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ABSTRACT '

In this series of 4 lectures, the emphasis will be on solving real problems using multi-
layer feed-forward networks. Using the general theory of inverse problems and recent
theoretical results on computational complexity in neural networks, we try to develop
ways of understanding in what sense a problem is solvable and what network
architecture is necessary to solve it.

1.  Introduction and overview of Artificial Neural Networks. P

2,3. The Feed-forward Network as an Inverse Problem, and results on the computational
v complexity of network training. '

4.  Physics applications of neural networks.
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Pattern recognition in high energy physics with artificial neural

networks - JETNET 2.0

Leif Lonnblad, Carsten Peterson and Thorsteinn Régnvaldsson
Department of Theoretical Physics, University of Lund, Sélvegatan {4 A, $-223 62 Lund. Sweden

Received 27 August 1991

A F77 package of adaptive artificial neural network algorithms. JETNET 2.0. is presented. Its primary target is the high

energy physics community, but it is general enough to be used in any pattern-recognition application area. The basic ,

ingredients are the multilayer perceptron back-propagation algorithm and the topological seif-organizing map. The package
consists of a set of subroutines. which can either be used with standard options or be easily modified to host alternative

architectures and procedures.

PROGRAM SUMMARY

Title of program: SETNET version 2.0
Catalogue number: ACGV

Program obtainable from: CPC Program Library, Queen’s
University of Belfast. N. [reland (see application form in this
issue)

Licensing protisions: none

Computer for which the program is designed: DECstation,
SUN. Apollo. VAX. IBM and others with a F77 compiler
Computer: DECstation 3100; /Installation: Department of
Theoretical Physics. University of Lund, Sweden

Operating system under which the program has been tested:
ULTRIX RISC 4.2

Programming language used: FORTRAN 77
Memory required to execute with typical data: ~ 90 kwords

No. of bits in a word: 32

Peripherals used: terminal for inpul, terminal or printer for
output

No. of lines in distributed program. including test deck data.
etc.: 3345

Keywords: pattern recognition, jet identification, artificial
neural network

Nature of physical problem

High energy physics offers many challenging pattern-recogni-
tion problems. It could be separating photons from Ieptons
based on calorimeter information or the identification of a
quark based on the kinematics of the hadronic fragmentation
products. Standard procedures for such recognition problems
is the introduction of relevant cuts in the multi-dimensional
data.

Method of solution

Artificial neural networks (ANN) have turned out to be a very
powerful paradigm for automated feature recognition in a
wide range of problem areas. In particular feed-forward
multilayer networks are widely used due to their simplicity
and good performance. JETNET 2.0 implements such a
network with the back-propagation updating algorithm in
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JETNET 3.0 — A Versatile Artificial
Neural Network Package

Carsten Peterson and Thorsteinn Rognvaldsson

Department of Theoretical Physics, University of Lund,
Solvegatan 14 A, S-223 62 Lund, Sweden

Leif Lonnblad

Theory Division, CERN, CH 1211 Geneva 23, Switzerland

Submitted to Computer Physics Communications

PROGRAM SUMMARY

Title of Program: JETNET version 3.0

Catalogue number:

Program obtainable from: denniOthep.lu.se or via anonymous ftp from thep.lu.se in directory
pub/Jetnet/ or from freehep.scri.fsu.edu in directory freehep/analysis/jetnet.

Compuler for which the programme is designed: DEC Alpha, DECstation, SUN, Apollo, VAX, IBM,

Hewlett-Packard, and others with a F77 compiler

Computer: DEC Alpha 3000; installation: Department of Theoretical Physics, University of Lund,
Lund, Sweden

Operating system: DEC OSF 1.3
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f) pRAMS
:aming hard

most other signals in systems, even Hardware for a stochastic, non-linear, biologically realistic neuron

Digital devices built in 1988
Digital VLSI devices in 1990
Learning-in-hardware VLSI devices available now
Prototype analogue pRAM available now

ren time period represents value Modular structure allows reconfigurable connectivity (ie various network architectures or

rork genetic algorithms can be experimented with)

