

Abstract

In this series of 4 lectures, the emphasis will be on solving real problems using multilayer feed-forward networks. Using the general theory of inverse problems and recent theoretical results on computational complexity in neural networks, we try to develop ways of understanding in what sense a problem is solvable and what network architecture is necessary to solve it. 1. Introduction and overview of Artificial Neural Networks.

2,3. The Feed-forward Network as an Inverse Problem, and results on the computational complexity of network training. 4. Physics applications of neural networks.

CERN
ACADEMIC TRAINING PROGRAMME

Introduction to NEURAL NETWORKS
 F. JAMES

Lectures given 31 Jan. - 4 Feb., 1994
the Vow Neumane Computer

- sequential execution OF INSTRUCTIONS FROM A STORE CONTAINING INSTRUCTIONS AND DATA.
- Most of the store is idle most of the time.

WAS oNCE A MODEL OF How the hllitan brain works (WRONG!)

Historical Remark:
D. O. Heb: "the organization of Behavior"
this earliest serious study of learning in Biocoaliall SYSTEMS, APPEARED ONCY in 1949

NETWORKS OF NEURONS

I. PERLEPTRON FED -FORWARD NETWORK

II. RECURRENT NETWORK

WHAT IS SO EXCITING
AbOUT A.N.N.?
(1) InHerently parallel \rightarrow FASt!
(2) can solve many problems Better THAN ANY OTHER KnOWN MOTHOD.
(3) LEAREN FROM EXAMPLES NO NEED TO UNDERSTAND
(4) UNIVERSAL PREDICTORS

- weather
- THE STOCK MARKET!
(5) fault-tolerant, insensitive to noise, graceful degradation
(6) It is speculated that traditional PROGRAMMING WILL BECOME \sim IMPOSSIBLE AS COMPUTERS GET BIGGER

WHAT IS SO
DEPRESSING
ABOUT A.N.N.

50 years later, we still cannot solve

$$
\begin{aligned}
& \text { BIG PROBLEMS. } \\
& \text { (>100 iNPUTS) }
\end{aligned}
$$

We will TRY To UNDERSTAND if this limit is fundamental
"Researche ia Neural Networks

WHO is DOING RESEARCM

- Almost everybody!
- ANYBODY wiTt A PC OR A MAC OR W.S. CAN MAKE HIS OWN A.N.N. TO PLAY WITH. see "Mathemati ca" book -1994
- enormolas time is wasted this way.

SERIOUS, ORGANIZED R\&D

- NOT AT CERO!

NO BOOKS, NO JOURNALS, NO GROUPS, NO MANDATES.

- M.P.T. is THE "TEMPLE of A.I. + N.N."
- EvERY country has some real experts. usually in universities
- LUND, Sweden: C. peterson et al.
- N.B.I, copenalagen: B. Lautrup etas.
- Helsinki u. + tiu. : Kohonen et. al.
- israel, many groups (a.amit \rightarrow rome)
- EEC SURVEY DEANNA - Report March 1993
—__ PHYsicisT Database for Eureceare A.N:N: Activity

The Simplest Perception

"AND" Function: $\left\{\begin{array}{l}w_{1}=3 / 4 \\ w_{2}=3 / 4 \\ \theta=1\end{array}\right.$

"XOR" WITH ONE "Hidden layer"

$\frac{\text { RENAISSANCE OF N.N. (U1989) }}{\text { ONE "HIDDEN LAYER" }}$
CAN DO ANYTHING!
[C.4BENiKO, 1989 P HORNIK ETAL., 1987]
given any arbitrary inputs S_{i} AND ANY DESIRED OUTPUTS F $F_{j}\left(S_{i}\right)$, IT IS POSSIBLE, WITH ONLY ONE HIDDEN MAYER, TO OBTAIN OUTPUTS arbitrarily close to $F_{j}\left(s_{i}\right)$, provided THERE ARE ENOUGH UNITS IN

- the hidden layer.
S_{i}

How to Solve A
Real Problem

GENERATE A TRAINING SAMPLE DECIDE ON A NETWORK architecture

"Supervised" Learning

How CAN A NETWORK \square PARMA!

AdJUST ALL THE W_{i} UNTIL \& A THE RIGHT LIGHT GOES ${ }^{\text {ON:- }}$

For LeArning:
Replace Square Threshold BY $\frac{\text { Sigmoid Function }}{\text { (SMOOTH) }}$

$$
y(\sigma)=\frac{1}{1+e^{-2 \beta \sigma}}(0<g<1)
$$

$\frac{1}{\beta}$ is like a 'temperature'

LEARNING BY
Minimizing Chisquare
(quadratic Cost function)

$$
=X^{2}(\underline{w})=\sum_{k}^{\substack{\text { traimmis } \\ \text { sample }}} \sum_{j}^{\substack{\text { output } \\ \text { nouns }}}\left(F_{k j}(\underline{w})-C_{k j}\right)^{2}
$$

- to calculate $\chi^{2}(\underline{w})$ requires

USING THE "BACK-PROPAGATION"
ALGORITHM GIVES YOU ALL THE
First Derivatives with
less Calculation than to get $\chi^{2} ?$

CONSIDER :

$$
\begin{aligned}
& \frac{\partial}{\partial w_{26}}\left(F_{1}-\theta_{1}\right)^{2} \\
= & 2\left(F_{1}-\theta_{1}\right) \cdot \underbrace{\frac{\partial F_{1}}{\partial w_{26}}} \\
= & 2\left(F_{1}-\theta_{1}\right) \cdot \underbrace{\frac{\partial}{\partial w_{26}} g\left(S_{1-5}+s_{26} w,\right.}
\end{aligned}
$$

BUT: $g^{\prime}(x)=2 \beta g(x)[1-g(x)]$

THE BACK-Propagaton algorithm

$$
1975-1985-1985-1986
$$

(1) Calculate "Chi-square" - Forward swegp THROAGH NETWORK
(2) calculate all ist derivatives

BACKWARED SWEEP
ThROLGH NETWORE
(3) MODify weichts by amount "Steepest dojccit proportional to lst derivativg gradignt step (STEP LENGTH is A GUESS!)
(4) calculate chi-square

AT NEW PONT (NEW WGIGMS)
IF CHISQURE GETS WDRSE, CUT STEP SIZE YNTIL CHISQUARE IMPROUES.
(5) 90 To (2)

THIS *NON-LINEAR MINIMIZATION*
technique is very primitive,
BUT IT SOMETIMES WORKS.

Pattern recognition in high energy physics with artificial neural networks - JETNET 2.0

Leif Lönnblad, Carsten Peterson and Thorsteinn Rögnvaldsson
Department of Theoretical Physics, Unicersiry of Lund, Sölcegatan 14 A. S-223 62 Lund. Sweden
Received 27 August 1991

Abstract

A F77 package of adaptive artificial neural network algorithms. JETNET 2.0. is presented. Its primary target is the high energy physics community, but it is general enough to be used in any pattern-recognition application area. The basic ingredients are the multilayer perceptron back-propagation algorithm and the topological self-organizing map. The package consists of a set of subroutines. which can either be used with standard options or be easily modified to host alternative architectures and procedures.

PROGRAM SUMMARY

Title of program: JETNET version 2.0
Catalogue number: ACGV
Program obtainable from: CPC Program Library, Queen's University of Belfast. N. Ireland (see application form in this issue)

Licensing protisions: none
Computer for which the program is designed: DECstation, SUN. Apollo. VAX. IBM and others with a F77 compiler Computer: DECstation 3100; Installation: Department of Theoretical Physics. University of Lund. Sweden

Operating syistem under which the program has been tested: ULTRIX RISC 4.2

Programming language used: FORTRAN 77
Memory required to execute with rypical data: - 90 kwords
Vo. of bits in a word: 32

Peripherals used: terminal for input, terminal or printer for output

No. of lines in distributed program. including test deck data. etc.: 3345

Keywords: pattern recognition, jet identification, artificial neural network

Nature of physical problem

High energy physics offers many challenging pattern-recognition problems. It could be separating photons from leptons based on calorimeter information or the identification of a quark based on the kinematics of the hadronic fragmentation products. Standard procedures for such recognition problems is the introduction of relevant cuts in the multi-dimensional data.

Method of solution

Artificial neural networks (ANN) have turned out to be a very powerful paradigm for automated feature recognition in a wide range of problem areas. In particular feed-forward multilayer networks are widely used due to their simplicity and good performance. JETNET 2.0 implements such a network with the back-propagation updating algorithm in

JETNET 3.0-A Versatile Artificial Neural Network Package

Carsten Peterson and Thorsteinn Rögnvaldsson
Department of Theoretical Physics, University of Land, Sölvegatan 14 A, S-223 62 Lind, Sweden

Leif Lönnblad

Theory Division, CERN, CH 1211 Geneva 23, Switzerland

Submitted to Computer Physics Communications

PROGRAM SUMMARY

Title of Program: JETNET version 3.0

Catalogue number:

Program obtainable from: denni0thep.lu.se or via anonymous ftp from thep.lu.se in directory pub/Jotnet/ or from ireehep.scri.fsu.edu in directory freehep/analysis/jetnet.

