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network with the back~propagation updating algorithm in OCR Output
and good performance. IETNET 2.0 implements such a

Nb. of bits in a word: 32 multilayer networks are widely used due to their simplicity
wide range of problem areas. In particular feed-forward

Memory required to execute with typical data: —· 90 kword: powerful paradigm for automated feature recognition in a
Artificial neural networks (ANN) have tumed out to be a very

Programming language used: FORTRAN 77 Method of solution

ULTRIX RISC 4.2 data.
Operating system under which the program has been tested: is the introduction of relevant cuts in the multi-dimensional

products. Standard procedures for such recognition problems
Theoretical Physics. University of Lund. Sweden quark based on the kinematics of the hadronic fragmentation
Computer: DECstation 3lO0: Installation: Department of based on calorimeter infomation ot the identification of a
SUN. Apollo. VAX. IBM and others with a F77 compiler tion problems. It could be separating photons from leptons
Computer for which the program Ls designed: DECstati0n. High energy physics offers many challenging pattern-recogni

Nature of physical problem
Licensing pr0t·i.ttons: none

neural network

issue) Keywords: pattem recognition. jet identification. artificial
University of Belfast. N. Ireland (see application form in this
Program obtainable from: CPC Program Library, Queen's etc.: 3345

N0. of lines in distributed program. including test deck data.
Catalogue number: ACGV

output

`Htle of program: JETNET version 2.0 Penpherals used: terminal for input. terminal or printer for

PROGRAM SUMMARY

architectures and procedures.

consists of a set of subroutines. which can either be used with standard options or be easily modified to host alternative
ingredients are the multilayer perceptron back·propagation algorithm and the topological self-organizing map. The package
energy physics community, but it is general enough to be used in any pattern-recognition application area. The basic

A F77 package of adaptive artificial neural network algorithms. JETNET 2.0. is presented. its primary target is the high

Received 27 August 1991

Deparrmenz of Theorerical Physics. University of Lund, Sélcegacan I 4 A, S-223 62 Lund. Sweden

Leif Lonnblad, Carsten Peterson and Thorsreirm Rognvaldsson

networks - JETNET 2.0
Pauem recognition in high energy physics with artificial neural

N¤rrh-Holland Communications
Computer Physics Communications 70 (1992) 167-182 COUWQUIBT PhYS1CS

-. { ·- -— /5)
..· -iv»¢-oi ¢- ·r



Operating system: DEC OSF 1.3 OCR Output

Lund, Sweden
Computer: DEC Alpha. 3000; installation: Department of Theoretical Physics, University of Lund,

Hewlett·Packard, and others with a F77 compiler
Computer for which the programme ir designed: DEC Alpha, DECstation, SUN, Apollo, VAX, IBM,

pub/J•tn•t/ or from t:r••h•p.sc:1.tsu. edu in directory !z·••h•p/ uxalys 1s/ j•tn•e.
Program obtainable from: denni0thep.lu.se or via anonymous ftp from thep.1u.s• in directory

Catalogue number:

Title of Program: J ETNET version 3.0

PROGRAM SUMMARY

Submitted to Computer Physics Communications

Theory Division, CERN, CH 1211 Geneva 23, Switzerland

Leif Lonnblad

Solvegatan 14 A, $-223 62 Lund, Sweden
Department of Theoretical Physics, University of Lund,

Carsten Peterson and Thorsteinn Rognvaldsson

Neural Network Package

J ETNET 3.0 — A Versatile Artificial

December 1993
CERN-TH.7135/94

LU TP 93-29
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can now recognize a wide range of is currently the world's fastest and38 types of neural networks and learn
example. artificial neural networks er is required which can simulate all faster than a powerful workstation. it
research and development. For form such tasks: so a special comput SYNAPSE-1 is not only 8 OOO times

achieved in scientific and industrial weeks · sometimes months - to per second. With power on this scale.
Successful results have already been Even the fastest workstations take adding 16-bit numbers) every
computers to do in the future. point operations (i.e. multiplying or
the sort of things we will want our power required perform more than five billion fixed

Q when knowledge is incomplete are process neural applications. lt` canA leap in computing
ognition, or making sensible guesses cally reducing the time needed to
automatic speech and image rec magnitude. mens AG directed towards dramati

language or recognizing faces. Yet Development Department at' SieGannaay resources by at least five orders of
way from understanding natural Munich. power required exceeds existing work by the Central Research and

Si•nr•naA6. learning process: the computingpowerful computers are still a long SYNAPSE-l is the result of two years‘
capacity.scious effort. For example, even very difficulty of simulating the neural

appear to achieve without any con ing massively parallel processingvelopment of new applications is the
brain. nervous system and senses search and The major obstacle to the rapid de network of simple processors provid

replicating what the human C••¤elR•- rates. neural computer is equipped with a
puters have fallen far short in Remaster. predict the movement of exchange based on the von Neumann model, a

ing processes. Unlike com_ ersmil now, conventional com By Dr. Ulrich handwritten letters and numbers, or

is the fastest neural computer in the world

SYNAP$E·1. designed tu simulate the human brain,

OCR Output? Bs



Fax: (021) 635 88 82 OCR Output
Tel.: (021) 632 01 11tions of neural algorithms.

the compute intensive opera
CH-1020 Renenscessor MA16 which exewtes

for future developments. Division Band from the neuro-signal-pro
ported and provision is made lnfbfmationssysieme SAsor and memory architecture

from a scalable multi-proces neural networks are sup- Siemens Nixdorf
ture, so that any of today‘stions per second) is resulting
'general purpose' architec- contact:multiplications and accumula

to 3.2 billion connections or For more information, please
implementedThe power of SYNAPSE-1 (up
tentlal applications can be station.

that of a powerful workstation. that a complete area of po- VME bus connection to work
and large neural networks. so mtgggorders of magnitude above
support of small, mediumperformance that iles several

computer SYNAPSE-1 offers a Frequency rate 25 MHz
be minimizedware solutions. The neuro MBytesls.
that development times canmuch superior to those son VME bus connection 4
conventional computers, soteuure of neural networks are Working memory 8 MBytes,
orders of magnitude above per second,take into account the ardtl
compute power of at lea: 3Special purpose conputers that generator 25 million addresses

Peak perfonnance Y address
platforms. universal neurocomputer: 20 MIPS.