1024 connections) . Interconnected modules allow the net to be expanded indefinitely

s to transfer from input line to oupu General-purpose 8-pRAM module (256 neurons) available now
Can interface to a workstation or PC

rately
Table 3.1 Neural networks chips

BTk

Feature Maxys Cct | Intel 80170 Ncural Semi | Adaptive Advanced | pRAM KCL

verts summed values into output pulse — — — Devices e
Technology digital analogue digital digital digital digital
Number of 32 64 32 64 8 128
Neurons
Number of 7 128 32 8 - 4

not guaranteed identical for different loputs :

us limitation in many safety-critical Accuracy 8-bits ~6-bits 16 levels - - 16-bits
Leaming Back-prop | Off-chip Off-chip yes Offchip On-chip

\ﬁ.;ﬁ'\%. dm ~ Expansion | 32 modules yes yes no yes 4 Jinks

(1024)
\_\ mﬁ L Q.N Speed SoMie | 200Kz | 100kHz | 100kHz? | SOMHz | 200kHz
Q . O~ ev? (CLK) (CLK)
Cost £10-50k | £500 chip : 30k | £500board |  £2000
K £6000 system (inc frame-
I\ % - ob J
Availability now now now now now now
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SYNAPSE-1, designed to simulate the human brain,

is the fastest neural computer in the world

ntil now, conventional com-

puters have fallen far short in

replicating what the human
brain. nervous system and senses
appear to achieve without any con-
scious effort. For example, even very
powerful computers are still a long
way from understanding natural
language or recognizing faces. Yet
automatic speech and image rec-
ognition, or making sensible guesses
when knowledge is incomplete are
the sort of things we will want our
computers to do in the furure.
Successful results have already been
achieved in scientific and industrial
research and development. For
example, artificial neural networks
can now recognize a wide range of

By Dr. Ulrich
Ramacher,
Central Re-
search and
Development
Department,
Siemens AG,
Munich,
Germany

38

handwritten letters and numbers, or
predict the movement of exchange
rates.

The major obstacle to the rapid de-
velopment of new applications is the
difficulty of simulating the neural
learning process: the computing
power required exceeds existing
resources by at least five orders of
magnitude.

A leap in computing
power required

Even the fastest workstations take
weeks - sometimes months - to per-
form such tasks: so a special comput-
er is required which can simulate ail
types of neural networks and leam-

ing processes. Unlike com  =zrs
based on the von Neumann model, a
neural computer is equipped with a
network of simple processors provid-
ing massively parallel processing
capacity.

SYNAPSE-1 is the result of two years’
work by the Central Research and
Development Department at - Sie-
mens AG directed towards dramati-
cally reducing the time needed to
process neural applications. It can
perform more than five billion fixed
point operations (i.e. multiplying or
adding 16-bit numbers}) every
second. With power on this scale.
SYNAPSE-1 is not only 8 000 times
faster than a powerful workstation. it
is currently the world's fastest and

OLALOG 393
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Neurocomputer SYNAPSE-1

The capabilities of the human
brain and senses are difficuit
to model by classical informa-
tion technoiogy. On the other
hand, these capabilities like
e.g. image and speech reco-
gnition, solution of complex
optimization problems and
especially leaming capabilities
become more and more impor-
tant. Therefore, natural neurai
systems are modelled by arti-
ficial neural networks in order
to tackle the above mentioned
probiem areas.

The structure of artificial neu-
ral networks is considerably
different from the architecture
of today's computer systems.
Although neural networks can
be simulated on conventional
computers like workstations,
only very simpie cases can be
explored because of the ex-
tremely long processing times.
Especially the simuiation of the
neural leaming process pre-
vents fast developments of
neural applications on such
platforms.

Special purpose conputers that
take into account the archi-
tecture of neural networks are
much superior to those soft-
ware solutions. The neuro-
computer SYNAPSE-1 offers a
performancs that lies several
orders of magnitude above
that of a powerful workstation.

The power of SYNAPSE-1 (up
to 3.2 billion connections or
muitiplications and accumula-
tions per second) is resuiting
from a scalable muiti-proces-
sor and memory architecture
and from the neuro-signal-pro-
cessor MA16 which executes
the compute intensive opera-
tions of neural algorithms.

