convenient to introduce an infinite

number of variables tn with n = 1, 2, . . . , in correspondence with the tachyons of positive

momentum n, and analogous variables tn for the negative-momentum tachyons. The gen-

erating functional for the correlation functions of all tachyons operators will be a function

Z(t, t) of the tn and tn.

The W∞ solution[8] of this string theory is encoded in the following recursion relation:

1

µ2

∂ZW∞

∂tn
(t, t) =

1

(n+ 1)

∮

dz : e−iµφ(z)
(∂z

iµ

)n+1

eiµφ(z) : ZW∞
, (2.1)

where the bosonic field φ(z) is the following operator:

∂φ(z) =
1

z
+
∑

n>0

ntnz
n−1 − 1

µ2

∑

n>0

∂

∂tn
z−n−1. (2.2)

We now show that one can in fact construct a matrix model with logarithmic potential

starting directly from the above expression. First, change variables in the W∞ relation

using the Frobenius-Miwa-Kontsevich transformation:

iµ tn = − 1

n
trA−n, (2.3)

where A is a fixed N × N Hermitian matrix. In the limit of large N , all the couplings

become independent, but at finite N everything continues to be valid in a subspace of the

parameter space where only the first N tk are independent. One finds

1

µ2

∂ZW∞

∂tn
(t, t) =

1

n+ 1

∮

dz :
z−iµe

1
iµ

∑

k>0

z−k

k
∂

∂tk

det (1 − zA−1)

×
(∂z

iµ

)n+1

ziµ e
− 1

iµ

∑

k>0

z−k

k
∂

∂tk det (1 − zA−1) : ZW∞
(t, t).

(2.4)
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Inserting the eigenvalues ai of the matrix A, one can pick up the residues of the poles at

z = ai, to get

1

µ2

∂ZW∞

∂tn
(t, t) =

1

n+ 1
:

1

(iµ)n+1

∑

i

a−iµ
i e

1
iµ

∑

k>0

a
−k
i
k

∂
∂tk

∏

j 6=i(aj − ai)

×



∂n+1
z

(

ziµ
∏

j

(aj − z) e
− 1

iµ

∑

k>0

z−k

k
∂

∂tk

)





z=ai

: ZW∞
(t, t).

(2.5)

Now, of the n+1 z-derivatives, at least one must act on the second factor in the brackets,

otherwise the term will vanish. So one derivative can be picked out in n + 1 ways to do

this, cancelling the n+ 1 factor in the denominator. Next, using the identity

e
1

iµ

∑

k>0

a
−k
i
k

∂
∂tk

[

∂

∂z
e
− 1

iµ

∑

k>0

z−k

k
∂

∂tk

]

z=ai

=
1

iµ

∑

k>0

a−k−1
i

∂

∂tk
=

∂

∂ai

, (2.6)

one rewrites Eq. (2.5) as

1

µ2

∂ZW∞

∂tn
(t, t) = − 1

(iµ)n+1

∑

i

a−iµ
i

∏

j 6=i(aj − ai)

×
(

∂

∂ai

)n
(

aiµ
i

∏

j 6=i

(aj − ai)ZW∞
(t, t)

)

.

(2.7)

Recalling the well-known result

tr

(

∂

∂A

)n

=
1

∆(a)

∑

i

(

∂

∂ai

)n

∆(a), (2.8)

where ∆(a) =
∏

j<k(aj − ak) is the Vandermonde determinant, one can change back from

eigenvalues to the full matrix A:

1

iµ

∂ZW∞

∂tn
(t, t) =

1

(iµ)n
(det A)−iµ tr

(

∂

∂A

)n

(det A)iµ ZW∞
(t, t). (2.9)

This is a remarkable expression for W∞ in terms of a single fixed matrix!

This identity can be solved through random matrices in the following way. Introduce

the matrix integral

ZK(t, t) = (det A)−iµ

∫

dM etr V (M,t,t) (2.10)
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with some, as yet unknown, potential V . Then Eq. (2.9) implies that

[

1

iµ

∂

∂tn
− 1

(iµ)n
tr

(

∂

∂A

)n]
(

(det A)iµZK(t, t)
)

= 0. (2.11)

This determines

V (M, t, t) = iµMA+ iµ
∑

k>0

tkM
k + f(M) (2.12)

where f(M) is independent of (t, t). The boundary condition is that ZK(t, 0) must be

independent of t (this comes from momentum conservation in the string theory). Now

ZK(t, 0) = (det A)−iµ

∫

dM eiµ tr MA+tr f(M)

= (det A)−iµ−N

∫

dM eiµ tr M+tr f(MA−1),

(2.13)

from which it follows that

f(M) = −(iµ+N) log M (2.14)

and consequently also the matrix integral must be over positive-definite Hermitian matrices

M .