Peak performance sequencerrelevant requirements for aneural applications on such
Control UniSYNAPSE-1 fulfills all thevents fast developments of

neural Ieaming proces pre
Frequency rate 25 MHzEspecially the simulation of the nAPL is embedded in C+-•·.
Y memory 8 MBytes.tremely long processing times. development of his algorithms.
Mbytesls.explored because of the ex whidt supports the user in the

only very simple cases can be VME bus connection 4gramming Language" (nAPL)
Working memory 8 MBytes,computers like workstations, use 'neural Algorithms Pro
integer operations per second,be simulated on conventional programmed in the easy-to
Peak performance 100 millionAlthough neural networks can environment. Applications are
Mtaxmof today‘s computer systems. and workstation programming

different from the architeuure programs, operating software
tem is delivered with microral networks is considerably Capacity 128 MBytes
On the software side. the sys W memoThe stiumure of artificial neu

problem areas. face. Frequency rate 25 MHz
to tackle the above mentioned - Address bus 56 MBytes/s.mented via a VME bus inter
Hcial neural networks in order input/output devices is imple Control busses 200 MBytesls
systems are modelled by ani· workstation and spedalized Data busses 0.8 GBytes/s

(plus 100 MBytesIs parity)tant. Therefore, natural neural Communication with host
become more and more impor Backplane 0.8 GBytes/s
especially Ieaming capabilities Transfer ratescoordination.

Memory capacity 32 MBytes.optimization problems and a control unit for control and
second.gnition, solution of complex a high-bandwidth memory
accumulations (48 bit) pere.g. image and speech reco intensive operations
multiplications (16x16 bit) andhand, these capabilities like a data unit for non compute
Peak performance 3.2 billiontion technology. On the other an array of 8 MA16 chips
MMG arranents:to model by classical informa

brain and senses are difficuit following hardware compo
The capabilities ofthe human Technical data:The system consists of the

Neurocomputer SYNAPSE-1

Dr es sc ngemeur ml Teeefax 32* /535 B6 B2N
Peter Puhlmarm Te·e:r»ore ~cer~zran 32* /632 C1

Taleonare Vcvecn 327 x632 D3 32
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Rn, 2 r,(:1:,,)(x,,+i - 2:,,-1)/2 (18.4.8) OCR Output

where the N x M matrix R has components

ct = > R;,_,u(a:,,) + nt (18.4.7)

replace equation (18.4.5) by a quadrature like
to denote values of immediate observables.) For such a dense set of x,,’s, we can
it to denote values in the space of the underlying process, and Roman letters like i
much between any 2:,, and :1:,,+1. (Here and following we will use Greek letters like
large, and the a:,,’s are sufficiently evenly spaced, that neither u(x) nor r,(a:) varies
large number M of discrete points :1:,,, it = 1,2,.. . ,M, where M is sufficiently

We can’t really want every point :1: of the function 1'I(:r). We do want some
curve" through a scattering of Fourier coefficients?)
underlying function live in quite different function spaces. (How do you "draw a
these assumptions, and to extend our abilities to cases where the measurements and
the nature of the response functions r,(:r), or both. Our purpose now is to formalize
are making some assumptions, either about the underlying function u(::), or about
measure "enough points" and then "draw a curve through them." In doing so, we
Yet, whether formally or informally, we do this all the time in science. We routinely
reconstruct a whole function t'i(:1:) from only a finite number of discrete values c,?

It should be obvious that this is an ill-posed problem. After all, how can we
how do we find a good statistical estimator of u(:r:), call it iZ(z)?

Sij 5 Covar[n.,, nj]

about the errors ni such as their covariance matrix
The inverse problem is, given the ci ’s, the r,(:z:) ’s, and perhaps some information

of u(z) for example.
entirely different function space from u(z), measuring different Fourier components
narrow instrumental response centered around z = :1:,. Or, the c,’s might "live" in an
certain locations 2:,, in which case ri(x) would have the form of a more or less
this is quite a general formulation. The cfs might approximate values of u(z) at

ithin theassumption of linearity,(compare this to equations 13.3. lari
`

;. s, + rt, = [ r,(:z:)u(:z:)da: + n,6
kemel r,, and with its own other words,

each ci measures a (hopefully distinct) aspect of u(x) through its own linear response
measurements q, i = 1,2,...,N. The relation between u(:c) and the c,’s is that
and underlying!) physical process, which we hope to determine by a set or N. b QT

Suppose that ·u(x) is some unknown or underlying (u stands for both unknown

The Inverse Problem with Zeroth-Order Hegularlzatlon
EC well-posed. We are now equipped to face the subject of inverse problems.

positive, only one of the two need be nondegenerate for the overall problem to be

CF"; Z] minimization principle is combined with a quadratic consuaint. and both areA/M Q
We can combine these two points. for this conclusion: When a quadratic

Chapter 18. Integral Equations and Inverse Theory? 5*33 R LSE E 'T pt (



second piece guaranteeing nondegeneracy.) OCR Output
solution for u. ('l'he sum of two quadratic forms is itself a quadratic form. with the
a positive definite matrix, then minimization of A[u] + AB[u] will lead to a unique
multiple A times a nondegenerate quadratic form B[u], for example u - H · u with H
AT · A in the normal equations 15.4.10 is degenerate.) However, if we add any
and note that for a “design matrix" A with fewer rows than columns, the matrix
minimizing A[u] will not give a unique solution for u. (To see why, review §15.4,
but degenerate (has a nonuivial nullspace, see §2.6, especially Figure 2.6.1), then
for some matrix A and vector c. If A has fewer rows than columns, or if A is square