The system consists of the

following hardware compo-

nents:

- an array of 8 MA18 chips

- a data unit for non compute
intensive operations

- a high-bandwidth memory

- a control unit for control and
coordination.

Communication with host
workstation and specialized
input/output devices is imple-
mented via a VME bus inter-
face.

On the software side, the sys-
tem is delivered with micro-
programs, operating software
and workstation programming
environment. Applications are
programmed in the easy-to-
use "neural Aigorithms Pro-
gramming Language” (nAPL)
which supports the user in the
development of his algorithms.
nAPL is embedded in C++.

SYNAPSE-1 fulfills all the
relevant requirements for a
universal neurocomputer:

- compute power of at least 3
orders of magnitude above
conventional computers, so
that development times can
be minimized

- support of small, medium
and large neural networks, so
that a compiete area of po-
tential applications can be
impiemented

- "general purpose” architec-
ture, so that any of today's
neural networks are sup-
ported and provision is made
for future deveiopments.

Technical data:

MA18 array

Peak performance 3.2 billion

multiplications (16x18 bit) and

accumuiations (48 bit) per

second,

Memory capacity 32 MBytes.

Transfer rates

- Backplane 0.8 GBytes/s
(plus 100 MBytes/s parity)

- Data busses 0.8 GBytes/s

- Control busses 200 MBytes/s

- Address bus 56 MBytes/s,

Frequency rate 25 MHz

W memory
Capacity 128 MBytes

Data Unit

Peak performance 100 million
integer operations per second,
Working memory 8 MBytes,
VME bus connection 4
Mbytes/s,

Y memory 8 MBytes,
Frequency rate 25 MHz

Control Unit

Peak performance sequencer
20 MIPS,

Peak performance Y address
generator 25 million addresses
per second,

Working memory 8 MBytes,
VME bus connection 4
MBytes/s,

Frequency rate 25 MHz

Interface
VME bus connection to work-
station.

For more information, please
contact:

Siemens Nixdorf
Informationssysteme SA
Division B

CH-1020 Renens

Tel.: (021) 632 01 11
Fax: (021) 635 86 82
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i

C\/J\'L’ We can combine these two points, for this conclusion: When a quadratic
l\/u H EYZI minimization principle is combined with a quadratic constraint, and both are

positive, only one of the two need be nondegenerate for the overall problem to be

QEC ipﬁs well-posed. We are now equipped to face the subject of inverse problems.
' \ N The Inverse Problem with Zeroth-Order Regularization

and underlying!) physical process, which we hope to determine by a set of ¥
measurements ¢;, ¢ = 1,2,...,N. The relation between u(z) and the c;’s is that
each ¢; measures a (hopefuily distinct) aspect of u(z) through its own linear response
kemel r;, and with its own other words,

CE Si+n; = /ri(z)u(z)dz +n; ’> (18.4.5)

(compare this to equations 13.3.1 and 13:3:2y—Within the-assumption of linearity,
this is quite a general formulation. The c¢;’s might approximate values of u(z) at
certain locations z;, in which case r;(z) would have the form of a more or less
narrow instrumental response centered around z = z;. Or, the ¢;’s might “live” inan
entirely different function space from u(z), measuring different Fourier components
of u(z) for example.

The inverse problem s, given the ¢;’s, the 7;(z)’s, and perhaps some information
about the errors n; such as their covariance matrix

)\/ Suppose that u(z) is some unknown or underlying (u stands for both unknown
To £TRA

Si; = Covar(n,, n;] (18.4.6)

how do we find a good statistical estimator of u(z), call it u(z)?

It should be obvious that this is an ill-posed problem. After all, how can we
reconstruct a whole function %(z) from only a finite number of discrete values c;?
Yet, whether formally or informally, we do this all the time in science. We routinely
measure “enough points” and then “draw a curve through them.” In doing so, we
are making some assumptions, either about the underlying function u(z), or about
the nature of the response functions 7;(z), or both. Our purpose now is to formalize
these assumptions, and to extend our abilities to cases where the measurements and
underlying function live in quite different function spaces. (How do you “draw a
curve” through a scattering of Fourier coefficients?)