Computer for which the programme is designed: DEC Alpha, DECstation, SUN, Apollo, VAX, IBM, Hewiett-Packard, and others with a F77 compiler

Computer: DEC Alpha 3000; installation: Department of Theoretical Physics, University of Land, Land, Sweden

Alternatives to the
Quadratic cost Function x^{2}

$$
\frac{w H y x^{2}}{} ?=\sum_{k j}\left(F_{k j}(w)-\theta_{i j}\right)^{2}
$$

- traditional, 'natural', well-knowas
- optimal statistical properties WHEN FITTING GAUSSIAO-DISTR DATA (OR POISSON)
BAD PROPERTY FOR A.N.N.:
- As weights get very far from best solution, x^{2} dOES NOT GET very Bi worst $X^{2} \rightarrow$ constant, not ∞ (con get stuck)
There exist other possibilities
in particular: (Derived from information Theory)

$$
\begin{aligned}
& E=\sum_{k j}\left[\left(1+\sigma_{k j}\right) \log \left(\frac{1+\sigma_{j}}{1+F_{k j}(\omega)}\right)+\left(1-\sigma_{k j}\right) \log \left(\frac{1-\sigma_{k j}}{\left.1-F_{k j}\right)^{*}}\right)\right. \\
& \text { THEN } \quad E \rightarrow 0 \text { as } F_{k j}(\omega) \rightarrow \theta_{k j} \\
& \text { BuT } \quad E \rightarrow \infty \text { as } F_{k j}(\omega) \rightarrow F Q R \text { FRoM } \theta_{k j} \\
& \text { taking }-1 \leqslant F_{f_{j}}, \theta_{k j} \leqslant+1
\end{aligned}
$$

How best to Minimize
"Quadratic" Cost χ^{2} ?
Knowing all the $1^{\text {St }}$ Deriv's. is a big melt -
use it well!
Steepest Descent

1) Doesn't Know The RIGHT STEP SIZE
2) CAN BE VERY Slow, EVEN WITH
THE RIGHT STEP SIZE. (And even if the function is exactly Quadratic! TO IMPROVE IT

YOU NEED "SECOND-ORDER" INFORMATION'

BUT METHODS USING second derivative are unstable

$$
\text { IF } \quad G \approx 0, \quad G^{-1} q \approx \infty
$$

INFINITE STEP

If G negative, $G_{i}^{-1} g$ goes uphill STEP IN OPPOSITEDirection

ANOTHER
BUT: FULL SECOND ORDER DERIVATIVES are too expensinse $\underset{\substack{\text { TiME } \\ \text { STORAGE }}}{\boldsymbol{L}_{2}^{2}} \sim \frac{N^{2}}{2}$

- the program Minuit doEs this -very powerful algorithms using G. GOOD FOR VERY SMALL PROBLEMS ($\angle 20$ variables, sophisticated "error analysis"- wot needed.
FOR VERY BIG N.N.,
avoid anything that scales like \mathbb{N}^{2}.
How to USE 2ND-ORDER information without $\left\{\begin{array}{c}\text { calculating } \\ \text { Storing }\end{array}\right\} N \times N$ Matrix? Conjugate gradients method. (JETNET 3.0)

Conjugate gradient method (FLETCHER + REEVES, ~ 1960)

Tho DiRECTIONS d_{1} and d_{2} ARE SAID TO BE CON.SUKATE w.r.t. G

$$
I F \quad d_{1} G \underline{d}_{2}=0
$$

Consider a Quadratic Function

$$
\text { with } \frac{\partial^{2} F}{\partial x_{i} \partial x_{j}}=G \quad i, j=1, \ldots N^{\prime}
$$

FLETCHER + REEVES SHOWED THAT:
(1) You will minimize F exactly WITH N LINEAR MiNimizatrons if the N lines (directions) ARE CONJUGATE writ. G
(2) IT IS POSSIBLE TO FIND conjugate directions without EVALUATING G Explicitly

Con juGate Gradient algorithel
vector from x_{0} to x_{1}
change in ofratient

If function is quadratic:

$$
G=\frac{\Delta g}{\Delta x} \Rightarrow \Delta q=G \Delta x
$$

THEN ANY VECTOR d_{1} ORTHOGONAL TO Δg is:

$$
\underline{d}_{1} \cdot \underline{\Delta g}=0=d_{1} \underline{G} \underline{\Delta}
$$

conjugate to Δx.
 Minimize along $\underline{\Delta x}$ To \underline{x}_{1}, g_{1}
2) CHOOSE NEW Δx

ORTHOGONAL TO $\left(g_{1}-g_{0}\right)$ (DirECTION) MINIMIZE hALONS NEW Δx To \underline{x}_{2}, g_{2}
3) continue in same way, aU NEW DIRECTIONS WICL BE CONJUGATE

Different Strategies of using the Training sample:
(1) Minimize X^{2} for each MEMB BAT TERN) OF TRAINING SAMPLE, ONE BY ONE.

ONE COMPLETE CYCLE THROUGH TRAININS SAMPLE is CALCED AN EPOCH.
(z) SUM X^{2} OVER A FEW PATTERNS (perhaps $p \sim$ member of inputs to network)

CYCLE OVER SETS (SUBSETSDE THE TRAINING SAMPLE)
(3) DeFine x^{2} as global sum OVER THE WHOLE TRAINING SAMPLE local minima?
SIMULATED ANNEALING:
HIGH TEMPERATURE \rightarrow LOW TEMPERATURE (JUMPS OUTOFA) $\left(\begin{array}{l}\text { SETTLES } \\ \text { GLOBAL } \\ \text { Mini mun }\end{array}\right)$

$$
\begin{aligned}
& \text { sarning hard } \\
& \text { most other signals in systems, even } \\
& \text { ren time period represents value } \\
& \text { ork connections) } \\
& \text { s to transfer from input line to ouput } \\
& \text { nots gummed values into output pulse } \\
& \text { nus limitation in many safety-critical } \\
& 11+1)
\end{aligned}
$$

SYNAPSE-1, designed to simulate the human brain, is the fastest neural computer in the world

Until now, conventional computers have fallen far short in replicating what the human brain. nervous system and senses appear to achieve without any conscious effort. For example. even very powerful computers are still a long way from understanding natural language or recognizing faces. Yet automatic speech and image recognition, or making sensible guesses when knowledge is incomplete are the sort of things we will want our computers to do in the future.
Successful results have already been achieved in scientific and industrial research and development. For example. artificial neural networks can now recognize a wide range of

By Dr. Ulich
Remechor, Contral Rosearch and
Devolopment Departmeme Siemeas AG. Munich.
Germany
handwritten letters and numbers, or predict the movement of exchange rates.
The major obstacle to the rapid development of new applications is the difficulty of simulating the neural learning process: the computing power required exceeds existing resources by at least five orders of magnitude.

A leap in computing power required

Even the fastest workstations take weeks - sometimes months - to perform such tasks: so a special computer is required which can simulate all types of neural networks and leam-
ing processes. Unlike com ers based on the von Neumann model, a neural computer is equipped with a nerwork of simple processors providing massively parallel processing capacity.
SYNAPSE-1 is the result of two years* work by the Central Research and Development Department at Siemens AG directed towards dramatically reducing the time needed to process neural applications. It can perform more than five billion fixed point operations (i.e. multiplying or adding 16 -bit numbers) every second. With power on this scale. SYNAPSE-1 is not only 8000 times faster than a powerful workstation. it is currently the world's fastest and

```
Siemens Nixdort
Alormationssvsteme SA
international Accounts
Avenue des Baumettes
C--1020 7erens
```

SIEMENS
NIXDORF

	Siemens Nixdort :ntormationssysieme SA international accounts	
	Avenue ces Baument 7 C-1020 Zerens	
Peter Puhimann	-epegnore arecti	$\begin{aligned} & 221: 6320332 \\ & 22163201.1 \end{aligned}$
Or es sc. nçeneur alal	Teletax	22:635 6682

Neurocomputer SYNAPSE-1

The capabilities of the human brain and senses are difficult to model by classical information technology. On the other hand, these capabilities like e.g. image and speech recognition, solution of complex optimization problems and especially leaming capabilities become more and more important. Therefore, natural neural systems are modelled by artificial neural networks in order to tackle the above mentioned problem areas.

The structure of artificial neural networks is considerably different from the architecture of today's computer systems. Although neural networks can be simulated on conventional computers like workstations, only very simple cases can be explored because of the extremely long processing times. Especially the simuiation of the neural leaming process provents fast developments of neural applications on such platforms.

Special purpose conputers that take into account the architecture of neural networks are much superior to those software solutions. The neurocomputer SYNAPSE-1 offers a performance that lies several orders of magnitude above that of a powerful workstation.

The power of SYNAPSE- 1 (up to 3.2 billion connections or multiplications and accumulations per second) is resulting from a scalable multi-processor and memory arehitecture and from the neuro-signal-processor MA16 which executes the compute intensive operations of neural algorithms.

The system consists of the following hardware components:

- an array of 8 MA16 chips
- a data unit for non compute intensive operations
- a high-bandwidth memory
- a control unit for control and coordination.

Communication with host workstation and specialized input/output devices is impiemented via a VME bus interface.

On the software side, the system is delivered with microprograms, operating software and workstation programming environment. Applications are programmed in the easy-touse "neural Algorithms Programming Language" (nAPL) which supports the user in the development of his algorithms. nAPL is embedded in C++.

SYNAPSE-1 fulfills all the relevant requirements for a universal neurocomputer.

- compute power of at least 3 orders of magnitude above conventional computers, so that development times can be minimized
- support of small, medium and large neural networks, so that a complete area of potential applications can be implemented
- "general purpose" architecture, so that any of today's neural networks are supported and provision is made for future developments.

Technical data:
MA16 array
Peak performance 3.2 billion multiplications (16×16 bit) and accumulations (48 bit) per second.
Memory capacity 32 MBytes. Transfer rates

- Backplane 0.8 GBytes/s
(plus 100 MBytes/s parity)
- Data busses 0.8 GBytes/s
- Control busses $200 \mathrm{MBytes} / \mathrm{s}$
- Address bus 56 MBytes/s.