(18.4.4)A[u] = IA · u - c|2

ln the example above. now suppose that A[u] has the particular form
The second preliminary point has to do with degenerate minimization principles.

minimization of the sum A + A18.
or (ii) a minimization of B for some constrained value of A, or (iii) a weighted
be thought of as either (i) a minimization of A for some constrained value of B,
the problem of minimizing B. Any solution along this curve can equally well
varies along a so·called trade-ojf curve between the problem of minimizing A and
family of solutions, say, u(A1). As A; varies from 0 to oo, the solution u(A1)
exactly the same in the two cases. Both cases will yield the same one-parameter
constant l/A2, and identifying 1/A2 with A1, we see that the actual variations are
with, this time, A2 the Lagrange multiplier. Multiplying equation (18.4.3) by the

(Su {B[u] + A2(A[u] — a)} = g (B[u] + A2A[u]) = 0 (18.4.3)

we have

to the constraint that A[u] have a particular value, a. Instead of equation (18.4.2)
Next, suppose that we change our minds and decide to minimize B[u] subject

since it doesn’t depend on u.
where A1 is a Lagrange multiplier. Notice that b is absent in the second equality,

6u {A[u] + A;(B[u] — b)} = i (A[u] + A1B[u]) = 0 (18.4.2)

some particular value, say b. The method of Lagrange multipliers gives the variation
now suppose that we want to minimize A[u] subject to the constraint that B [u] have
(Of course these will generally give different answers for u.) As another possibility,

minimize: A[u] or minimize: B[u] X (18.4.1)

e u by eitherpositive functiorgssf-ue
determine by some minimization principle. Let A[u] > 0 and B[u] > O be two
of mathematical points. Suppose that u is an "unknown" vector that we plan to

Later discussion will be facilitated by some preliminary mention of a couple

Priori information

18.4 In verse Problems and the Use of A

18.4 inverse Problems and the Use of A Priori information 795 ( Q



at all to do with the meas OCR Output

to give a solution that is “smootlt" or "stable" or "likely" ·— and that has no
functional or regularizing operator. In any case. g B by itself is supposed
a priori judgments about the likelihood of a solution. B is called the stabilizing
the solution with respect to variations in the data, or sometimes a quantity reflecting
desired solution, or sometimes a related quantity that parametrizes the stability of

is where 8 comes in. It measures something like the "smoothness" of the

minimization Droblem.

other ways unrealistic, reflecting that A alone typically defines a highly degene
(often impossibly good), but the solution becomes unstable, wildly oscillating, or in

the agreement or sharpness becomes very gten A by itself is mi
the "sharpness" of the mapping between the solution and the underlying function.
the agreement of a model to the data (e.g., X2), or sometimes a related quantity like
two positive functionals, call them A and B. The first, A, measures something like
most of the basic ideas that are used in inverse problem theory. In general, there are

Zeroth-order regularization, though dominated by better methods, demonstrates

1/2N +(2N)1/2, the other N —(2N)
distribution). One might equally plausibly try two values of A, one giving X2 =
distribution with mean N and standard deviation (2N )1/ 2 (the asymptotic X2

The value N is actually a surrogate for any value drawn from a Gaussian

other solution is dominated by at least one solution on the curve.
um of B are the "best” solutions, in the sense that everyum of A and tlte

shown here schematically as the shaded region, those on the boundary connecting the uncons
8). Among all possible solutions,denoted A), and smoothness or stability of the solution (

agreement between data and solution. or "sharpness" of mapping between ¤·ue and estimated solution (here
Figure 18.4.1. Almost all inverse problem methods involve a trade-off between two optimizations;

Better Smoothness B

(independent of smoothness)
best agreement

achievable solutions

2;;
0:
_,2:U i t / { // . /1Q u
ES
Qc

5C- E
vn. **2
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called the solution of the inverse problem with zeroth·order regularization. OCR Output
much extra regularization as a plausible value of X2 dictates. The resulting 1'I(:i:) is
choice, in fact, is to find that value of A which yields X2 = N, that is, to get about as
subject to the constraint that X2 have some constant nonzero value. A popular
ii · E. From the preliminary discussion above, we can view this as minimizing ii · G

Increasing A pulls the solution away from minimizing X2 in favor of minimizing
number of degrees of freedom and the expected value of X2 should be about u z N.
that for the true underlying function u(::), which has no adjustable parameters, the
large, is being driven down to zero (and, not meaningfully, beyond). Yet, we know
freedom u = N - M, which is approximately the expected value of X2 when u is
unrealistically small, if not zero. In the language of §15.1, the number of degrees of
u will often have enough freedom to be able to make X2 (equation 18.4.9) quite
value of A? First, note that if M > N (many more unknowns than equations), then

What happens if we determine E by equation (18.4.11) with a non·infinitesimal
as more general ones, without the ad hoc use of SVD.
in the limit of small A. Below, we will leam how to do such minimizations, as well

(18.4.11)X’[ii]+A(i-6)

minimizing the sum of the two positive functionals
is a limiting case of what is called zeroth-order regularization, corresponding to
(look at Figure 2.6.1). This solution is often called the principal solution. It

(18.4.10)[i2(a:,,)]2 a minimum

sense ofselect the one with smallest
solutions (most of them badly behaved with arbitrarily large t'Z(z,,)’s) SVD will
values, indicative of a highly non·unique solution. Among the infinity of degenerate
discussed. The SVD process will thus surely find a large number of zero singular
of normal equations; since M is greater than N they will be singular, as we already
to find the vector ii that minimizes equation (18.4.9). Don’t t1·y to use the method

Now you can use the method of singular value decomposition (SVD) in §l5.4
with er, 2 (Covar[i, i])*
and the approximate equality holds if you can neglect the off~diagonal covariances,
(compare with equation 15.1.5). Here S" is the inverse of the covariance matrix,

°qua we ( 6 H U
ci _ 21 R2#a(z#)N :2Q { U.