It follows that, up to an overall multiplicative constant independent of (t, t), ZW∞
(t, t)

is equal to the Kontsevich-type integral

ZK(t, t) = (det A)−iµ

∫

dM e
iµ trMA−(iµ+N)tr log M+iµ

∑

k>0
tktrMk

. (2.15)

This can equivalently be written

ZK(t, t) =

∫

dM e
iµ trM−(iµ+N)tr log M+iµ

∑

k>0
tktr(MA−1)k

. (2.16)

In this form, our model is very similar to the matrix models studied recently by Kazakov et

al.[12], with the difference that the Gaussian potential is replaced by the gamma-function

integrand. The “Euclidean” continuation ν = −iµ gives a convergent integral as long as

ν > N − 1.
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3. Previous Kontsevich-type models for c = 1

The “Kontsevich-Penner” model of Dijkgraaf et al. is given by the following matrix

integral:

ZDMP (t, t) = (det A)−N+iµ

∫

dM e
iµ tr[MA−1−log M+

∑

k>0
tkM−k]

, (3.1)

with the parameters tn defined as in Eq. (2.3) above.

Comparing with Eq. (2.15), we see that there are three differences: (i) given the

convention in Eq. (2.3) for the relation between tn and A, the power of A appearing

in the first term is negative in the DMP model but positive in the correct one; (ii) the

coefficient of the log term is −iµ in the DMP model but −iµ −N in our model; (iii) the

perturbations representing the incoming tachyons are negative powers of M in the DMP

model but positive powers in our model.

These differences are in no way conventional or removable by any change of variables.

One of the simplest ways to see this is that in our model there are two linear terms in M ,

one coupled to A and the other to t1. This fact is responsible for the puncture equation, as

we show below. The DMP model has only one linear term in M , and does not satisfy the

puncture equation. It is quite straightforward, if a little tedious, to compute correlators for

the DMP model using Schwinger-Dyson equations, and we will give some examples below.

By contrast, the Schwinger-Dyson equations are virtually trivial for our model, perhaps

the greatest surprise of the present analysis.

As is well-known, Kontsevich-type matrix integrals make sense even for 1×1 matrices,

where they compute correlators in some 1-dimensional subspace of the (t, t) parameter

space. Thus, one can start by computing Z−1∂Z/∂tn at t = 0 in the DMP model of Eq.

(3.1) above, and for our Kontsevich-type model (Eq. (2.15)), with the matrix M replaced

by a single variable m, and with the constant matrix A set equal to a number a. This

should be compared with the W∞ answer for the same object, evaluated at −iµ tn = an

n
.

The calculations are elementary, and one finds

〈m−n〉DMP =

(−iµ
a

)n
Γ(−iµ− n+ 1)

Γ(−iµ+ 1)
, (3.2)

while

〈mn〉K =
1

(iµa)n

Γ(iµ+ 1)

Γ(iµ− n+ 1)
(3.3)
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and, from W∞,

−iµ〈T−n〉W∞
=

1

(iµa)n

Γ(iµ+ 1)

Γ(iµ− n+ 1)
. (3.4)

Another useful way to compare the DMP model and ours comes from the puncture

equation. In the W∞ solution, the simplest case n = 1 leads to the recursion relation

∂F
∂t1

= t1 − (k + 1) tk+1
∂F
∂tk

, (3.5)

where

ZW∞
(t, t) = eµ2F . (3.6)

Translated into the language of the Kontsevich-type model, this implies that, for infinites-

imal ǫ, the partition function should satisfy

Z(tk + ǫ(k + 1)tk+1, t1 + δk,1ǫ) = eµ2ǫt1Z(t, t). (3.7)

Now, the transformation on Z in the LHS is equivalent to transforming the couplings tk

and the constant matrix A as follows:

t1 → t1 + ǫ

A→ A− ǫ.
(3.8)

In the DMP model, this change does not lead to any Ward identity for Z, as one can check,

so Eq. (3.1) does not satisfy the puncture equation. However, in our model Eq. (2.15), the

variations of the two linear terms in M compensate each other under the transformation

Eq. (3.8), leaving only a change from the determinant factor outside, which precisely gives

Eq. (3.7).