We can’t really want every point z of the function %#(z). We do want some
large number M of discrete points z,, p = 1,2,..., M, where M is sufficiently
large, and the z,,’s are sufficiently evenly spaced, that neither u(z) nor r;(z) varies
much between any z,, and z,.;. (Here and following we will use Greek letters like
u to denote values in the space of the underiying process, and Roman letters like ¢
to denote values of immediate observables.) For such a dense set of z,,’s, we can
replace equation (18.4.5) by a quadrature like

G = Z R u(z,) +n (18.4.7)
"

where the N x M matrix R has components
Riy = 1i(Zu)(Tu+r — Tp-1)/2 (18.4.8)
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18.4 Inverse Problems and the Use of A
Priori Information

Later discussion will be facilitated by some preliminary mention of a couple
of mathematical points. Suppose that u is an “unknown” vector that we plan to
determine by some minimization principle. Let Afu] > 0 and Bfu] > 0 be two
positive function, ; ine u by either

minimize: A[u] or minimize:  Blu] (18.4.1)

(Of course these will generally give different answers for u.) As another possibility,
now suppose that we want to minimize .4[u] subject to the constraint that Blu] have
some particular value, say b. The method of Lagrange multipliers gives the variation

_ 2 {Afa] + X4 (Blu] - )} = 5= (Alu] + Bl = 0 (184.2)

where )\, is a Lagrange multiplier. Notice that b is absent in the second equality,
since it doesn’t depend on u.

Next, suppose that we change our minds and decide to minimize B[u] subject
to the constraint that .A[u] have a particular value, a. Instead of equation (18.4.2)
we have

% (Blu] + A2(Alu] — a)} = % (Bu] + AsAlu]) = 0 (18.4.3)

with, this time, A, the Lagrange multiplier. Multiplying equation (18.4.3) by the
constant 1/);, and identifying 1/ with \;, we see that the actual variations are
exactly the same in the two cases. Both cases will yield the same one-parameter
family of solutions, say, u(A;). As A; varies from 0 to oo, the solution u(\;)
varies along a so-called trade-off curve between the problem of minimizing A and
the problem of minimizing B. Any solution along this curve can equally well
be thought of as either (i) a minimization of A for some constrained value of B,
or (ii) a minimization of B for some constrained value of A, or (iii) a weighted
minimization of the sum A + \;B.

The second preliminary point has to do with degenerate minimization principles.
In the example above, now suppose that .A[u] has the particular form

Aul=|A-u-cf? (18.4.4)

for some matrix A and vector ¢. If A has fewer rows than columns, or if A is square
but degenerate (has a nontrivial nullspace, see §2.6, especially Figure 2.6.1), then
minimizing .A[u] will not give a unique solution for u. (To see why, review §15.4,
and note that for a “design matrix” A with fewer rows than columns, the matrix
AT . A in the normal equations 15.4.10 is degenerate.) However, if we add any
multiple ) times a nondegenerate quadratic form B[u], for example u - H - u with H
a positive definite matrix, then minimization of .A[u] + AB[u] will lead to a unique
solution for u. (The sum of two quadratic forms is itself a quadratic form, with the
second piece guaranteeing nondegeneracy.)

A
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Figure 18.4.1.  Almost all inverse problem methods involve a trade-off between two optimizations:
agreement between data and solution, or “sharpness” of mapping between true and estimated solution (here
denoted A), and smoothness or stability of the solution (here denoted B). Among all possible solutions,
shown here schematically as the shaded region, those on the boundary connecting the unconstrained
minimum of A and the unconstrained minimum of B are the “best” solutions, in the sense that every
other solution is dominated by at least one solution on the curve.

The value N is actually a surrogate for any value drawn from a Gaussian
distribution with mean N and standard deviation (2N)!/2 (the asymptotic x?
distribution). One might equally plausibly try two values of ), one giving x? =
N + (2N)¥?, the other N — (2N)1/2,

Zeroth-order regularization, though dominated by better methods, demonstrates
most of the basic ideas that are used in inverse probiem theory. In general, there are
two positive functionals, call them A and B. The first, A, measures something like
the agreement of a model to the data (e.g., x2), or sometimes a related quantity like
the “sharpness” of the mapping between the solution and the underlying function.
When A by itself is minimized, the agreement or sharpness becomes very good
(often impossibly good), but the solution becomes unstable, wildly oscillating, or in
other ways unrealistic, reflecting that .4 alone typically defines a highly degenerate
minimization problem.