(1849) l .

X2 = - 1z,,,a(x,,)scj - R,,,a(a,,)N N M Z Z Z t=1 j=1 1.:1 M ] y {Z ,1:1
Form a X2 measure of how well a model e’I(.r:) agrees with the measured data,
u(z,,)’s? Here is a bad way, but one that contains the germ of some correct ideas:

I-low do you solve a set of equations like equation (18.4.7) for the unknown
( 18.4.5) and (18.4.7) as being equivalent for practical purposes.
(or any other simple quadrature — it rarely matters which). We will view equations

797
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tail. (a) Marchand et al. [1990]. (b) Frean [1990]. (c) Mézard and Nada.! [1989]. OCR Output
Shaded arrows represent connections from all the units or inputs at the arrow’s
the numbered circles are threshold units, numbered in order of their creation.
FIGURE 6.16 Network construction algorithm. The black dots are inputs, while
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With K. Hornik and M. Stinchcornbe
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With M. Stinchcombe
Multilayer Feedforward Networks with Bounded Weights 4l
Approximating and Learning Unknown Mappings Using

With M. Stinchcombe
British Library.

29Non-sigmoid Hidden Layer Activation Functions
Universal Approximation Using Feedforward Networks with

With K. Hornik and M. Stinchcombe

l2Approxirnators

Multilayer Feedforward Networks Are Universal

With A. R. Gallant

Avoidable Mistaks

There Exists a Neural Network That Does Not Make

Partl Approximation Theory

and J. Wooldridge
with A. R. Gallant, K. Homik, M. stinchcombe,

( i J
Halbert White

Approximation and Learning Theory

Artificial Neural Networks

OCR OutputOCR Output@



dimension (Vapnik and Chervonenkis. 1971) we use the concept of metric
to corollary 2 of l-laussler (1989). lnstead of using the concept of V-C·3»(u) Qn(wv

We now give a result permitting verification of condition (4.1), related, measurable
application.
constants g, and 5, of the previous section determine Q, and 9,, in ourous on 9,, for
fast and that Q, converges to Q uniformly in an appropriate sense. TheY® .Q(9)·
element of 9. The behavior of 9, ensures that 9,(w) does not increase too,, and the set
ficiently dense in 9, so that an element of 6,(q) can well approximate anondence with
bounding 6,(¤). The behavior of Q, ensures that 9,(o) becomes sufe a. complete
assumption of part (b) is the existence of nonstochastic sets Q, and 9,cy space and
permits this for i.i.d. and stationary mixing processes. The other notable
convergence can be verified in particular stochastic contexts; our next result
the limit to which Q, converges uniformly (condition 4.1). This uniform

the indicated The object 0, is distinguished by its role as minimizer of Q (condition 4.2),
che indicated statements about consistency. Part (b) establishu consistency of 6, for 0,.
icrated by the measurability we cannot make probability statements about 8,,_ such as
shcombe and Part (a) establishm the existence of a measurable estimator 0,. Without
>f White and Q x 9,.
no: limited to measurable extension to 0 x 9 of Q, originally defined on gr 9, or
ad so as to be results in no loss of generality, as there generally exists an appropriate
i 2.1 of White Stinchcombe and White (1989b) establishes that defining Q, on fi x 9
ined from the Q x 9, instead of on all of Q x 9 as we assume. Lemma 2.1 of
the previous it may be natural to have Q, defined only on the graph of 9,,(w) or on

permits treatment of cross-validation procedures. ln some applications
which optimization is carried out may depend on the data through ui; this

(squared error) optimized to arrive at an estimator 6,,. The set é,,(w) over
in this space (weighted mean squared error). Q, is the criterion function
unknown regrusion function 0,). and p is a metric that measures distance
dent or a mixing sequence. The space 9 contains the object of interest (the

mailer is this [Z,} is defined. The properties of P determine whether {Z,} is an indepen
cme mappmg ln our application, (Q, JZ P) is the space on which the stochastic process
In the limit, n (0.. . 9s) L 0

nn provides a where $(0,, c) s i9e9:p(0,0,) 2 ci, and Q is continuous at 9,. Then
1cn optimiza

<4.2>i¤f...·i... ., QW) - QW,) > 0.
+E)1 ·• 1 as

.4 or A.l(b), and for 0, s 9

Connectionist Nonparametric Regression 175

| n stochastic; OCR Output

exponentiaP[¤=?¤:|Q.(<».0) -Q(0)|>c] ··0asn-·¤¤, (4.1)
the same a

that for all e > 0 number of
for all to in 0, n = l, 2, .... Suppose there exists a function Q: 6 —• I5 such metric ent
pact subsets of 9 such that UZ., Q. is dense in 9 and Q, Q é,,(o) g 6,, entropy (lt

(b) In addition, supposei Q,} and (G,.} are incrusing sequences of com dimension
or all u in 0. to corolla:

We nots?·”/$(9,) (hence-Y/9(6)) such that Q,,(¤,€,,(t.i)) = mi¤,_°_:T5;::,?§;
Then for each n =1, 2, . . . there exists a function 6,,:0 —• 9_ all application

constantseachoin0,n=l,2,.
measurable, and Suppose that Q.(w. ·) is lower semicontinuous on 9 for ” fast and t
9,,(w) is non-empty and compact. Let Q_;0 x 9··§ b, y®g(6)_ element o