One more interesting point to observe is that both the DMP model and ours can be

rewritten after making the transformation M → M−1, which is a legitimate change of

variables since M is a positive matrix. One finds the alternative forms

ZDMP (t, t) = (det A)−N+iµ

∫

dM e
iµ tr[M−1A−1+(1− 2N

iµ
) log M+

∑

k>0
tkMk]

ZK(t, t) = (det A)−iµ

∫

dM e
iµ trM−1A−(−iµ+N)tr log M+iµ

∑

k>0
tktrM−k

.

(3.9)

In the DMP model, this inversion introduces an explicit N into the potential, which was

not there before. However, in our model which already contained an N factor, it reappears

in the same form, due quite simply to the change of matrix measure under inversion.
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Indeed, our model in the singular limit µ→ 0 is manifestly symmetric under inversion, as

it becomes the matrix analogue of
∫

dx/x.

Finally, we present the results of explicit computations of a class of simple correlation

functions for the DMP model, and for our model, to all orders in 1
µ
. The former are

obtained using Schwinger-Dyson equations in the form

0 =

∫

dM
∂

∂Mij

(

eiµ tr[MA−1−log M ] fij(M,A)
)

, (3.10)

where fij(M,A) is an arbitrary matrix-valued function. This process is rather tedious,

particularly for the last line of the table, since one has to write down the above equation

for a large number of choices of the function fij and then successively eliminate terms to

get the desired result. In contrast, the relevant Schwinger-Dyson equations for our model

follow from Eq. (2.9)1.

Correlator c = 1 Kontsevich model DMP model

〈T−1〉 t1 t1

〈T−2〉 2t2 + t21
µ2

1+µ2 (2t2 + t21)

〈T−3〉 3t3 + 6t1t2 + t31 + 1
(iµ)2 3t3

µ4

(1+µ2)(4+µ2) (3t3 + 6t1t2 + 2t31)

〈T−4〉 4t4 + 12t1t3 + 8t22 + 12t21t2 + t41

+ 1
(iµ)2 (20t4 + 4t22 + 12t1t3)

µ6

(1+µ2)(4+µ2)(9+µ2)

(

4t4 + 12t1t3

+8t22 + 20t21t2 + 5t41

+ 1
(iµ)2 (4t4 − 12t22 + 12t1t3)

)

Table I: Explicit computations of amplitudes

It is easy to see from this that the DMP model is inequivalent to our model, and to

W∞.

1 In collaboration with V. Kazakov, we have also carried out these computations using the

technique of character expansions[12], applied to the version (2.16) of our model and the analogous

one for the DMP model, and we obtained the same results. In particular, in this formalism it is

manifest that both models are symmetric under exchange of t and t. Character expansion turns

out to be the most efficient technique for the DMP model.
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Let us briefly mention that Chekhov and Makeenko[10] had proposed a model which

they conjectured to be in some sense equivalent to the c = 1 string, though they did not

state precisely what the full equivalence should be. Their matrix potential was

V (M,A) = N
(

MA+ ν logM − 1

2
M2
)

(3.11)

with tk = 1
k
trA−k − N

2
δk,2 and with ν being the cosmological constant. This has some

similarities to Eq. (2.15), but the dependence on ν and N is not the correct one.

4. The derivation via semi-infinite forms

In Ref.[8] a “coherent state” representation for the generating functional Z(t, t)

was derived. This representation involves a Fock space associated to bosonic creation

and annihilation operators α−n and αn, satisfying the canonical commutation relations

[αm, αn] = mδm+n,0 with m,n = 1, 2, . . . The αn are conveniently collected into the con-

formal current ∂ϕ(z) ≡∑n αnz
−n−1, which is related to the fermionic fields

ψ(z) =
∑

n∈ZZ

ψn+ 1
2
z−n−1 ψ(z) =

∑

n∈ZZ

ψn+ 1
2
z−n−1, (4.1)

by the familiar 2-dimensional bosonization formulas: ∂ϕ(z) = :ψ(z)ψ(z) : . The fermionic

oscillators in Eq. (4.1) obey canonical anticommutation relations: {ψr, ψs} = δr+s,0, with

r, s ∈ ZZ + 1
2 .