Frequency rate 25 MHz
W memory
Capacity 128 MBytes
Data Unit
Peak performance 100 million integer operations per second, Working memory 8 MBytes, VME bus connection 4 Mbytes/s,
Y memory 8 MBytes.
Frequency rate 25 MHz
Control Unit
Peak performance sequencer 20 MIPS.
Peak performance Y address generator 25 million addresses per second,
Working memory 8 MBytes, VME bus connection 4 MBytes/s,
Frequency rate 25 MHz
Interface
VME bus connection to workstation.

For more information, please contact:

Siemens Nixdorf Informationssysteme SA Division B $\mathrm{CH}-1020$ Renens

Tel.: (021) 6320111
Fax: (021) 6358882

Let us STEP BACK AND
consider the global problem

GLOBAL PROBLEM

CCHOSSE Network Architecture choose SIzE OE TRANVIN'S SAMREG CHOOSE NUMBER OF NEURONS FIND VALVES OF WEIGHT
as an inverse problem
[inspired by william press, and explained in:
"numerical recipes in fortran", pages 79.5-817]
THEY ARE TREATING THE
LINEAR INVERSE PROBLEM
WHEREAS OURS IS NON-LINEAR
but there is much in compar
gene ralization

Numericia
 RECipes
 in

We can combine these two points, for this conclusion: When a quadratic minimization principle is combined with a quadratic constraint, and both are positive, only one of the two need be nondegenerate for the overall problem to be well-posed. We are now equipped to face the subject of inverse problems.

The Inverse Problem with Zeroth-Order Regularization

Suppose that $u(x)$ is some unknown or underlying (u stands for both unknown and underlying!) physical process, which we hope to determine by a set of N measurements $c_{i}, i=1,2, \ldots, N$. The relation between $u(x)$ and the c_{i} 's is that each c_{i} measures a (hopefully distinct) aspect of $u(x)$ through its own linear response kernel r_{i}, and with its own measurement enter $n_{\text {on }}$ In other words,

$$
\begin{equation*}
c_{i} \equiv s_{i}+n_{i}=\int r_{i}(x) u(x) d x+n_{i} \tag{18.4.5}
\end{equation*}
$$

(compare this to equations 13.3.1 and 13.3.2). Within the assumption of linearity, this is quite a general formulation. The c_{i} 's might approximate values of $u(x)$ at certain locations x_{i}, in which case $r_{i}(x)$ would have the form of a more or less narrow instrumental response centered around $x=x_{i}$. Or, the c_{i} 's might "live" in an entirely different function space from $u(x)$, measuring different Fourier components of $u(x)$ for example.

The inverse problem is, given the c_{i} 's, the $r_{i}(x)$'s, and perhaps some information about the errors n_{i} such as their covariance matrix

$$
\begin{equation*}
S_{i j} \equiv \operatorname{Covar}\left[n_{i}, n_{j}\right] \tag{18.4.6}
\end{equation*}
$$

how do we find a good statistical estimator of $u(x)$, call it $\widehat{u}(x)$?
It should be obvious that this is an ill-posed problem. After all, how can we reconstruct a whole function $\hat{u}(x)$ from only a finite number of discrete values c_{i} ? Yet, whether formally or informally, we do this all the time in science. We routinely measure "enough points" and then "draw a curve through them." In doing so, we are making some assumptions, either about the underlying function $u(x)$, or about the nature of the response functions $r_{i}(x)$, or both. Our purpose now is to formalize these assumptions, and to extend our abilities to cases where the measurements and underlying function live in quite different function spaces. (How do you "draw a curve" through a scattering of Fourier coefficients?)

We can't really want every point x of the function $\widehat{u}(x)$. We do want some large number M of discrete points $x_{\mu}, \mu=1,2, \ldots, M$, where M is sufficiently large, and the x_{μ} 's are sufficiently evenly spaced, that neither $u(x)$ nor $r_{i}(x)$ varies much between any x_{μ} and $x_{\mu+1}$. (Here and following we will use Greek letters like μ to denote values in the space of the underlying process, and Roman letters like i to denote values of immediate observables.) For such a dense set of x_{μ} 's, we can replace equation (18.4.5) by a quadrature like

$$
\begin{equation*}
c_{i}=\sum_{\mu} R_{i \mu} u\left(x_{\mu}\right)+n_{i} \tag{18.4.7}
\end{equation*}
$$

where the $N \times M$ matrix \mathbf{R} has components

$$
\begin{equation*}
R_{i \mu} \equiv r_{i}\left(x_{\mu}\right)\left(x_{\mu+1}-x_{\mu-1}\right) / 2 \tag{18.4.8}
\end{equation*}
$$

18.4 Inverse Problems and the Use of A Priori Information

Later discussion will be facilitated by some preliminary mention of a couple of mathematical points. Suppose that \mathbf{u} is an "unknown" vector that we plan to determine by some minimization principle. Let $\mathcal{A}[\mathbf{u}]>0$ and $\mathcal{B}[\mathbf{u}]>0$ be two positive functionals of 4,30 that-we try to determine u by either
minimize: $\mathcal{A}[\mathbf{u}] \quad$ or minimize: $\mathcal{B}[\mathbf{u}]$
(Of course these will generally give different answers for u.) As another possibility, now suppose that we want to minimize $\mathcal{A}[u]$ subject to the constraint that $\mathcal{B}[u]$ have some particular value, say b. The method of Lagrange multipliers gives the variation

$$
\begin{equation*}
\frac{\delta}{\delta \mathbf{u}}\left\{\mathcal{A}[\mathbf{u}]+\lambda_{1}(\mathcal{B}[\mathbf{u}]-b)\right\}=\frac{\delta}{\delta \mathbf{u}}\left(\mathcal{A}[\mathbf{u}]+\lambda_{1} B[\mathbf{u}]\right)=0 \tag{18.4.2}
\end{equation*}
$$

where λ_{1} is a Lagrange multiplier. Notice that b is absent in the second equality, since it doesn't depend on \mathbf{u}.

Next, suppose that we change our minds and decide to minimize $\mathcal{B}[\mathbf{u}]$ subject to the constraint that $\mathcal{A}[\mathrm{u}]$ have a particular value, a. Instead of equation (18.4.2) we have

$$
\begin{equation*}
\frac{\delta}{\delta \mathbf{u}}\left\{\mathcal{B}[\mathbf{u}]+\lambda_{2}(\mathcal{A}[\mathbf{u}]-a)\right\}=\frac{\delta}{\delta \mathbf{u}}\left(B[\mathbf{u}]+\lambda_{2} \mathcal{A}[\mathbf{u}]\right)=0 \tag{18.4.3}
\end{equation*}
$$

with, this time, λ_{2} the Lagrange multiplier. Multiplying equation (18.4.3) by the constant $1 / \lambda_{2}$, and identifying $1 / \lambda_{2}$ with λ_{1}, we see that the actual variations are exactly the same in the two cases. Both cases will yield the same one-parameter family of solutions, say, $\mathbf{u}\left(\lambda_{1}\right)$. As λ_{1} varies from 0 to ∞, the solution $u\left(\lambda_{1}\right)$ varies along a so-called trade-off curve between the problem of minimizing \mathcal{A} and the problem of minimizing B. Any solution along this curve can equally well be thought of as either (i) a minimization of \mathcal{A} for some constrained value of B, or (ii) a minimization of B for some constrained value of \mathcal{A}, or (iii) a weighted minimization of the sum $\mathcal{A}+\lambda_{1} B$.

The second preliminary point has to do with degenerate minimization principles. In the example above, now suppose that $\mathcal{A}[\mathbf{u}]$ has the particular form

$$
\begin{equation*}
\mathcal{A}[\mathbf{u}]=|\mathbf{A} \cdot \mathbf{u}-\mathbf{c}|^{2} \tag{18.4.4}
\end{equation*}
$$

for some matrix \mathbf{A} and vector \mathbf{c}. If \mathbf{A} has fewer rows than columns, or if \mathbf{A} is square but degenerate (has a nontrivial nullspace, see §2.6, especially Figure 2.6.1), then minimizing $\mathcal{A}[u]$ will not give a unique solution for u. (To see why, review §15.4, and note that for a "design matrix" A with fewer rows than columns, the matrix $\mathbf{A}^{T} \cdot \mathbf{A}$ in the normal equations 15.4 .10 is degenerate.) However, if we add any multiple λ times a nondegenerate quadratic form $B[\mathbf{u}]$, for example $\mathbf{u} \cdot \mathbf{H} \cdot \mathbf{u}$ with \mathbf{H} a positive definite matrix, then minimization of $\mathcal{A}[\mathbf{u}]+\lambda B[\mathbf{u}]$ will lead to a unique solution for u. (The sum of two quadratic forms is itself a quadratic form, with the second piece guaranteeing nondegeneracy.)

Figure 18.4.1. Almost all inverse problem methods involve a trade-off between two optimizations: agreement between data and solution, or "sharpness" of mapping between tue and estimated solution (here denoted \mathcal{A}), and smoothness or stability of the solution (here denoted B). Among all possible solutions. shown here schematically as the shaded region, those on the boundary connecting the unconstrained minimum of \mathcal{A} and the unconstrained minimum of B are the "best" solutions, in the sense that every other solution is dominated by as least one solution on the curve.

The value N is actually a surrogate for any value drawn from a Gaussian distribution with mean N and standard deviation $(2 N)^{1 / 2}$ (the asymptotic χ^{2} distribution). One might equally plausibly try two values of λ, one giving $\chi^{2}=$ $N+(2 N)^{1 / 2}$, the other $N-(2 N)^{1 / 2}$.

Zeroth-order regularization, though dominated by better methods, demonstrates most of the basic ideas that are used in inverse problem theory. In general, there are two positive functionals, call them \mathcal{A} and B. The first, \mathcal{A}, measures something like the agreement of a model to the data (e.g., χ^{2}), or sometimes a related quantity like the "sharpness" of the mapping between the solution and the underlying function. When \mathcal{A} by itself is minimized, the agreement or sharpness becomes very good (often impossibly good), but the solution becomes unstable, wildly oscillating, or in other ways unrealistic, reflecting that \mathcal{A} alone typically defines a highly degenerate minimization problem.