9..6 M?®9(9.)) Such that for each o in 0 é,(¤) q 9__ ud th, sa ficiently c
boundingseparable Borel subset of 9 and let é,,;0 • 6 be ; ccnapoudma with
assumpttcM (9.p) be a metric space. For n s 1,z,____ in g_ be a commu
permits tlT’*¢¤'¢M *-1- (l) Let (0,.9I P) be a complete probability spaee md
converger

the limit
U•ll¢l¤•

. corrapondence, and .d( · ) is the collxtion of analytic sets of the indicate;\ I / TM ¤b5¤ - #2-IA
S¢¤¤¢m¢¤open sets of the argument set, gr( ·) denotes the yaph of the indica:
m¢¤¤¤kWhite (l989b). We write 9( ·) to denote the Bore! c·Held generatd bythe
Pm (IWooldridge. Other notation and dehnitions are as in Stinchcombe and

0 x 9,.this uae, howevc. Where possible, notation follow that of White and
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biological, vol. 3 contains tutorial and software)
(Vol. 1 gives the foundations and algorithms, vol. 2 is more
MIT Press, 19II
Parallel Distributed Processing, vols. 1, 2 and 3,

McClelland and Rumelhart,

Springer•Verlag, 1999
se1f·Organi:ation and Associative Memory (3rd edition)

Kohonen, T.,

(probably the best book available for physicists)
Addison·wesley, 1991
Introduction to the Theory of Neural Computation

nertz, Krogh and Palmer,

world Scientific, 1990
Physical Models of Neural Networks,

Geszti, T.,

(reprinted in Anderson and Rosenfeld)
Reviews of Modern Physics 34(1962), 123-135
The Perceptron: A model for brain functioning,

Block, H.D.

(A good general introduction, paperback, not expensive.)
Adam Hilger, 1990
Neural Computing, an introduction,

Beale and Jackson,

(A collection of important papers, expensive)
MIT Press, 1988
weurocomputing: Foundations of Research

Anderson and Rosenfeld (eds.),

approach;)
(Amit is a theoretical physicist, but often adopts the biological
Cambridge University Press, 1989
Modelling Brain Function,

Amit, Daniel

F. James, August, 1991
SOM! RLCENT GOOD BOOKS ON NBURAL NETWORKS
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several NN architectures are compared with conventional methods. Excellent results are obtained.
network with error haclopropagation. Two completely different methods are described in detail and their efficiencies for

We developped neural-network learning techniques for the recognition of decays of charged tracks using .i |`eed·for~s4rd
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Table 3bbout 40000

par
51.679.0 69.1

50.1N res 75.2 68.5

one hidden
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Carlo models.

systematic effects that may result from the use of such a network, by using samples from different Monte
Section 4 studies the size and topology of network needed to bring out the results. In section 5 we discuss
preprocessed variables (following the suggestions of ref. [2]), secondary jet clusters, and raw momenta.
we compare the performance of networks using 3 different philosophies for input variables: highly
definition of the extent to which one network performance is "better" than another. Then in section 3
particularly when using it to perform a statistical separation. This gives an objective and unambiguous

In the next section we discuss how the separating power of a network can be quantitatively measured.
GeV. and it is not clear that the situations are comparable.
study was done at a centre of mass energy of 14 GeV, where the distinction is much clearer than at 91
format (they used a hypothetical calorimeter) is preferable to using more sophisticated variables. but this
them. Gottschalk and Nolty [1] suggest that entering the shape of the event in a largely unprocessed
("raw") event information, trusting to the network training algorithm to find the best way of combining
for b identification, to give the network the best possible chance of success, or to use unprocessed
network; in particular, whether to use constructed shape variables known from experience to be useful

In such an application the most important question is what the best input variables are to use with the
of b quark jets produced in the reaction e* e`-• Z -• qi at a centre of mass energy of 91 GeV.
nature of the jets is known. This note explores the possibility further, concentrating on the identification
networks trained and tested on samples of data generated by Monte Carlo programs. for which the
parameters). Some studies have already been done on this topic [1,2], examining the performance of
general jet shape as input (as opposed to specihc inputs such as high pT leptons or large impact
jet, specifically to discrimination between jets from heavy (b) and light (u, d, s, c) quarks. using only the
physics they can be applied to the problem of recognising the nature of the quark producing a hadronic

Neural networks with feed-forward topology are widely used in pattern recognition. In high energy

1. Introduction

techniques are given.

believed to be good for separation. Some first studies of systematic errors resulting from using neural network separation
networks perform better separation if they are given simple inputs, as opposed to inputs already combined into variables

The problem of identifying b quark jets produced at LEP using a neural network technique has been studied. We find that

Received 5 June 1992

Department of Physics, Manchester University. Manchester, M13 9PL. UK

Graham Bahan and Roger Barlow

Identification of b jets using neural networks

CommunicationsN°"“`H°"“‘°

Computer Physics Communications 74 (1993) 199-216 CO.-nputer physics
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i- 1, 2, 3...NB and F estimated as
h(x) and l(x) but to the two Monte Carlo event samples. These must be histogrammed in bins

To evaluate 1-' for the results of a particular network one does not have access to the parent functions

Appendix. Evaluating F

useful discussions.

We are indebted to Leif Lbnnblad for providing us with the JETNET program, and to Terry Wyatt for

Acknowledgements
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We recommend the use of the figure of merit, F, as an unambiguous parameter describing the
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network is much longer, and there are still features of the output which are unpleasant and not well

Fig. 9. Effect of the number of nodes in a single hidden layer on the performance of networks using different input;
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Breaking mechanism [2]. During recent years
son, H, responsible for the so-called Symmetry
model predicts the existence of the Higgs bo
interactions among elementary particles. Thisphasis is given to the selection of the best input
is the commonly accepted theory to explain the. layer and error back-propagation are used. Em
The Standard Model of particle physics [1]Standard feed-forward nets with one hidden

the Z mass.
LEP 200mass is rather challenging since it is just below
2. Higgs production and backgrounds atgrounds can be better discriminated. The higher

case because the sipal is higher and the back
GeV/cz. The lower mass represents the easier
ing two mass hypotheses are chosen: 70 and 90 of the methods. Finally, conclusions are given.
for the Higgs boson at LEP 200. The follow sively in section 7 in order to test the reliability
with a neural net (NN) approach in the search in section 6. Systematic eH`ects are studied exten

standard one-dimensional cuts, is compared of the N'Ns in the Higgs search is demonstrated
In this study a traditional filtering method, us select the best input·variables. The performance

background events. methods developed to analyse neural nets and to
tering process intended to separate signal and and learning procedure, and a description of the
ysis looking for new phenomena needs a fil cal details ofthe net generation, like architecture
number of conventional events. Hence an anal dimensional cuts. Section S contains the techni
ticles are produced along with a much larger icated to the standard analysis based on one
physics. In general, events containing new par preselection of the input data. Section 4 is ded
among the most important tasks in high energy lowed by a description ofthe generation and the

The search for new elementary particles is The physics case is discussed in section 2, fol
Systematic eH`ects are studied in detail.