The coherent state formula of Dijkgraaf et al. for the partition function of 2D string

theory is

Z(t, t) = 〈t|S|t〉, (4.2)

where 〈t| and |t〉 are coherent states associated to the positive and negative tachyons:

〈t| ≡ 〈0|eiµ
∑

∞

n=1
αntn ≡ 〈0|U(t) |t〉 ≡ eiµ

∑

∞

n=1
α−ntn |0〉 ≡ U(t)|0〉. (4.3)

The operator S acts linearly on the fermionic fields:

Sψ−n− 1
2
S−1 = Rpn

ψ−n− 1
2

Sψ−n− 1
2
S−1 = R∗

pn
ψ−n− 1

2
, (4.4)

where Rpn
are reflection coefficients depending on the fermionic momentum pn = n + 1

2

and satisfying the unitarity condition Rpn
R∗

−pn
= 1.
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The matrix model formulation of the c = 1 string theory leads to explicit expressions

for the reflection coefficients[9],[8]:

Rpn
= (−iµ)−pn

Γ( 1
2 − iµ+ pn)

Γ( 1
2
− iµ)

. (4.5)

The strategy to derive a Konsevitch model from the coherent states formula (4.2) is to

represent the fermionic Fock space in terms of semi-infinite forms. Let us make the same

choice as in Ref.[8] for the semi-infinite form representing the fermionic Fock vacuum:

|0〉 = z0 ∧ z1 ∧ z2 . . . (4.6)

Now we must take representatives for ψn+ 1
2

and ψn+ 1
2

which, for n > 0, annihilate the

vacuum. This is necessary since the coherent state formula (4.2) and the action of the S

operator (4.4) are defined assuming such a convention, which is also the standard one in

conformal field theory. A representation consistent with this convention is

ψn+ 1
2

= zn, ψ−n− 1
2

=
∂

∂zn
. (4.7)

It follows from Eq. (4.4) that

S : zn → R−pn
zn. (4.8)

The error in the derivation of the Konsevitch-Penner model of Ref. [8] is precisely a choice

of representatives for the fermionic operators which is inconsistent with that of conformal

field theory. With their choice, the action of S was zn → Rpn
zn (Eq. (5.26) of their

paper).

In the following we briefly trace back the steps of the derivation of the Konsevitch

model for c = 1 which starts from the coherent state formula, and show that, once the

correct choice (4.7) is made, one recovers our matrix model.

Recalling that
[

αn, ψm+ 1
2

]

= ψm+n+ 1
2
, the action of the coherent state operator U(t)

on the fermionic oscillators

U(t) : ψn+ 1
2
→ U(t)ψn+ 1

2
U(t)−1 (4.9)

reads in the semi-infinite forms representation as follows

U(t) : zn → e
iµ
∑

k>0
tkα−kzne

−iµ
∑

k>0
tkα−k

= e
iµ
∑

k>0
tkz−k

zn =
∞
∑

k=0

Pk(iµt)zn−k,
(4.10)
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where the Pk(iµt) are the Schur polynomials.

Therefore the combined action of S and U(t) is

S ◦ U(t) : zn → w(n)(z; t) = S
∞
∑

k=0

Pk(iµt)zn−kS−1

=
∞
∑

k=0

Pk(iµt)R−pn−k
zn−k.

(4.11)

Recalling the expression (4.5) for the reflection coefficients and rewriting the gamma-

function in terms of its integral representation one obtains

w(n)(z; t) =
(−iµ)

1
2

Γ( 1
2
− iµ)

∫ ∞

0

dm e−mm−iµ−1
∞
∑

k=0

Pk(iµt)

(−iµz
m

)n−k

= c(µ) z−iµ

∫ ∞

0

dm m−neiµzmm−iµ−1e
iµ
∑

k>0
tkmk

,

(4.12)

where

c(µ) ≡ (−iµ)−iµ+ 1
2

Γ( 1
2 − iµ)

. (4.13)

From this we finally derive the expression for the state S|t〉 in terms of semi-infinite

forms

S|t〉 = S ◦ U(t) z0 ∧ z1 ∧ z2 ∧ . . .