That is where \mathcal{B} comes in. It measures something like the "smoothness" of the desired solution, or sometimes a related quantity that parametrizes the stability of the solution with respect to variations in the data, or sometimes a quantity reflecting a prior judgments about the likelihood of a solution. \mathcal{B} is called the stabilizing functional or regularizing operator. In any case, minimizing B by itself is supposed to give a solution that is "smooth" or "stable" or "likely" - and that has nothing at all to do with the measured data.
(or any other simple quadrature - it rarely matters which). We will view equations (18.4.5) and (18.4.7) as being equivalent for practical purposes.

How do you solve a set of equations like equation (18.4.7) for the unknown $u\left(x_{\mu}\right)$'s? Here is a bad way, but one that contains the germ of some correct ideas: Form a χ^{2} measure of how well a model $\widehat{u}(x)$ agrees with the measured data,

$$
\begin{align*}
\chi^{2} & =\sum_{i=1}^{N} \sum_{j=1}^{N}\left[c_{i}-\sum_{\mu=1}^{M} R_{i \mu} \widehat{u}\left(x_{\mu}\right)\right] S_{i j}^{-1}\left[c_{j}-\sum_{\mu=1}^{M} R_{j \mu} \widehat{u}\left(x_{\mu}\right)\right] \tag{18.4.9}\\
& \approx \sum_{i=1}^{N}\left[\frac{c_{i}-\sum_{\mu=1}^{M} R_{i \mu} \widehat{u}\left(x_{\mu}\right)}{\sigma_{i} \hat{N}}\right]^{2} \tau \mu \bar{C} \tag{z}
\end{align*}
$$

(compare with equation 15.1.5). Here S^{-1} is the inverse of the covariance matrix, and the approximate equality holds if you can neglect the off-diagonal covariances, with $\sigma_{i} \equiv(\operatorname{Covar}[i, i])^{1 / 2}$.

Now you can use the method of singular value decomposition (SVD) in $\S 15.4$ to find the vector $\hat{\mathbf{u}}$ that minimizes equation (18.4.9). Don't try to use the method of normal equations; since M is greater than N they will be singular, as we already discussed. The SVD process will thus surely find a large number of zero singular values, indicative of a highly non-unique solution. Among the infinity of degenerate solutions (most of them badly behaved with arbitrarily large $\widehat{u}\left(x_{\mu}\right)$'s) SVD will select the one with smallest $|\hat{u}|$ in the sense of

$$
\begin{equation*}
\sum_{\mu}\left[\widehat{u}\left(x_{\mu}\right)\right]^{2} \quad \text { a minimum } \tag{18.4.10}
\end{equation*}
$$

(look at Figure 2.6.1). This solution is often called the principal solution. It is a limiting case of what is called zeroth-order regularization, corresponding to minimizing the sum of the two positive functional

$$
\begin{equation*}
\text { minimize: } \quad \chi^{2}[\widehat{\mathbf{u}}]+\lambda(\widehat{\mathbf{u}} \cdot \widehat{\mathbf{u}}) \tag{18.4.11}
\end{equation*}
$$

in the limit of small λ. Below, we will learn how to do such minimizations, as well as more general ones, without the ad hoc use of SVD.

What happens if we determine $\hat{\mathbf{u}}$ by equation (18.4.11) with a non-infinitesimal value of λ ? First, note that if $M \gg N$ (many more unknowns than equations), then u will often have enough freedom to be able to make χ^{2} (equation 18.4.9) quite unrealistically small, if not zero. In the language of $\S 15.1$, the number of degrees of freedom $\nu=N-M$, which is approximately the expected value of χ^{2} when ν is large, is being driven down to zero (and, not meaningfully, beyond). Yet, we know that for the true underlying function $u(x)$, which has no adjustable parameters, the number of degrees of freedom and the expected value of χ^{2} should be about $\nu \approx N$.

Increasing λ pulls the solution away from minimizing χ^{2} in favor of minimizing $\hat{\mathbf{u}} \cdot \hat{\mathbf{u}}$. From the preliminary discussion above, we can view this as minimizing $\hat{\mathbf{u}} \cdot \hat{\mathbf{u}}$ subject to the constraint that χ^{2} have some constant nonzero value. A popular choice, in fact, is to find that value of λ which yields $\chi^{2}=N$, that is, to get about as much extra regularization as a plausible value of χ^{2} dictates. The resulting $\hat{u}(x)$ is called the solution of the inverse problem with zeroth-order regularization.

Regularization

- fit the data, but not Noise
- avoid overfitting
(1) USE THE SIMPLEST NETWORIL that will solve the proscem
- remove connections withe SMALL WEIGHTS
- remove neurons with small outfits
- if 2 weights are highly CORRELATED, REMOVE ONE
[optimal brain damage]
(2) CONSTRAIN the weights to BE small.

Regularization
makes
GENERALIZATION

Insterd of pruning
AND.
(BRAIN DAMAGE)

ANOTHER TECHNIQUE CONSISTS IN
SYNTHESIZING A NETWORK
STARTING FROM A MINIMAL SIZE AND ADDING NODES.
6.6 Optimal Notwork Architectures

FIGURE 6.16 Network construction algorithms. The black dots are inputs, while the numbered circles are threshold units, numbered in order of their creation. Shaded arrows represent connections from all the units or inputs at the arrow's tail. (a) Marchand et ad. [1990]. (b) Frean [1990]. (c) Mézard and Nadal [1989].

TRAINING SAMPLE SIZE P
p ERR< ϵ
(Sometimes we have the luxury of being able to generate a big sample)

This TheORY DEDENDS ON A PROPERTY OF The $N N$-CONNECTIVITY CACLDD THE:

VApNIK-GHERVONENKIS DIMENSION OF THE NETWORK
(1971)

growth rate $m(p)$ is the maximum member of different binary farretions the NN could ciuplomal on a sample size p.

$$
\begin{aligned}
& \text { TYpE OF NaN. } \\
& \text { SINGLE PERCETRTON } \\
& \text { wire } N \text { inputs } \\
& \text { REED-FORWARD KN. } \\
& \text { with } M \text { noses, } W \text { uniglts } \\
& \text { FULLY-CONNECTED } \\
& \text { HIDDEN LAYER } \\
& \text { TRAININS purple } \\
& \text { Sizép for rear } \in \\
& p>\frac{8 N \log N}{\epsilon^{2}} \\
& p \leqslant \frac{W}{\epsilon} \log \frac{M}{\epsilon} \\
& p \sim \frac{W}{\epsilon}
\end{aligned}
$$

How accurate do the weill $3{ }^{\circ}$ HAVE TO BE?

These interactions theoreticai results REFER TO N.N. With INTEGER WEIGHTS w_{i}
(1) $\quad w_{i} \leqslant(n+1)^{(n+1) / 2} / 2^{n} \quad i=0, \ldots n$
(2) $\quad w_{i} \geqslant x^{n / 2} / 2^{n}$

$$
i=0, \ldots n
$$

WMAT CAN WE LERARN FROR ThE Theory of Computational Complexity!
(1) How can we expert Learning time TO INCREASE AS A FUNCTION OF NAN. SIZE?

EXPONENTIALLY
COMPLEXiTy Theory SAYS: This is AN

$$
N P-C O M P L E T E
$$

PROBLEM
that means:
(1) It is at least as hard to solve as some other Np-COMplete problem
(2) No one knows how to Solve any Np-complete problem in Polynomial Tine polynomial time medians:

TIME increases like N^{k} for somefinite k.
(2.1) For large N.
(2.2) IN WORST CASE
(2.3) FOR EXACT (BC3T) SOLUTION

EXPONENTIAL GROWTH MEANS: $T \approx 2^{\sqrt{N}}$
100 neurons $\longrightarrow 200$ newtons
$2^{\sqrt{100}}=2^{10} \sim 1000$ times longer.
Np-complete problems are INSOLUBLE forlange N.

But Np-completeness is only

- in worst care
- for exact solution

Example: the famous Traveling Salesman':
T.S. must visit
all cities once, minimizing total traveling. Np-gomplete,

BUT SOMETIMES EASY:
 BAD case EASY case

Sometimes approximate solutions exist:

1. using the Minimal Spanning Tree, a solution CAN be poland for T.S.p. in $\sigma\left(N^{2}\right)$ which is less than $\frac{3}{2} \times$ lengit of Rest Solution.
2. Insertion technique, $n \theta\left(N^{2}\right)$

$$
\frac{L_{\text {worsticase }}}{L_{\text {optenial }}} \leqslant \log _{2}(N)+1
$$

many other methods give good approximations in polynomial time

The LESSON OF COMPLEXITY THEORY:
If you want to solve Big problem, make sure that either:

1) You are not in "worst Case"
or 2) Approximate Solution is boos enoulth
or 3) Network Can bo decomposed/Simplifier: SOTHAT "EFFECTIVC SIZE" is SMACL.