1. Introduction variables by analysing their utility inside the net.

nets are found to be sipiticantly better than those of standard methods.
are presented. The sensitivity of the nets for systematic eH`ects is studied extensively. The ehiciencies of the neural
at LEP 200. New methods to select the most edicient variables in such a classiiication task and to analyse the nets
of neural nets. Feed-forward nets with error bacbpropagation are applied to the search for the standard Higgs boson

Two aspects of ¤eura1·¤et analysis are addressed: the application of neural nets to physics analysis and the analysis
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1`o allow for a direct compari standard cuts (table 3) are included to ease the OCR Output
does not improve the statisti the significance is maximal. The results of the
Pgm (9). Adding them to the The cut on the NN output is chosen such that
ibove. There are two new vari the analysis at 70 and 90 GeV/cz, respectively.
the standard analysis are con cal significance are shown in tables 7 and 8 for
with section 4 shows that all ground events of the three nets and the statisti

The number of accepted signal and back
nputs (N7) but still good per maximum around 0.9
for high performance and the raise almost linearly with the cut, reaching their
for further study. The net with to the preselection. The statistical significances
the performance two nets from statistical fluctuations. The threshold at O is due

events above the cut are demanded to avoid bigng between the number of in
put for both masses. At least two background

r nets N, are the variables 1 to the three nets as function of the cut on the out
re the inputs for N 10. The in

354.391.422.Min. luminosity [pb"] 610.fitted with the HZ hypothesis
8.47.7 8.0Statistical significance 6.4

f secondaries in the Higgs jets
15.5 10.9 6.935.1Total backgound

4.211.4 5.36.6e+e‘ -• Z Z
. ofthe most energetic electron 1.63.9 2.611.8e+e" -• W+W‘·

1.1:0 three jets (S9). 3.0ll.9 5.0e"’e' - qdgg
angles between the jets if the 22.026.438.0 30.5e+e‘ -—· H90 Z

N10CutsReactiontass of all secondary tracks

canoe.

. event is timed with the WW analyses at my = 90 GeV/cz and their statistical signifi
Signal and background events left for standard and NN

Table 8·-.1argcd tracks (Md;).

124.157.174.Min. luminosity [pb"] 330.
10.9 8.0 14.2 '12.612.0Statistical simiticance 8.7
12.6 8.0

8.33.56.048.7Total backgound13.2 8.2
0.60.21.4 0.4e+e" —· Z Z13.2 8.4
4.01.43.225.0e+e‘ -» W+W‘14.2 8.4
3.71.92.422.3e*e‘ -·» qdgg15.5

40.923.629.560.515.8 e+e‘—» Hm Z

19.1 8.7
N10NetCutsReaction

Hm Hoo
cance.

.scs. analyses at my = 70 GeV/cz and their statistical signiti
Signal and background events left for standard and NNas function of the number of input

Table 7

G. Stimpfl-Abele. P. Yepes / Higgs search and neural~net analysis



© l990 The American Physical Society OCR Output l32|

hidden units.ard layered architecture (see Fig. l) with inputforw
kc ours the neurons are often organized in a feed FIG. l. A l`eed·l`orward neural network with one layer of

nectivity weights wi,. For feature recognition problems
ingredients in a neural network are neurons n, and con . $• Xit

‘—° jkThe neuralmetwork learning algorithm.--The basic
lions.

could be used in a variety of different triggering situa
Sluon and quark jets. it is clear that the methodology

Although this paper is limited to the separation of
independent, e.g.. considering the fastest particles only.
ourselves to kinematical quantities that are most model
ready there. This eH`ect can be minimized by limiting

(6)Amy;. ·· nZmj,5,g'(a,)xi +aAm}’l°our studies; some of the physics one wants to study is al
`Some extent this induces a "chicken·and·egg" eH'ect to Correspondingly, for the input to hidden layers one has
efe ` events using the Lund Monte Carlo model. To

6; '(yg ‘I, )g'(di) .We conhne our studies to Monte Carlo·generated
time triggering.

for the hidden to output layers, where 6, is given by
structure. The latter feature is very important for real~
in custom·made hardware with its simple processor Aw;] ' ` Hajhj +GA(.r)3 (4)
very general, inherently parallel. and easy to implement

sponds to
has the advantage over other Etting schemes in that it is

is minimized. Changing my- by gradient descent correis exactly what the neural~network approach aims at. It
xpert`s exercise to a "black box" htting procedure. This

(3)E- % ZZ(y,‘P’—t,‘P’)’(quark or gluon). This reduces the problem from an
served hadronic kinematical information and the feature tion

would be to End the functional mapping between the ob back·pr0pagation learning rules where the error func
A straightforward method for identifying the jets quently used procedure for accomplishing this is the

produced in high·pr hadron-hadron collisions. equals the desired output or target value ti". A fre
energies are less well known. One such example is jets ter x ') gives rise to an output (feature) value y"that(’
that in many situations “g1obal" quantities like total jet changing the weights my such that a given input parame
would be desirable to focus on the latter alternative given to be learned. Training the network corresponds to
the entire event rather than just a single isolated jet. It building up an "internal representation" of the patterns
orate schemes.’·° Such procedures are often based on The hidden nodes have the task of correlating and
jet with smallest energy as the gluon jet' to more elab and Z, wijhj, respectively.
the kinematic variables ranging from just identifying the weighted input sums aj and aj are given by Zi wjixi
identihcation has been done by making various cuts on where the "temperature" T sets the slope of g and the
coupling in e*e ' annihilation.; To date the gluon-jet

y;'g(G;/T) ,quired for establishing the existence of the three—gluon
Also. a fairly precise identincation of the gluon jet is re