That is where B comes in. It measures something like the “smoothness” of the
desired solution, or sometimes a related quantity that parametrizes the stability of
the solution with respect to variations in the data, or sometimes a quantity reflecting
a priori judgments about the likelihood of a solution. B is called the szabilizing
functional ot regularizing operator. In any case, minimizing B by itself is supposed
to give a solution that is “smooth” or “stable” or “likely” — and that has nothing
at all to do with the measured data.
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(or any other simple quadrature — it rarely matters which). We will view equations
(18.4.5) and (18.4.7) as being equivalent for practical purposes.

How do you solve a set of equations like equation (18.4.7) for the unknown
u(z,)’s? Here is a bad way, but one that contains the germ of some correct ideas:
Form a x? measure of how well a model #(z) agrees with the measured data,

N M
X2 = ' > [c, - Rmfi(:z:u)} i [ Z R;,4(z,) ]

(18.4.9)

o] — THE wWElGHES
(compare with equation 15.1.5). Here S™! is the inverse of the covariance matrix,
and the approximate equality holds if you can neglect the off-diagonal covariances,
with o; = (Covarli,i])!/2.
— Now you can use the method of singular value decomposition (SVD) in §15.4
to find the vector 4 that minimizes equation (18.4.9). Don't try to use the method
of normal equations; since M is greater than NV they will be singular, as we already
discussed. The SVD process will thus surely find a large number of zero singular
values, indicative of a highly non-unique solution. Among the infinity of degenerate
solutions (most of them badly behaved with arbitrarily large %(z,)’s) SVD will
select the one with smallest

(18.4.10)

(look at Figure 2.6.1). This solution is often called the principal solution. It
is a limiting case of what is called zeroth-order regularization, corresponding to
minimizing the sum of the two positive functionals

minimize: x*({@] + A(@ - @) (18.4.11)

- in the limit of small A\. Below, we will learn how to do such minimizations, as well
as more general ones, without the ad hoc use of SVD.

What happens if we determine U by equation (18.4.11) with a non-infinitesimal
value of A? First, note that if M >» N (many more unknowns than equations), then
u will often have enough freedom to be able to make x? (equation 18.4.9) quite
unrealistically small, if not zero. In the language of §15.1, the number of degrees of
freedom v = N — M, which is approximately the expected value of x? when v is
large, is being driven down to zero (and, not meaningfully, beyond). Yet, we know
that for the true underlying function u(z), which has no adjustable parameters, the
number of degrees of freedom and the expected value of x2 should be about v =~ N.

Increasing A pulls the solution away from minimizing x2 in favor of minimizing
U - U. From the preliminary discussion above, we can view this as minimizing @ - @
subject to the constraint that x> have some constant nonzero value. A popular
choice, in fact, is to find that value of A which yields x2 = N, that is, to get about as
much extra regularization as a plausible value of x? dictates. The resulting %(z) is
called rhe solution of the inverse problem with zeroth-order regularization.

hssssssssssss——
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this case, however. Where possible, notation follows that of White and Qx09.

Wopldndge. Other notation and definitions are as in Stinchcombe and Pan'(a
White (1989b). We write () to denote the Borel o-field generated by the measurak
open sets of the argument set, gr(-) denotes the graph of the indicat statement
:?fl;:;pondence, and ¢(-) is the collection of analytic sets of the indicated The objex