= w(0)(z; t) ∧ w(1)(z; t) ∧ w(2)(z; t) ∧ . . .
(4.14)

One also needs to make use of the parametrization (2.3) for the coherent state 〈t|. If

ai, with i = 1, . . . , N are the eigenvalues of the Hermitian matrix A in Eq. (2.3), then

〈t| = 〈0|
N
∏

i=1

e
−
∑

n>0

αn
n

an
i = 〈N |

∏N
i=1 ψ(ai)

∆(a)
, (4.15)

where the state |N〉 reads as follows in the semi-infinite form representation:

|N〉 = zN ∧ zN+1 ∧ zN+2 . . . (4.16)

Putting together the bra in Eq. (4.15) with the ket in Eq. (4.14) one gets the formula

10



expressing Z(t, t) in terms of determinants:

Z(t, t) = 〈t|S|t〉 =
det w(j−1)(ai)

∆(a)

= c(µ)N (
∏

j

aj)
−iµ

×
∫ ∞

0

∏

j

(

dmj

mj

e
iµmjaj−iµ log mj+iµ

∑

k>0
tkmk

j

)

∆(m−1)

∆(a)
.

(4.17)

Converting the Vandermonde depending on m−1
i to the standard one, and using the

Harish-Chandra formula, one finds (up to overall factors independent of (t, t)):

Z(t, t) =
(

∏

j

aj

)−iµ
∫ ∞

0

∏

j

(

dmj

mN
j

e
iµmjaj−iµ log mj+iµ

∑

k>0
tkmk

j

)

∆(m)

∆(a)

= (det A)−iµ

∫

dM e
iµ trMA−(iµ+N)tr log M+iµ

∑

k>0
tktrMk

,

(4.18)

which is precisely our model, Eq. (2.15).

5. Relation to Penner and Kontsevich models

Let us set the couplings tk = tk = 0 in Eq. (2.15). Then we are left with a partition

function

Z(µ,N) =

∫

dM eiµtrM−(iµ+N)tr log M . (5.1)

Rescaling and shifting M , we find

Z(µ,N) = eN(iµ+N)

(

1 +
iµ

N

)N ∫

dM e(iµ+N)
∑

∞

k=2
tr Mk

k , (5.2)

which is proportional to the Penner integral

ZPenner(µ,N) =

∫

dM e−Nt
∑

∞

k=2
tr Mk

k (5.3)

where t = −(1 + iµ
N

).

This integral was devised by Penner to count the Euler characters χg,n of Riemann

surfaces with genus g and n punctures. However, as Distler and Vafa[13] showed, the

double scaling limit N → ∞ and t→ tc = −1 with ν = N(t− tc) fixed, actually counts the
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Euler characteristic of unpunctured surfaces. Clearly, in Eq. (5.3) above this is just the

limit N → ∞ with µ fixed, and we have ν = −iµ as the relation between the cosmological

constant of [13] and ours. So the limit that is in the spirit of Kontsevich integrals is quite

the same as Distler and Vafa’s double-scaling limit, contrary to the claim in Ref.[8].

Let us now examine some other limits of our model. To start with, it is convenient to

Euclideanize the cosmological constant via ν = −iµ. Next, setting ν = N and tk = δk,3

one has:

ZK(ν = N, t, t = δk,3) = (det A)N

∫

dM e−N trMA−NtrM3

. (5.4)

The log term and the expansion parameter ν have both disappeared simultaneously, and

we have obtained a matrix integral which is very similar to the original Kontsevich model

describing intersection theory on the moduli space of Riemann surfaces. Indeed, the above

integral would be the matrix Airy integral but for the fact that integration is performed

over positive-definite matrices. However, the asymptotic expansion of this integral, based

as it is at the saddle-point M ∼
√
A, does not see this difference. Indeed, Kontsevich

shows[1] that the matrix Airy integral gives rise to a sum over 2N Kontsevich matrix

models. In contrast, the integral in Eq. (5.4) above satisfies an inhomogeneous version of

the Airy equation because of the boundary of the integration region at 0. It has a unique

saddle-point by virtue of the positive-definiteness of M , so that up to the usual factors, it

leads to precisely one Kontsevich model.