(I)h,•g(aj/T),
studies on the so-called string eH`ect‘ and related issues.

one haslight on the confinement mechanism in terms of detailed
tiit from many perspectives. lt can shed experimental 0.5[l+tanh(x)]. For the hidden and output neurons

__ab\e to distinguish the origin of a jet of hadrons is impor thresholds this sum with a "sigmoid" function g(.x)
performs a weighted sum of the incoming signals andand quark jets using a neural-network identifier. Being

In this Letter, we demonstrate how to separate gluon (xi), hidden (hj), and output (y.) nodes. Each neuron

PACS numbers: l3.87.Fh. l2.38.Qk, l3.65.+i

Monte Carlo-generated e 'e ' events with 85%-90% accuracy.
Using a neural-network classifier we are able to separate gluon from quark jets originating from

(Received 6 April 1990)
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M';74'2l()0‘I·Success rate

Smallest jetNeural networkMC truth

approach and the "smallest jet" approach
different methods of identifying the gluon jet: using the true gluon jet of the MC. the NN ,r

Results for the r · (rt:)/<n,> measured on a sample of l0000 MC events (ARIADNEI for / ‘N`D
Titan.; 7 LP AA
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and energy. ln a previous paper [1] preliminary results for gluon·quark separation
feature extraction procedures will become more acute with increasing luminosity
relevant quantities in collected data. Needless to say. the demand for efficient
low-level trigger conditions in experimental setups, to extraction of theoretically

High·energy physics contain many feature recognition problems, ranging from
execution times and thereby facilitating real-time performance.

neural networks and the feasibility of making custom made hardware with fast

ness and robustness. Another attractive feature is the inherent parallelism in
of the NN promising but the entire approach is very appealing with its adaptive
variety of real·world feature recognition applications. Not only is the performance
enthusiasm is the power this new computational paradigm has shown for a wide
brain·style computing in terms of artificial neural networks (NN). The origin of this

During the last couple of years there has been an upsurge in interest for

1. Introduction

compressing the dimensionality of the state space of hadrons.
how the neural network method can be used to disentangle different hadronization schemes by
purity. which is comparable with what is expected from vertex detectors. We also speculate on
just observing the hadrons. ln particular we are able to separate b-quarks with an efficiency and

ln addition, heavy quarks fb and cl in e°e‘ reactions can be identified on the 50% level by

effect.

model used. This approach for isolating the gluon jet is then used to study the so-called string
Carlo generated e’e‘ events with ~85‘? approach. The result is independent of the MC
network. With this method we are able to separate gluon from quark jets originating from Monte
functions using a gradient descent procedure. where the errors are back-propagated through the
quark-gluon identity. This is done with a neuronic expansion in terms of a network of sigmoidal
is to find an efficient mapping between certain observed hadronic kinematical variables and the

A neural network method for identifying the ancestor of a hadron jet is presented. The idea
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Amendola 173, 70126 Bari, Italy. followed by a Xe—CH, filled proportional cham
Correspondence to: M. Castellano, INFN, Sez. di Bari, Via ules, each one made of a carbon fiber radiator

The TRD prototype [10] consists of 10 mod

produced by known particle-classes, are stored in 2. The pattern classiication system
purpose, the output patterns of the detectors,
the classification power of detectors. For this
taken into account in high energy physics to study data and test results are discussed.
ful statistical and neurocomputing techniques, are the third section the application to experimental

Pattem recognition methods, involving power ture and the likelihood ratio test are described; in
ments [8-10]. tion system is presented and the neural architec
up to l TeV energy in cosmic ray space experi ray experiments. In the next section the classifica
can be used to distinguish positrons from protons for electrons/ hadrons discrimination in cosmic
experiments (see e.g. ref. [7]). Moreover, TRDs ate the pcrforrnances of a TRD developed [10,11]

network and likelihood ratio algorithm to evalufuture also in LHC (see e.g. ref. [6]) and SSC
tion system based on a back-propagation neuralat CERN [2,3] and Fermilab [4,5] and in the

high energy particle identification in experiments In this paper is presented a pattem recogii
classification power.Lorentz factor [1]: they have been employed for
in a suitable feature space provides the detectorused to discriminate particles with a different y
space. A measure of the separability of the classesTransition radiation detectors (TRDs) can be
tern from pattern space into class·membershipfor particle identification in high energy physics.
tionship among data in terms of mapping a patSeveral detectors have been proposed, so far,
cation system in order to carry out explicit rela

1. Introduction tagged data files. They are examined by a classifi

successfully identities 4.0 GeV/c electrons with an hadron contamination of about 4><10°’ at 98% acceptance efficiency.
multiwires proportional chamber of the detector. The best results are obtained by the neural network approach that
likelihood ratio technique. The information fed into the classihcation system consists of the number of hits detected by each
discrimination is presented. It is based both on a layered feed~forward neural network trained using back-propagation and a

A classihcation system able to evaluate the performances of a transition radiation detector prototype for electrons / hadrons
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___ ‘ Istituto Elabaraziane Segnali e Immagini - CMR., Va Amendola 166/5, 70126 Bari, Italy
b INFN Sez. di Bari, Via Amendola 173, 70126 Bari, Italy
“ Dipartimento di Fzlsica, Université di Bari. and INFM Se:. di Bari, Va Amendola 173, 70126 Bari, Italy