) the limit
converger
Theorem 4.1. (a) Let (Q, 7 P) be a complete probability space and permits il
let (©,0) be a metric space. For nA=1,2,... let 6, be a complete assumptic
separable Borel subset of © and let 6,:0 = © be a correspondence with bounding
#6, € AF@D(8,)) such that for each w in 8 ,(w) C ©,, and the set ficiently c
6,(w) is non-empty and compact. Let Q,:Q x © — R be F® 2(8)- element o.
m?“’?bl;- and :“990“2 that Q,(w, -) is lower semicontinuous on 8, for fast and ¢
eachwini,n=1,2,.... constants
Then foreachn =1, 2, ... there exists a function 5,.:0 — ©, measurabie- applicatior
f/_fh(e,) (genoe-.?/g(e)) such that Q,(w, 8,(w)) = min,e,,,, Q,(w, 6) We n;lw
or all win Q. ) to corolla:

(b) In addition, suppose(8, ] and {6,) are increasing sequences of com- dimension
pact subsets of © such that U7, @, is dense in © and §, < 6,(w) < 6, entropy (k
forallwin@,n =1,2,.... Suppose there exists a function 3:0 — R such metric ent
that for all £> 0 “h”mbef of
the same a
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and for 8,€©

infon‘(d.. 3] Q(o) - Q(Oo) > 0’ (42)

where n°(6,, €) = {6€0:0(8,6,) > ¢}, and Q is continuous at §,. Then
0(6,,8,) £.0. a

In our application, (G, .7 P) is the space on which the stochastic process
{Z,) is defined. The properties of P determine whether { Z,} is an indepen-
dent or a mixing sequence. The space © contains the object of interest (the
unknown regression function 4,), and p is a metric that measures distance
in this space (weighted mean squared error). Q, isﬁthe criterion function
(squared error) optimized to arrive at an estimator 4,. The set 6,(w) over
which optimization is carried out may depend on the data through w; this
permits treatment of cross-validation procedures. In some applications
it may be natural to have Q, defined only on the graph of 8,(w) or on
Q x O, instead of on all of O X © as we assume. Lemma 2.1 of
Stinchcombe and White (1989b) establishes that defining Q, on @ x 6
results in no loss of generality, as there generally exists an appropriate
measurable extension to @ x © of Q, originally defined on gr 6, or
Qx09,.

Part (a) establishes the existence of a measurable estimator é;, Without
measurability we cannot make probability statements about 6,, such as
statements about consistency. Part (b) establishes consistency of 8, for 8,.
The object 8, is distinguished by its role as minimizer of @ (condition 4.2),
the limit to which Q, converges uniformly (condition 4.1). This uniform
convergence can be verified in particular stochastic contexts; our next result
permits this for i.i.d. and stationary mixing processes. The other notable
assumption of part (b) is the existence of nonstochaftic sets 6, and 6,
bounding &,(w). The behavior of ©, ensures that 6,(w) becomes suf-
ficiently dense in O, so that an element of é,,(g) can well approximate an
element of ©. The behavior of 8, ensures that 8,(w) does not increase too
fast and that Q, converges to @ uniformly in an appropriate sense. The
constants g, and q, of the previous section determine 8, and 6, in our
application.

We now give a result permitting verification of condition (4.1), related
to corollary 2 of Haussler (1989). Instead of using the concept of V-C
dimension (Vapnik and Chervonenkis, 1971) we use the concept of metric
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Researchers Ma)

In Microchip-Neuron Linkup

By JeRRY E. BisHor
Staff Reporter

Researchers said they took a key first
step toward creating electronic microchips
that use living brain cells.

The researchers said they had learned
how to place embryonic brain cells in
desired spots on silicon or giass chips
and then induce the brain cells to grow
along desired paths. The scientists hope
to be able within the next six to 12
months to get the brain cells, or neurons,
to grow connections to each other that
will crudely mimic the circuitry that neu-
rons form in the brain.

I want to emphasize this is fundamental
research,” said biophysicist David L.
Stenger of the Naval Research Laboratory
in Washington, worried that the research
might be misinterpreted as a fledgling
effort to make an artificial brain.

“We're working with systems where
you can investigate how neurons work,”
he said. As the researchers study how
the biological neurons function and connect
with each other on the chips, they should
learn how to make better networks of
artificial neurons that electronics and com-
puter developers are currently trying to
engineer, Dr. Stenger explained.