Reducing the Complexity:
WEIGHT SHARING

HEP. DETECTOR calorimeter

BY Бунметеу:

$$
\begin{gathered}
w_{1}=w_{3}=w_{7}=w_{9} \\
w_{2}=w_{4}=w_{6}=w_{8} \\
w_{5}
\end{gathered}
$$

THis is Foreseen IN JETNET

PERMARS MORE IMPORTANT:

- Decompose the problems into parts
- identify the roles of intermediate NEURONS, LAYERS

Artificial Neural Networks

Approximation and Learning Theory

Halbert White

with A. R. Gallant, K. Hornik, M. Stinchcombe, and J. Wooldridge

Part 1 Approximation Theory 3
2 There Exists a Neural Network That Does Not Make Avoidable Mistakes 5
With A. R. Gallant
3 Multilayer Feedforward Networks Are Universal Approximators 12
With K. Hornik and M. Stinchcombe
4 Universal Approximation Using Feedforward Networks with Non-sigmoid Hidden Layer Activation Functions 29With M. Stinchcombe5 Approximating and Learning Unknown Mappings UsingMultilayer Feedforward Networks with Bounded Weights41With M. Stinchcombe
6 Universal Approximation of an Unknown Mapping and Its Derivatives 55
With K. Hornik and M. Stinchcombe
Part II Learning and Statistics 79
7 Neural Network Learning and Statistics 81
8 Learning in Artificial Neural Networks: a Statistical Perspective 90

this case, however. Where possible, notation follows that of White and Wooldridge. Other notation and definitions are as in Stinchcombe and White (1989). We write $\Omega(\cdot)$ to denote the Borel σ-field generated by the open sets of the argument set, gr(\cdot) denotes the graph of the indicated correspondence, and $\mathscr{A}(\cdot)$ is the collection of analytic sets of the indicated σ-field.

Theorem 4.1. (a) Let ($0, F, P$) be a complete probability space and let (θ, ρ) be a metric space. For $n=1,2, \ldots$, let θ_{n}, be a complere separable Borel subeck of θ and let $\hat{\theta}_{n}: Q=\theta$ be a correspondence with gr $\left.\hat{\theta}_{n} \in \mathscr{A} \mathscr{F} \otimes \mathcal{O}\left(\theta_{n}\right)\right)$ such that for each ω in $Q \hat{\theta}_{n}(\omega) \subset \theta_{n}$, and the sur $\hat{\theta}_{n}(\omega)$ is non-empiy and compact. Let $Q_{n}: \Omega \times \theta \rightarrow \bar{R}$ be $\bar{Y} Q(\theta)$. measurable, and suppose that $Q_{n}(\omega, \cdot)$ is lower semicontinuous on θ_{n} for each ω in $Q, n=1,2, \ldots$.

Then for each $n=1,2, \ldots$ there exists a function $\hat{\theta}_{n}: Q \rightarrow \theta_{n}$ measurabie$F / \mathscr{B}\left(\theta_{n}\right)$ (hence- $\left.F / \mathscr{B}(\theta)\right)$ such that $Q_{n}\left(\omega, \hat{\theta}_{n}(\omega)\right)=\min _{n, \theta_{n}(\omega)} Q_{n}(\omega, \theta)$ for all ω in Ω.
(b) In addition, suppose $\left\{\hat{\theta}_{A}\right\}$ and $\left\{\bar{\theta}_{n}\right\}$ are increasing sequences of compact subsets of θ such that $\cup_{n=1}^{\infty} \hat{\theta}_{n}$ is dense in θ and $\hat{\theta}_{n} \subseteq \hat{\theta}_{n}(\omega) \subseteq \bar{\theta}_{n}$ for all ω in $\mathbf{Q}, n=1,2, \ldots$. Suppose there exists a function $\bar{Q}: \theta \rightarrow \mathbb{R}$ such that for all $\varepsilon>0$

$$
\begin{equation*}
P\left[\omega: \sup _{\forall \in \hat{\theta}_{n}}\left|Q_{n}(\omega, \theta)-\bar{Q}(\theta)\right|>\varepsilon\right] \rightarrow 0 \text { as } n \rightarrow \infty, \tag{4.1}
\end{equation*}
$$

assumptic bounding ficiently c elemento fast and t constants applicatio

We now to corollat dimension entropy (k metric ent. number of the same a exponentia stochastic !
.4 or A.1(b), $+\xi)] \rightarrow 1$ as
ien optimizain provides a In the limit, true mapping maller is this
-
the previous ined from the 2.1 of White ed so as to be not limited to)f White and shcombe and ierated by the the indicated the indicated
:y space and e a complete ondence with , , and the set $:=B(\theta)$. ous on θ_{n} for
, measurable$\sin _{n}(\omega) Q_{n}(\omega, \theta)$
and for $\boldsymbol{\theta}_{0} \in \boldsymbol{\theta}$

$$
\begin{equation*}
\inf _{d e q \subset\left(\theta_{0}, c\right)} \bar{Q}(\theta)-\bar{Q}\left(\theta_{0}\right)>0 \tag{4.2}
\end{equation*}
$$

where $\eta^{c}\left(\theta_{0}, \varepsilon\right) \equiv\left\{\theta \in \theta: \rho\left(\theta, \theta_{0}\right) \geqslant \varepsilon\right\}$, and \bar{Q} is continuous at θ_{0}. Then $\rho\left(\hat{\theta}_{n}, \theta_{0}\right) \xrightarrow{\rho} 0$.

In our application, (Ω, r, P) is the space on which the stochastic process $\left\{Z_{t}\right\}$ is defined. The properties of P determine whether $\left\{Z_{t}\right\}$ is an independent or a mixing sequence. The space θ contains the object of interest (the unknown regression function θ_{0}), and ρ is a metric that measures distance in this space (weighted mean squared error). Q_{n} is the criterion function (squared error) optimized to arrive at an estimator $\hat{\theta}_{n}$. The set $\hat{\theta}_{n}(\omega)$ over which optimization is carried out may depend on the data through ω; this permits treatment of cross-validation procedures. In some applications it may be natural to have Q_{n} defined only on the graph of $\hat{\theta}_{n}(\omega)$ or on $\Omega \times \theta_{n}$ instead of on all of $\Omega \times \theta$ as we assume. Lemma 2.1 of Stinchcombe and White (1989b) establishes that defining Q_{n} on $\Omega \times \theta$ results in no loss of generality, as there generally exists an appropriate measurable extension to $\Omega \times \theta$ of Q_{n} originally defined on $\mathrm{gr} \hat{\theta}_{n}$ or $\Omega \times \boldsymbol{\theta}_{\boldsymbol{n}}$.

Part (a) establishes the existence of a measurable estimator $\hat{\theta}_{\text {. }}$. Without measurability we cannot make probability statements about $\hat{\theta}_{n}$, such as statements about consistency. Part (b) establishes consistency of $\hat{\theta}_{n}$ for θ_{0}. The object θ_{0} is distinguished by its role as minimizer of \bar{Q} (condition 4.2), the limit to which Q_{n} converges uniformly (condition 4.1). This uniform convergence can be verified in particular stochastic contexts; our next result permits this for i.i.d. and stationary mixing processes. The other notable assumption of part (b) is the existence of nonstochastic sets $\underline{\theta}_{n}$ and $\bar{\theta}_{n}$ bounding $\hat{\theta}_{n}(\omega)$. The behavior of $\underline{\theta}_{n}$ ensures that $\hat{\theta}_{n}(\omega)$ becomes sufficiently dense in θ, so that an element of $\hat{\theta}_{n}(\omega)$ can well approximate an element of θ. The behavior of $\bar{\theta}_{n}$ ensures that $\hat{\theta}_{n}(\omega)$ does not increase too fast and that Q_{n} converges to $\overline{\underline{Q}}$ uniformily in an appropriate sense. The constants \underline{q}_{n} and $\overline{\boldsymbol{q}}_{n}$ of the previous section determine $\underline{\theta}_{n}$ and $\bar{\theta}_{n}$ in our application.

We now give a result permitting verification of condition (4.1), related to corollary 2 of Haussier (1989). Instead of using the concept of V-C dimension (Vapnik and Chervonenkis. 1971) we use the concept of metric

SOM RECENT GOOD BOOKS ON NEURAL NETWORKS
F. James, August, 1991

```
Amit, Daniel
    Modelling Brain Function,
    Cambridge University Press, 1989
    (Amit is a theorerical physicist, but often adopts the biological
    approach:)
Anderson and Rosenfeld (eds.),
    Neurocomputing: Foundations of Research
    MIT Press, 1988
    (A collection of important papers, expensive)
Beale and Jackson,
    Neural Computing, an introduction,
    Adam Hilger, }199
    (A good general introduction, paperback, not expensive.)
Block, H.D.
    The Perceptron: A model for brain tunctioning,
    Reviews of Modern Physics 34(1962), 123-135
    (reprinted in Anderson and Rosenfeld)
Geszti, T..
    Physical Models of Neural Networks,
    World Scientific, 1990
serez, Krogh and Palmer,
    Introduction to the Theory of Neural Computation
    Addison-Wesley, 1991
    (probably the best book avallable for physicists)
Kohonen, T..
    Self-Organization and Associative Mamory (3rd edition)
    Springer-Verlag, 1989
McClelland and Rumelhazt,
    Parallel Distributed Processing, Vols. 1, 2 and 3,
    MIT Press, 1981
    (VO1. 1 givea the founditions and algorithms, vol. 2 is more
    biological, vol. 3 contains tutorial and software)
```


SOME FAMOUS APPLICA TENS OF FEEP-FORWIARD A.N.N.

Compare with
$D E C$-talk \Leftarrow a team of linguists for 10 years!
\qquad
handwritten

$$
\frac{\text { IIP-Code }}{\text { READING }}
$$

1999
30 units

7300 digits training
2000 digits test

1% error on training set	
test: 5% error	1% error
no reject	12% reject
after pruning $3 / 4$ of weights (!)	

test: 1% error
16 by 16 input
\qquad 9% reject

HUMANS DID VO BETTER!