G. Pasquariello ° and P. Spinelli
R. Bellotti a, M. Castellano b, C. De Marzo “, N. Giglietto b,

radiation detector

method to evaluate the performance of a transition
A comparison bctwccn a neural network and the likelihood

CommunicationsNorth-Holland

Computer Physics Communications 78 (1993) 17-22 Computer Physics



(solid line). Collider in the LEP-Tunnel, ECFA 90-133, Vol. l (1990). OCR Output
hood ratio technique (dotted line) and the neural network [6] Proc. ECFA-CERN Workshop on the Large Hadron
GeV/ c data: the TRD performance evaluated by the likeli (1989).
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Neurol Network References

task.
Lihelihm

components to speed up the particle classification
could be hardware implemented using neuron-like
parallel distributed processing model of the net
results. Finally, from the practical view point, the

4 Gov/C Dole played a fundamental role in obtaining better
the likelihood ratio statistical technique has
many hypotheses simultaneously with respect to
been presented. The ability of the net to explore
for the electron / pion discrimination problem has
approaches to evaluate the TRD performances

A comparison between statistical and neural
three different momentum data set for both
merizes pion contamination against acceptance at

4. Conclusionselectron acceptance efficiency. The table 1 sum
mum pion contamination value around 95% of
As a result, the NN technique reaches the mini

as possible is required.to the procedure described in the second section.
short duration exposures, an acceptance as largeversus electron acceptance is computed according
searching for rare events with the constraint ofemphasized in fig. 5 where pion contamination
space cosmic ray experiments [9,10] where,respect to the L one. This behaviour is well
[12,19,20] and it can be useful to employ TRDs infeature values is achieved in the No space with
performance is never shown by other methodsonly. Better accumulation around 0 and 1 of the
nation is already achieved at full acceptance. Thisated, as shown in fig. 4 for 4 GeV/c momentum
methods. In the NN method a very low contamimentum, the NO and L feature spaces are gener

sets, i.e. about 5000 events for each beam mo
counts in each chamber. Using the same data
detector, while the electron patterns have some

98% 236.3 26.7 97.9 90.0 21.4 4.5
tected with a small number of hits in the whole 97% 134.9 26.7 46.6 8.1 14.1 4.5
shown in fig. 3. The pion events are mainly de 21.9 6.0 6.8 4.295 % 83.4 26.7

90% 25.3 15.1 14.8 6.0 3.0 4.2able. Typical data for pions and electrons are
1, are taken at the different beam momenta avail L NN L NN L NN

The TRD data, according to the scheme in fig. 2 GeV 4 GeVAcceptance 1 GeV
for the electrons is evaluated of about 10"‘ [10].

techniques.ule electronic logic. A mean tagging inefficiency
acceptance by the likelihood ratio test and neural network

ters, lead glass scintillators and a standard mod Pion contamination (x l0") evaluated for different electron
fixed momentum, by means of Cherenkov coun Table l

21R. Belloui ct aL / Evaluating the performance of a transition radiation detector
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A-1050 Wien, Austria (permanent address). can be mapped on a compatibility graph in which
Correspondence to: R. Friihwirth, Nikolsdorfer Gasse 18. The relation of compatibility in a set of tracks

2. Architecture of the network

maximal set.

.,..---., niuicators (Qls) will be called the ues. are presented in section 4.
. with the largest sum .. performance of the network algorithm

.q•A¢. ,-J. Inc GEIZUS UI. una ......¤•¤[IOn

2538Processing time [CPU s] 518 2067

Tracks in class 3 16251176149

Tracks in class 2 850240 903251

Tracks in class 1 487455183867 3712

8279Reconstructable tracks 4331 4331 8279

10000Simulated tracks 5H 10000Sm

standardAlgorithm neural netneural net standard

Data set llData set I

Classitication of simulated tracks.

t'Table 2

of c¤···¤tible tracks. It has

mization problem by selecting ar "° Hcpfield n··‘
algorithm therefore has to solve a ifiderable detail in ref. [1]. Bv
patible, i.e. must not share data. The selection sets in a compatibility graph has been analyzed in
two tracks in the f'mal selection have to be com The problem of finding maximal compatible
struction algorithm is given by the fact that any cedure is described in section 4.

An important constraint on any track recon track angle and chi-square probability. The pro
ful to define the track QI as a combination of

1. Introduction In our specific application we have found it use

simulated data of the DELPHI detector.

compatibility graph. The properties of the network are explored with random graphs. The performance is illustrated with
A feed-back neural network is described which solves the problem of finding an optimal set of compatible nodes in a

Received 6 July 1993

Institut jiir Hochenergtbphysik der Osterreichischcn Akadznuh der Wsscnschafterr, Wenna, Auswia

Rudolf Friihwirth

neural network
Selection of optimal subsets of tracks with a feed·back

North-Holland
Computer Physiu Communications 78 (1993) 23-28 Cgrnputg Phyggs



the experimental data. OCR Output
tional effects. The result is a simulated data sample (MC) that can be checked against
Monte Carlo events according to the theoretical model and to fold them with the addi
experimental data). A commonly used strategy to overcome this problem is to generate
effects not included in the model ( e.g.: detector effects during the acquisition of the
of a. large number of calculations with complex algorithms) and/ or there are additional
because their explicit analytical form does not exist ( e.g.: the models are the result
experimental data. In some cases the theoretical models cannot be checked directly
An everyday task in all areas of science is the comparison of theoretical models with

1 Introduction

(Submitted to Computer Physics Communications)

between the two clistributiomc.

nets, gives a lower bound value on any estimator that measures the inc:oni·1i.··:tenc:y
binning. The method, which can be successfully implemented on layerecl neural
climensionx clue to the lad: of data., and with the relevant fact that it is free of
empirical distributiomn which is not restricted to work with projections in fewer

V6/e present a. method to text the agreement between two multidimensional
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