Possible Nerve-Gas Sensor

Nevertheless, their basic research could
lead to some useful bioelectronic devices,
said Dr. Stenger and his collaborator,
chemist Jay Hickman of Science Applica-
tions International Corp. in McLean, Vir-
ginia, a “high-tech”” contract-research com-
pany. For example, the pair are collaborat-
ing with researchers at Stanford University
to develop a sensor composed of nerve cells
on a chip that would sound the alarm when it
detected a nerve poison, such as perve gas
used in chemical warfare, a bioelectronic
variation of the ‘‘canary-in-the-coal mine”
idea, Dr. Stenger said.

It also may be possible to eventually
make ‘“biochips’’ that drug makers could
use to see if new compounds might interfere
with, or perhaps enhance, functions like
memory or learning.

Drs. Stenger and Hickman, who are
funded largely by the Office of Naval
Research, are developing the biochips in
collaborations with scientists at the Na-
tional Institutes of Heaith and at the
University of California-Irvine.

Using DETA

The two scientists said they take a
chip of silicon or glass and coat it with a
single layer of molecules of a chemical
that promotes the growth of neurons.
They used one called DETA (for diethylene-
triamine) in their experiments.

A microscopic “mask” is laid on the

chip that shields both the spots where the
scientists want the neurons to settle and
the channels they want the neurons to
follow to make connections. An ultravio-
let laser removes the unshielded DETA,
and the cleared sections are filled with a
layer of molecules that discourage neu-
ron growth.

. Embryonic rat neurons are more or
less sprinkled on the chip with the hope
that those landing on the DETA spots
will “take” and grow. “It's kind of like
when you were a kid and you put glue on
a piece of paper and sprinkled those
sparkly things on it and then shook them
off,”” Dr. Stenger explained. The neurons
then send out connecting ‘‘wires” called
dendrites and axons following the paths
of DETA.

The neurons can be kept alive and
functioning for months for study and ex-
perimentation, Dr. Stenger noted. At pres-
ent, neuroscientists are able to study
networks of brain cells outside the intact
animal for only a matter of hours.
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Recognition of decays of charged tracks with neural
network techniques

Georg Stimpfl-Abele

Luboratorre de Physique Corpusculaire, Université Blaise Pascal. Clermont-Ferrand, 43177 Aubere, France

Received 10 May 1991

We developped neural-network learning techniques for the recognition of decays of charged tracks using a leed-furward
network with error back-propagation. Two completely different methods are described in detail and their efficiencies for

several NN architectures are compared with conventional methods. Exceilent results are obtained. a_
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[dentification of b jets using neural networks

Graham Bahan and Roger Barlow
Department of Physics, Manchester University, Manchester, M13 9PL, UK

Received 5 June 1992

The problem of identifying b quark jets produced at LEP using a neural network technique has been studied. We find that
networks perform better separation if they are given simple inputs, as opposed to inputs aiready combined into variabies
believed to be good for separation. Some first studies of systematic errors resulting from using neural network separation
techniques are given.

1. Introduction

Neural networks with feed-forward topology are widely used in pattern recognition. In high energy
physics they can be applied to the problem of recognising the nature of the quark producing a hadronic
jet, specifically to discrimination between jets from heavy (b) and light (u, d, s, ¢) quarks, using only the
general jet shape as input (as opposed to specific inputs such as high p; leptons or large impact
parameters). Some studies have already been done on this topic [1,2], examining the performance of
networks trained and tested on samples of data generated by Monte Carlo programs, for which the
nature of the jets is known. This note explores the possibility further, concentrating on the identification
of b quark jets produced in the reaction e™ e~ — Z — q@ at a centre of mass energy of 91 GeV.

In such an application the most important question is what the best input variables are to use with the
network; in particular, whether to use constructed shape variables known from experience to be useful
for b identification, to give the network the best possible chance of success, or to use unprocessed
(“raw”) event information, trusting to the network training algorithm to find the best way of combining
them. Gottschalk and Nolty [1] suggest that entering the shape of the event in a largely unprocessed
format (they used a hypothetical calorimeter) is preferable to using more sophisticated variables, but this
study was done at a centre of mass energy of 14 GeV, where the distinction is much clearer than at 91
GeV. and it is not clear that the situations are comparable.