Recognition of decays of charged tracks with neural network techniques

Geog Stimpfl-Abele

Received 10 May 1991

We developed neural-network learning techniques for the recognition of decays of charged racks using A ieed-furuard network with error back-propagation. Two completely different methods are described in detail and their efficiencies fur several NN architectures are compared with conventional methods. Excellent results are obtained.

$$
\bar{x}_{\text {sins }}^{2}=\sum_{p \phi \frac{1}{x}} \frac{\delta_{i}^{2}}{\sigma_{i}^{2}}
$$

$$
x_{p_{\text {PaNcreas }}^{2}}=\sum_{\text {pram: }}^{5}\left(\frac{P_{i \Delta} \Delta P_{i \theta}}{\Delta P_{i}}\right)^{2}
$$

network for tracks and to 5% for DSIM tracks since the numbber of non-decaying tracks with bad fits is much larger for DSIM data.
two hidden we obtained 10-10-1 the residual ap:onfiguration he same ff-2-1 layouts. not gain by concentrate one hidden
bout 40000 them to the d 150 times) in random ; effects (the of the input aster. Since consuming

The efficiency of the neural networks can directly be compared to the results of the analytical parameter-comparison method.

Table 3a
Kink-finding efficiencies (\%) for FSIM data

E_{-}	3 GeV	5 GeV	10 GeV
$X_{\text {res }}^{2}$	73.5	57.8	38.0
$X_{\text {par }}^{2}$	79.8	68.0	50.2
$N_{\text {res }}^{2}$	75.2	68.5	50.1
$N_{\text {par }}$	79.0	69.1	51.6

Table db
Kink-finding efficiencies (\%) for DSIM data

E_{π}	3 GeV	5 GeV	10 GeV
$X_{\text {res }}^{2}$	53.1	35.8	14.3
$X_{\text {par }}^{2}$	76.0	62.0	40.2
$N_{\text {res }}$	79.3	65.3	48.1
$N_{\text {par }}$	78.3	65.9	47.0

Identification of b jets using neural networks

Graham Bahan and Roger Barlow
Department of Physics, Manchester Unitersiry, Manchester, M13 9PL. UK

Received 5 June 1992

Abstract

The problem of identifying b quark jets produced at LEP using a neural network technique has been studied. We find that networks perform better separation if they are given simple inputs, as opposed to inputs already combined into variables believed to be good for separation. Some first studies of systematic errors resulting from using neural network separation techniques are given.

1. Introduction

Neural networks with feed-forward topology are widely used in pattern recognition. In high energy physics they can be applied to the problem of recognising the nature of the quark producing a hadronic jet, specifically to discrimination between jets from heavy (b) and light (u, d, s, c) quarks, using only the general jet shape as input (as opposed to specific inputs such as high p_{T} leptons or large impact parameters). Some studies have already been done on this topic [1,2], examining the performance of networks trained and tested on samples of data generated by Monte Carlo programs, for which the nature of the jets is known. This note explores the possibility further, concentrating on the identification of b quark jets produced in the reaction $e^{+} e^{-} \rightarrow Z \rightarrow q \bar{q}$ at a centre of mass energy of 91 GeV .

In such an application the most important question is what the best input variables are to use with the network; in particular, whether to use constructed shape variables known from experience to be useful for b identification, to give the network the best possible chance of success, or to use unprocessed ("raw") event information, trusting to the network training algorithm to find the best way of combining them. Gottschalk and Nolty [1] suggest that entering the shape of the event in a largely unprocessed format (they used a hypothetical calorimeter) is preferable to using more sophisticated variables, but this study was done at a centre of mass energy of 14 GeV , where the distinction is much clearer than at 91 GeV . and it is not clear that the situations are comparable.

In the next section we discuss how the separating power of a network can be quantitatively measured, particularly when using it to perform a statistical separation. This gives an objective and unambiguous definition of the extent to which one network performance is "better" than another. Then in section 3 we compare the performance of networks using 3 different philosophies for input variables: highly preprocessed variables (following the suggestions of ref. [2]), secondary jet clusters, and raw momenta. Section 4 studies the size and topology of network needed to bring out the results. In section 5 we discuss systematic effects that may result from the use of such a network, by using samples from different Monte Carlo models.

[^0]

Fig. 5. The learning curve for the secondary clustering inputs.

Fig. 7. The learning curve for raw inputs.

Fig. 7. The learning curve for raw inputs.
(a)

(b)

Fig. 9. Effect of the number of nodes in a single hidden layer on the performance of networks using different inputs.
network is much longer, and there are still features of the output which are unpleasant and not well understood.

We recommend the use of the figure of merit, F, as an unambiguous parameter describing the discriminating power of the network, enabling meaningful comparisons to be made between different networks, or different versions of the same network.

Acknowledgements

We are indebted to Leif Lönnblad for providing us with the JETNET program, and to Terry Wyatt for useful discussions.

Appendix Evaluatins F

To evaluate F for the results of a particular network one does not have access to the parent functions $h(x)$ and $l(x)$ but to the two Monte Carlo event samples. These must be histogrammed in bins $i=1,2,3 \ldots N_{\mathrm{B}}$ and F estimated as

$$
\hat{F}=\alpha \bar{\alpha} \sum \frac{\left(h_{i}-l_{i}\right)^{2}}{\alpha h_{i}+\bar{\alpha} l_{i}}
$$

Computer Physics Communications 78 (1993) 1-16
Computer Physics
Vorth-Holland

Higgs search and neural-net analysis

Georg Stimpfl-Abele ${ }^{2}$ and Pablo Yeps ${ }^{b, 1}$
a Laboratoire de Physique Corpusculaire, Université Blaise Pascal, Clermont-Ferrand, F-63177 Aubiere, France
${ }^{6}$ Rice University, Houston TX 77251-1892, USA

Received 8 June 1993; in revised form 22 August 1993

Abstract

Two aspects of neural-net analysis are addressed: the application of neural nets to physics analysis and the analysis of neural nets. Feed-forward nets with error back-propagation are applied to the search for the standard Higgs boson at LEP 200 . New methods to select the most efficient variables in such a classification task and to analyse the nets are presented. The sensitivity of the nets for systematic effects is studied extensively. The efficiencies of the neural nets are found to be significantly better than those of standard methods.

1. Introduction

The search for new elementary particles is among the most important tasks in high energy physics. In general, events containing new partiles are produced along with a much larger number of conventional events. Hence an analysis looking for new phenomena needs a filltering process intended to separate signal and background events.
In this study a traditional filtering method, us--- standard one-dimensional cuts, is compared with a neural net (NN) approach in the search for the Higgs boson at LEP 200. The following two mass hypotheses are chosen: 70 and 90 $\mathrm{GeV} / \mathrm{c}^{2}$. The lower mass represents the easier case because the signal is higher and the backgrounds can be better discriminated. The higher mass is rather challenging since it is just below the Z mass.

Standard feed-forward nets with one hidden layer and error back-propagation are used. Emphasis is given to the selection of the best input-

[^1]variables by analysing their utility inside the net. Systematic effects are studied in detail.
The physics case is discussed in section 2 , followed by a description of the generation and the preselection of the input data. Section 4 is dedicated to the standard analysis based on onedimensional cuts. Section 5 contains the technocal details of the net generation, like architecture and learning procedure, and a description of the methods developed to analyse neural nets and to select the best input-variables. The performance of the NNs in the Higgs search is demonstrated in section 6 . Systematic effects are studied extensively in section 7 in order to test the reliability of the methods. Finally, conclusions are given.

2. Hies production and backgrounds at LE 200

The Standard Model of particle physics [1] is the commonly accepted theory to explain the interactions among elementary particles. This model predicts the existence of the Hags boson, H, responsible for the so-called Symmetry Breaking mechanism [2]. During recent years the Large Electron Positron collider (LEP) at CERN, operating with a center-of-mass energy (E_{cm}) around 91 GeV (LEP 100), has per-
G. Stimpfl-Abele, P. Yepes / Higgs search and neural-net analysis
as function of the number of input ses.

H_{70}	H_{90}
19.1	8.7
15.8	8.7
15.5	8.7
14.2	8.4
13.2	8.4
13.2	8.2
12.6	8.0
10.9	8.0

...arged tracks ($N_{\text {trk }}$).
event is fitted with the WW
tass of all secondary tracks
ingles between the jets if the to three jets $\left(S_{\theta}\right)$.
of the most energetic electron
f secondaries in the Higgs jets fitted with the HZ hypothesis
re the inputs for N_{10}. The inr nets N_{n} are the variables 1 to
ng between the number of inthe performance two nets from for further study. The net with for high performance and the nputs $\left(\mathrm{N}_{7}\right)$ but still good per-
with section 4 shows that all the standard analysis are conibove. There are two new vari$P_{\max }^{\mathrm{e}}$ (9). Adding them to the does not improve the statistiTo allow for a direct compari-

Table 7
Signal and background events left for standard and NN analyses at $m_{H}=70 \mathrm{GeV} / c^{2}$ and their statistical significance.

Reaction	Cuts	N_{st}	N_{7}	$\mathrm{~N}_{10}$
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{H}_{70} \mathrm{Z}$	60.5	29.5	23.6	40.9
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q} 9 \mathrm{gg}$	22.3	2.4	1.9	3.7
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}+\mathrm{W}-$	25.0	3.2	1.4	4.0
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Z} \mathrm{Z}$	1.4	0.4	0.2	0.6
Total background	48.7	6.0	3.5	8.3
Statistical significance	8.7	12.0	12.6	14.2
Min. luminosity $\left[\mathrm{pb}^{-1}\right]$	330.	174.	157.	124.

Table 8
Signal and background events left for standard and NN analyses at $m_{H}=90 \mathrm{GeV} / c^{2}$ and their statistical significance.