Thus the original Kontsevich model of two-dimensional pure gravity can be thought

of as a special case of our c = 1 Kontsevich-type model (but not of the DMP model), after

some suitable scalings and normalizations. The same is true for the generalized Kontsevich

models, which appear by setting tk = δk,p+1 for some p > 2. Note that in this picture,

the choice of a fixed tk and tk will ultimately correspond to a choice of (p, q) specifying

a definite c < 1 minimal model coupled to gravity. The symmetry of the (p, q) minimal

models in p and q would then be due to the symmetry of the c = 1 theory in tk and tk.

We will comment further on the significance of these points below.

Since the Kontsevich and generalized Kontsevich models are special cases of our model,

it should follow that the Virasoro and Wn identities satisfied by the former arise from the

W∞ of the latter. This does not imply a completely straightforward connection, how-

ever, since the passage to Kontsevich models requires several rescalings and normalization

factors. Additionally, the couplings of the Kontsevich model are defined in terms of the

matrix A not through Eq.(2.3), but rather through a twisted version of it: tk ∼ trA−k− 1
2 ,

the shift by 1
2 being responsible for the “twisted free bosons” investigated in Refs.[6],[14].

Similar fractional shifts occur for the generalized Kontsevich models.
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6. Quantum Effective Action

We have seen in Section 2 that correlators of negative tachyons T−n of c = 1 string at

t = 0 are equal to the averages of tr Mn

ν
taken with the matrix measure:

ZΓ(A) =

∫

dM e−ν trMA+(ν−N)tr log M

= (det A)−ν

∫

dM e−ν trM+(ν−N)tr log M .

(6.1)

The matrix integral above has the obvious property that adding an external source J for

M in the classical action leaves the form of the integrand invariant:

ZΓ(A; J) =

∫

dM e−ν tr MA+(ν−N)tr log M−tr JM

=

(

det (A+
J

ν
)

)−ν ∫

dM e−ν tr M+(ν−N)tr log M .

(6.2)

Let us define the free energy to be minus the log of this expression, dropping the additive

constant coming from the integral. Thus:

FA(J) = ν tr log

(

A+
J

ν

)

. (6.3)

This allows us to derive explicitly the quantum action associated to this matrix measure.

Define the “quantum” field M̂ via the equation

M̂ =
∂FA(J)

∂J
=

(

A+
J

ν

)−1

. (6.4)

The quantum action Γ(M̂) for M̂ is defined through a Legendre transformation of FA(J)

Γ(M̂) = FA(J) − tr M̂J, (6.5)

and can be easily evaluated to give

Γ(M̂) = −ν N + ν tr M̂A− ν tr log M̂. (6.6)

The form of the quantum action is identical to that of the “classical” action in Eq. (6.1), the

only difference being two simple renormalization effects: the appearance of a constant zero-

point energy and the renormalization of the coefficient of the logarithm, which becomes

N -independent.
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The renormalization of the log term is extremely important. Even if we had set ν = N

in Eq. (6.1) and thereby eliminated the log term in the classical action, it would still be

present in the quantum action — thus it is dynamically generated. It cannot be tuned

away as long as the background has all tk = 0.

The quantum action leads to the equation of motion

0 =
∂Γ(M̂)

∂M̂
= A− M̂−1, (6.7)

i.e. 〈M̂〉 = A−1. This means that the quantum field M̂ has to be shifted around its

vacuum expectation value,

M̂ = A−1 + m̂, (6.8)

and the quantum action becomes

Γ(M̂) = ν tr logA+ ν trAm̂− ν tr log(1 +Am̂)

= ν tr logA+ ν

∞
∑

k=2

(−1)k

k
tr(Am̂)k.

(6.9)

This expression, which encodes the full perturbation series for tachyon scattering in

c = 1 string theory, might be called the Penner quantum action. It corresponds to our

Kontsevich-type model shifted around the classical solution appropriate to c = 1 string

theory.

The 1PI vertices for the field m̂ can be read off from Eq. (6.9); for example the 2-point

and 3-point vertices are

Γ
(2)
i1j1;i2j2

= ν Ai2j1Ai1j2

Γ
(3)
i1j1;i2j2;i3j3

=
1

2
ν [Ai3j1Ai1j2Ai2j3 + Ai2j1Ai3j2Ai1j3 ] .