Reaction	Cuts	$\mathrm{N}_{s t}$	$\mathrm{~N}_{7}$	$\mathrm{~N}_{10}$
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{H}_{90} \mathrm{Z}$	38.0	30.5	26.4	22.0
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q} g g}$	11.9	5.0	3.0	1.1
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-}$	11.8	3.9	2.6	1.6
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Z} \mathrm{Z}$	11.4	6.6	5.3	4.2
Total background	35.1	15.5	10.9	6.9
Statistical significance	6.4	7.7	8.0	8.4
Min. luminosity $\left[\mathrm{pb}^{-1}\right]$	610.	422.	391.	354.

the three nets as function of the cut on the output for both masses. At least two background events above the cut are demanded to avoid big statistical fluctuations. The threshold at 0 is due to the preselection. The statistical significances raise almost linearly with the cut, reaching their maximum around 0.9 .

The number of accepted signal and background events of the three nets and the statistical significance are shown in tables 7 and 8 for the analysis at 70 and $90 \mathrm{GeV} / c^{2}$, respectively. The cut on the NN output is chosen such that the significance is maximal. The results of the standard cuts (table 3) are included to ease the

Finding Gluon Jets with a Neural Trigger

Leif Lönnblad, ${ }^{(a)}$ Carsten Peterson, ${ }^{(b)}$ and Thorsteinn Rögnvaldsson ${ }^{(c)}$
Department of Theoretical Physics. U'niversity of Lund. Sölvegatan 14A. S-2236: Lund. Sweden

(Received 6 April 1990)

Abstract

Using a neural-network classifier we are able to separate gluon from quark jets originating from Monte Carlo-generated $e^{*} e^{-}$events with $85 \%-90 \%$ accuracy.

PACS numbers: 13.87.Fh, 12.38. Qk, 13.65.+i

In this Letter, we demonstrate how to separate gluon and quark jets using a neural-network identifier. Being ${ }^{\text {able }}$ to distinguish the origin of a jet of hadrons is imporvit from many perspectives. It can shed experimental light on the confinement mechanism in terms of detailed studies on the so-called string effect ' and related issues. Also, a fairly precise identification of the gluon jet is required for establishing the existence of the three-gluon coupling in $e^{+} e^{-}$annihilation.' To date the gluon-jet identification has been done by making various cuts on the kinematic variables ranging from just identifying the jet with smallest energy as the gluon jet 'to more elaborate schemes. ${ }^{3.4}$ Such procedures are often based on the entire event rather than just a single isolated jet. It would be desirable to focus on the latter alternative given that in many situations "global" quantities like total jet energies are less well known. One such example is jets produced in high-pr hadron-hadron collisions.

A straightforward method for identifying the jets would be to find the functional mapping between the observed hadronic kinematical information and the feature (quark or gluon). This reduces the problem from an --xpert's exercise to a "black box" fitting procedure. This is exactly what the neural-network approach aims at. It has the advantage over other fitting schemes in that it is very general, inherently parallel, and easy to implement in custom-made hardware with its simple processor structure. The latter feature is very important for realtime triggering.

We confine our studies to Monte Carlo-generated $e^{+} e^{-}$events using the Lund Monte Carlo model. To some extent this induces a "chicken-and-egg" effect to our studies: some of the physics one wants to study is already there. This effect can be minimized by limiting ourselves to kinematical quantities that are most model independent, e.g., considering the fastest particles only.
Although this paper is limited to the separation of gluon and quark jets, it is clear that the methodology could be used in a variety of different triggering situations.

The neural-network learning algorithm.-The basic ingredients in a neural network are neurons n_{1} and connectivity weights $\omega_{i j}$. For feature recognition problems like ours the neurons are often organized in a feedforward layered architecture (see Fig. 1) with input
$\left(x_{k}\right)$, hidden (h_{j}), and output (y_{1}) nodes. Each neuron performs a weighted sum of the incoming signals and thresholds this sum with a "sigmoid" function $g(x)$ $=0.5[1+\tanh (x)]$. For the hidden and output neurons one has

$$
\begin{align*}
& h_{j}=g\left(a_{j} / T\right), \tag{1}\\
& y_{i}=g\left(a_{i} / T\right), \tag{2}
\end{align*}
$$

where the "temperature" T sets the slope of g and the weighted input sums a_{j} and a_{i} are given by $\Sigma_{k} \omega_{j k} x_{k}$ and $\sum_{j} \omega_{i j} h_{j}$, respectively.

The hidden nodes have the task of correlating and building up an "internal representation" of the patterns to be learned. Training the network corresponds to changing the weights $\omega_{i j}$ such that a given input parameter $x^{(\rho)}$ gives rise to an output (feature) value $y^{(\rho)}$ that equals the desired output or target value $t^{(p)}$. A frequently used procedure for accomplishing this is the back-propagation learning rule ${ }^{5}$ where the error function

$$
\begin{equation*}
E=\frac{1}{2} \sum_{p} \sum_{i}\left(y_{i}^{(p)}-t_{i}^{(p)}\right)^{2} \tag{3}
\end{equation*}
$$

is minimized. Changing $\omega_{i j}$ by gradient descent corresponds to ${ }^{5}$

$$
\begin{equation*}
\Delta \omega_{i j}=-\eta \delta_{i} h_{j}+\alpha \Delta \omega_{i j}^{\text {old }} \tag{4}
\end{equation*}
$$

for the hidden to output layers, where δ_{1} is given by

$$
\begin{equation*}
\delta_{i}=\left(y_{i}-t_{i}\right) g^{\prime}\left(a_{i}\right) . \tag{5}
\end{equation*}
$$

Correspondingly, for the input to hidden layers one has

$$
\begin{equation*}
\Delta \omega_{j k}=-\eta \sum_{i} \omega_{i j} \delta_{i} g^{\prime}\left(a_{j}\right) x_{k}+\alpha \Delta \omega_{j k}^{\text {ojd }} \tag{6}
\end{equation*}
$$

FIG. 1. A feed-forward neural network with one layer of hidden units.

LSING NEURAL NETWORKS TO IDENTIFY JETS

Leif LÖNNBLAD*. Carsten PETERSON * * and Thorsteinn RÖGNVALDSSON ***
Department of Theoretical Physics. Unitersiry of Lund. Sölvegatan 14.4. S-22362 Lund. Sueden

Received 29 June 1990

Abstract

A neural network method for identifying the ancestor of a hadron jet is presented. The idea is to find an efficient mapping between certain observed hadronic kinematical variables and the quark-gluon identity. This is done with a neuronic expansion in terms of a network of sigmoidal functions using a gradient descent procedure. where the errors are back-propagated through the network. With this method we are able to separate gluon from quark jets originating from Monte Cario generated $e^{*} e^{-}$events with $\sim 85 r_{i}$ approach. The result is independent of the MC model used. This approach for isolating the gluon jet is then used to study the so-called string effect.

In addition, heavy quarks (b and c) in $e^{-} e^{-}$reactions can be identified on the 50% level by just observing the hadrons. In particular we are able to separate b-quarks with an efficiency and purity, which is comparable with what is expected from vertex detectors. We also speculate on how the neural network method can be used to disentangle different hadronization schemes by compressing the dimensionality of the state space of hadrons.

1. Introduction

During the last couple of years there has been an upsurge in interest for brain-style computing in terms of artificial neural networks (NN). The origin of this enthusiasm is the power this new computational paradigm has shown for a wide variety of real-world feature recognition applications. Not only is the performance of the NN promising but the entire approach is very appealing with its adaptiveness and robustness. Another attractive feature is the inherent parallelism in neural networks and the feasibility of making custom made hardware with fast execution times and thereby facilitating real-time performance.

High-energy physics contain many feature recognition problems, ranging from low-level trigger conditions in experimental setups, to extraction of theoretically relevant quantities in collected data. Needless to say, the demand for efficient feature extraction procedures will become more acute with increasing luminosity and energy. In a previous paper [1] preliminary results for gluon-quark separation

[^2]Table 7
Resulis for the $r=\left\langle n_{2}\right\rangle /\left\langle n_{1}\right\rangle$ measured on a sample of 10000 MC events (ARIADNE) for different methods of identifying the gluon jet: using the true gluon jet of the MC. the NN approach and the "smallest jet" approach

	MC truth	Neural network	Smallest jet
Success rate	$100 r_{c}$	$74 r_{c}$	h?r;
$r=\left\langle n_{2}\right\rangle /\left\langle n_{4}\right\rangle$	2.16 ± 0.03	2.00 ± 0.02	1.60 ± 0.02
$r\left(m_{\text {h.u }} \geqslant m_{k}\right)$	3.0 ± 0.1	2.7 ± 0.1	$1.9=0.1$

A comparison between a neural network and the likelihood method to evaluate the performance of a transition radiation detector

R. Bellotti ${ }^{\text {a }}$, M. Castellano ${ }^{\text {b }}$, C. De Marzo ${ }^{\text {a }}$, N. Giglietto ${ }^{\text {b }}$, G. Pasquariello ${ }^{\text {c }}$ and P. Spinelli ${ }^{\text {a }}$
${ }^{a}$ Dipartimento di Fisica, Unicersità di Bari, and INFN, Sez. di Bari, Via Amendola 173, 70126 Bari, Italy
${ }^{\text {b }}$ INFN, Sez. di Bari, Via Amendola 173, 70126 Bari, Italy
${ }^{c}$ Istituto Elaborazione Segnali e Immagini - C.N.R., Va Amendola 166/5, 70126 Bari, Italy

Received 16 June 1993; in revised form 16 August 1993

Abstract

A classification system able to evaluate the performances of a transition radiation detector prototype for electrons/hadrons discrimination is presented. It is based both on a layered feed-forward neural network trained using back-propagation and a likelihood ratio technique. The information fed into the classification system consists of the number of hits detected by each multiwires proportional chamber of the detector. The best results are obtained by the neural network approach that successfully identifies $4.0 \mathrm{GeV} / \mathrm{c}$ electrons with an hadron contamination of about 4×10^{-3} at 98% acceptance efficiency.