(6.10)

Tree diagrams built out of these 1PI n-point vertices Γi1j1;...;injn
together with the exact

propagator G
(2)
i1j1;i2j2

= 〈m̂i1j1m̂i2j2〉 = 1
ν
A−1

i1j2
A−1

i2j1
generate all correlators 〈Mi1j1;...;injn

〉
and therefore reproduce all negative-tachyon expectation values. For example, ν〈T−2〉 is

given by

〈tr M̂2〉 = trA−2 + 〈tr m̂2〉 = trA−2 +
1

ν
(trA−1)2, (6.11)

while for ν〈T−3〉 one obtains,

〈tr M̂3〉 = trA−3 + 〈trAm̂2〉 + 〈tr m̂3〉

= trA−3 +
1

ν
trA−2trA−1 +

1

ν2

(

trA−3 + (trA−1)3
)

,
(6.12)
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in agreement with the results shown in the table of Section 3.

To summarise, the polynomials in t given by the negative-tachyon correlators of c = 1

string admit a neat diagrammatical interpretation, as a sum over connected and discon-

nected tree diagrams of the quantum Penner action (6.9).

7. Background Independence

Suppose that one tried to build up the most trivial matrix model possible, with a

single Hermitian positive-definite matrix M . One might imagine choosing the potential to

be zero, and then introducing an external source A:

Z(A) =

∫

dM e−ν trMA. (7.1)

From Eq. (6.6) it follows that the quantum effective action, up to additive constants, is

Γ(M̂) = ν trM̂A−N tr log M̂. (7.2)

Since a logarithmic term has appeared from renormalization effects, it is natural to add a

“bare” log term in the original action. Choosing the coefficient of this term so that the

quantum action becomes N -independent, we find:

Z(A) =

∫

dM e−ν trMA+(ν−N)tr log M . (7.3)

This is precisely our Kontsevich-type model! Viewed as a string field theory, the quantum

equation of motion tells us that M̂ = A−1, and expanding around this gives rise to the

quantum Penner action that we have already discussed. Therefore the c = 1 string in

this framework is nothing but a positive-definite matrix with zero potential, coupled to an

external source.

What about other non-critical string backgrounds? Let us add the term trMk+3,

for some fixed k ≥ 0, to the above potential. This corresponds to turning on a source

for the tachyon T−k−3 in c = 1 language. One can no longer explicitly compute the

quantum action. However, the matrix integral now has a saddle-point which is very far

from M = A−1. Indeed, tuning away the log term, the saddle-point is at M ∼ A
1

k+2 .

Expanding around this saddle-point leads to the generalized Kontsevich model of level

k [1][2], which describes the (k + 2, q) minimal-model string backgrounds. In this sense,
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all the c < 1 string backgrounds can be thought of as the different vacua to which our

Kontsevich-type model flows when there is “condensation of negative tachyons”.

This picture needs to be studied in more detail, in particular to understand what is

the mechanism by which the log term gets tuned away. Note that switching on T−1 does

not shift the saddle-point since it can be absorbed in the source A, while T−2 leads to a

background in which the free energy is quadratic in A and hence trivial.

8. Conclusions

We have solved the W∞ constraints of c = 1 string theory via a Kontsevich-type

matrix model. The resulting model is beautiful and natural, and we believe it should

tell us something fundamental about string theory. In particular, this could lead to a

framework to formulate background-independence in string field theory.

On the way, we obtained an elegant matrix version of the W∞ constraints, Eq. (2.9),

which has the form of a generalized heat-kernel equation, Eq. (2.11). One may be tempted

to speculate that this is related to the holomorphic anomaly equation of Ref.[15] which,

according to Ref.[16] expresses quantum background-independence in certain solvable topo-

logical string theories.

Our results also shed new light on the sense in which c = 1 string theory is like a

k → −3 limit of the k-minimal topological models coupled to gravity[17].

It should be emphasized that our model was constructed starting from the tachyon

S-matrix and, apparently, does not contain the other kinds of states that one might expect

to see in two-dimensional string theory, including the discrete “tensor” states and the

states of the “wrong dressing”. However, our matrix-model in principle contains many

more operators than the ones we have considered, in particular traces of negative powers,

trM−k and also more complicated objects such as tr(Mk1Ak2Mk3 . . .). It remains to be

seen whether these provide the missing states of c = 1.

Because of the resemblance of this model to those studied recently by Kazakov

et al.[12], we expect that the powerful technique of character expansions can be used

to gain more understanding of our model and its possible generalizations.
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