1. Introduction

Several detectors have been proposed, so far, for particle identification in high energy physics. Transition radiation detectors (TRDs) can be used to discriminate particles with a different γ Lorentz factor [1]: they have been employed for aigh energy particle identification in experiments at CERN [2,3] and Fermilab [4,5] and in the future also in LHC (see e.g. ref. [6]) and SSC experiments (see e.g. ref. [7]). Moreover, TRDs can be used to distinguish positrons from protons up to 1 TeV energy in cosmic ray space experiments [8-10].

Pattern recognition methods, involving powerful statistical and neurocomputing techniques, are taken into account in high energy physics to study the classification power of detectors. For this purpose, the output patterns of the detectors, produced by known particle-classes, are stored in

[^3]tagged data files. They are examined by a classification system in order to carry out explicit relationship among data in terms of mapping a pattern from pattern space into class-membership space. A measure of the separability of the classes in a suitable feature space provides the detector classification power.

In this paper is presented a pattern recognition system based on a back-propagation neural network and likelihood ratio algorithm to evaluate the performances of a TRD developed [10,11] for electrons/hadrons discrimination in cosmic ray experiments. In the next section the classification system is presented and the neural architecture and the likelihood ratio test are described; in the third section the application to experimental data and test results are discussed.

2. The pattern classification system

The TRD prototype [10] consists of 10 modules, each one made of a carbon fiber radiator followed by a $\mathrm{Xe}-\mathrm{CH}_{4}$ filled proportional cham-
fixed momentum, by means of Cherenkov counters, lead glass scintillators and a standard module electronic logic. A mean tagging inefficiency for the electrons is evaluated of about 10^{-4} [10].

The TRD data, according to the scheme in fig. 1 , are taken at the different beam momenta available. Typical data for pions and electrons are shown in fig. 3. The pion events are mainly detected with a small number of hits in the whole detector, while the electron patterns have some counts in each chamber. Using the same data sets, i.e. about 5000 events for each beam momentum, the N_{0} and L feature spaces are generated, as shown in fig. 4 for $4 \mathrm{GeV} / c$ momentum only. Better accumulation around 0 and 1 of the feature values is achieved in the N_{0} space with respect to the L one. This behaviour is well emphasized in fig. 5 where pion contamination versus electron acceptance is computed according to the procedure described in the second section. As a result, the NN technique reaches the minimum pion contamination value around 95% of electron acceptance efficiency. The table 1 summerizes pion contamination against acceptance at three different momentum data set for both

Fig. 5. Pion contamination versus electron acceptance for 4 $\mathrm{GeV} / \mathrm{c}$ data: the TRD performance evaluated by the likelihood ratio technique (dotted line) and the neural network (solid line).

Table 1
Pion contamination ($\times 10^{-3}$) evaluated for different electron acceptance by the likelihood ratio test and neural network techniques.

Acceptance	1 GeV		2 GeV		4 GeV	
	L	NN	L	NN	L	NN
90\%	25.3	15.1	14.8	6.0	3.0	4.2
95\%	83.4	26.7	21.9	6.0	6.8	4.2
97\%	134.9	26.7	46.6	8.1	14.1	4.5
98\%	236.3	26.7	97.9	90.0	21.4	4.5

methods. In the NN method a very low contamination is already achieved at full acceptance. This performance is never shown by other methods [$12,19,20$] and it can be useful to employ TRDs in space cosmic ray experiments $[9,10]$ where, searching for rare events with the constraint of short duration exposures, an acceptance as large as possible is required.

4. Conclusions

A comparison between statistical and neural approaches to evaluate the TRD performances for the electron/pion discrimination problem has been presented. The ability of the net to explore many hypotheses simultaneously with respect to the likelihood ratio statistical technique has played a fundamental role in obtaining better results. Finally, from the practical view point, the parallel distributed processing model of the net could be hardware implemented using neuron-like components to speed up the particle classification task.

References

[1] B. Dolgoshein, Nucl. Instrum. Methods A 326 (1993) 434.
[2] J. Cobb et al., Nucl. Instrum. Methods 140 (1977) 413.
[3] A. Vacchi. Nucl. Instrum. Methods A 252 (1986) 235.
[4] A. Denisov et al., preprint Fermilab-Conf-84/134-E (1984).
[5] D. Errede et al., preprint Fermilab-Conf-89/170-E (1989).
[6] Proc. ECFA-CERN Workshop on the Large Hadron Collider in the LEP-Tunnel, ECFA 90-133, Vol. I (1990).

Selection of optimal subsets of tracks with a feed-back neural network

Rudolf Frühwirth
Institut für Hochenergiephysik der Österreichischen Akademie der Wissenschaftem, Vienna, Austria

Received 6 July 1993

Abstract

A feed-back neural network is described which solves the problem of finding an optimal set of compatible nodes in a compatibility graph. The properties of the network are explored with random graphs. The performance is illustrated with simulated data of the DELPHI detector.

1. Introduction

An important constraint on any track reconstruction algorithm is given by the fact that any two tracks in the final selection have to be compatible, i.e. must not share data. The selertinn algorithm therefore has to solve a mization problem by selecting a- $^{-}$ of cr-morible tracks. It has '
t'Table 2
Classification of simulated tracks.

	Data set I			
	neural net	standard		neural net
Algorithm	5000	5000	standard	
Simulated tracks	4331	4331	10000	10000
Reconstructable tracks	3867	3712	8279	8279
Tracks in class 1	240	251	5518	4874
Tracks in class 2	94	149	903	850
Tracks in class 3	483	518	1176	1625
Processing time [CPU s]			2067	2538

In our specific application we have found it useful to define the track QI as a combination of track angle and chi-square probability. The procedure is described in section 4.

The problem of finding maximal compatible sets in a compatibility graph has been analyzed in
:Nerable detail in ref. [1]. Bv - Jifi\because Hopfield no.

Correspondence to: R. Frühwirth, Nikolsdorfer Gasse 18, A-1050 Wien, Austria (permanent address).

> . with the largest sumu y-.... maicators (QIs) will be called the oes. maximal set.

0010-4655/93/506.00 © 1993 - Elsevier Science Publishers B.V. All rights reserved

Test of agreement between two multidimensional empirical distributions

LLuis Garrido ${ }^{(1,2)}$, Vicens Gaitan ${ }^{(2)}$, Miquel Serra-Ricart ${ }^{(3)}$
(1) Departament d'Estructura i Constituens de la Materia
Universitat de Barcelona
Diagonal 647, E-08028 Barcelona, Spain
(2) Institut de Física d'Altes Energies
Universitat Autònoma de Barcelona
E-08193 Bellaterra (Barcelona), Spain

(3) Instituto de Astrofisica de Canarias

E-38200 La Laguna (Tenerife), Spain
January 20, 1994

Abstract

We present a method to test the agreement between two multidimensional empirical distributions which is not restricted to work with projections in fewer dimensions due to the lack of date, and with the relevant fact that it is free of binning. The method, which can be successfully implemented on layered neural nets, gives a lower bound value on any estimator that measures the inconsistency between the two distributions.

(Submitted to Computer Physics Communications)

1 Introduction

An everyday task in all areas of science is the comparison of theoretical models with experimental data. In some cases the theoretical models cannot be checked directly because their explicit analytical form does not exist (egg.: the models are the result of a large number of calculations with complex algorithms) and/or there are additional effects not included in the model (e.g.: detector effects during the acquisition of the experimental data). A commonly used strategy to overcome this problem is to generate Monte Carlo events according to the theoretical model and to fold them with the additional effects. The result is a simulated data sample (MC) that can be checked against the experimental data.
test of statistical agreement between 2 data sets. (WERE THEY DRAWN FROM THE SAME Probability density Distribution?)

IF DATA IS ONE-DIMENSIONAC

- chisquare REQUIRES BINNING

KOLMOGOROV
test
REQUIRES ORDERING

Fig. 11.3 Example of two cumulative distributions, $S_{X}(X)$ and $S_{M}(X)$, of the type (11.9).
when you measure more than one VARIABLE FOR EACH DATA POINT, THE DATA BECOME MULTI-DIMENIONAL
AND THE TEST FOR AGREEMENT
SHOULD BECOME MORE POWERFUL:
BUT
WE DON'T KNOW HOW 70 USE THE EXTRA INFORMATION

- CHISQUARE : bINS BEG.OME 700 BIG. LOSE RESOLUTION
- Kochogora: cannot order data IN >1 DIMENSION

ANY PROJECTION THROWS AWAY INFORMATION
UNLESS
the projection is based upon the difference between the two data sets!

The Gaitan-GARRIDO PRJSGCTON
project onto
Tue variable

$$
K=\frac{P_{1}(\underline{x})}{P_{1}(\underline{x})+P_{2}(\underline{x})}
$$

$P_{1}, P_{2}=$ undulaing probation densities fun which samples 1 ad 2. were taken (UNKNOWN!)

How to estimate K ?
NEURAL NETWORK, OF COURSE

this net maps every data item to avalue or K

[^0]: Correspondence to: R. Barlow, Department of Physics, Manchester University, Manchester, M13 9PL. UK.

[^1]: Correspondence to: G. Stimptl-Abele, PPE division, CERN, CH-1211 Geneva 23, Switzerland; E-mail address: stimpfl@cernvm.cern.ch
 ${ }^{1}$ Email address: yepes@physics.rice.edu

[^2]: * thepll(ar seldc52 (bitnet) leif(a thep.lu.se (internet)
 * * thepcapra seldc52 (bitnet) carsten(a thep.lu.se (internet)
 * ** thepdra seldc52 (bitnet) dennifu thep.lu.se (internet)

[^3]: Correspondence to: M. Castellano, INFN, Sez. di Bari, Via Amendola 173, 70126 Bari, Italy.