In the next section we discuss how the separating power of a network can be quantitatively measured,
particularly when using it to perform a statistical separation. This gives an objective and unambiguous
definition of the extent to which one network performance is “better” than another. Then in section 3
we compare the performance of networks using 3 different philosophies for input variables: highly
preprocessed variables (following the suggestions of ref. [2]), secondary jet clusters, and raw momenta.
Section 4 studies the size and topology of network needed to bring out the results. In section 5 we discuss
systematic effects that may result from the use of such a network, by using samples from different Monte
Carlo models.

Correspondence to: R. Barlow, Department of Physics. Manchester University, Manchester, M13 9PL. UK.
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network is much longer, and there are still features of the output which are unpleasant and not well
understood.

We recommend the use of the figure of merit, £, as an unambiguous parameter describing the
discriminating power of the network, enabling meaningful comparisons to be made between different
networks, or different versions of the same network.

L
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Appendix. Evaluating F

To evaluate F for the results of a particular network one does not have access to the parent functions
A(x) and /(x) but to the two Monte Carlo event samples. These must be histogrammed in bins
i=1,2,3...Np and F estimated as

. (B=1)
F=aal, ah, + &l
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~ Two aspects of neural-net analysis are addressed: the application of neural nets to physics analysis and the analysis
of neural nets. Feed-forward nets with error back-propagation are applied to the search for the standard Higgs boson
at LEP 200. New methods to select the most efficient variables in such a classification task and to analyse the nets
are presented. The sensitivity of the nets for systematic effects is studied extensively. The efficiencies of the neural
nets are found to be significantly better than those of standard methods.

1. Introduction

The search for new elementary particles is
among the most important tasks in high energy
physics. In general, events containing new par-
ticles are produced along with a much larger
number of conventional events. Hence an anal-
ysis looking for new phenomena needs a fil-
tering process intended to separate signal and
background events.

In this study a traditional filtering method, us-
~ standard one-dimensional cuts, is compared
with a neural net (NN) approach in the search
for the Higgs boson at LEP 200. The follow-
ing two mass hypotheses are chosen: 70 and 90
GeV/c?. The lower mass represents the easier
case because the signal is higher and the back-
grounds can be better discriminated. The higher
mass is rather challenging since it is just below
- the Z mass.

Standard feed-forward nets with one hidden
_layer and error back-propagation are used. Em-
phasis is given to the selection of the best input-

Correspondence to: G. Stimpfl-Abele, PPE division,
CERN, CH-1211 Geneva 23, Switzeriand; E-mail address:
stimpfl@cernvm.cem.ch

1 E-mail address: yepes@physics.rice.edu

variables by analysing their utility inside the net.
Systematic effects are studied in detail.

The physics case is discussed in section 2, fol-
lowed by a description of the generation and the
preselection of the input data. Section 4 is ded-
icated to the standard analysis based on one-
dimensional cuts. Section 5 contains the techni-
cal details of the net generation, like architecture
and learning procedure, and a description of the
methods developed to analyse neural nets and to
select the best input-variables. The performance
of the NNs in the Higgs search is demonstrated
in section 6. Systematic effects are studied exten-
sively in section 7 in order to test the reliability
of the methods. Finally, conclusions are given.

2. Higgs production and backgrounds at
LEP 200

The Standard Model of particle physics [1]
is the commonly accepted theory to explain the
interactions among elementary particles. This
model predicts the existence of the Higgs bo-
son, H, responsible for the so-called Symmetry
Breaking mechanism [2]. During recent years
the Large Electron Positron collider (LEP) at
CERN, operating with a center-of-mass energy
(Eem) around 91 GeV (LEP 100), has per-

0010-4655/93/$06.00 © 1993 - Elsevier Science Publishers B.V. All rights reserved
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the performance two nets from
for further study. The net with
for high performance and the
nputs (N5) but still good per-

with section 4 shows that all
the standard analysis are con-
ibove. There are two new vari-
Pg.x (9). Adding them to the
does not improve the statisti-
To allow for a direct compari-

Table 7

Signal and background events left for standard and NN
analyses at my = 70 GeV/c? and their statistical signifi-
cance.

Reaction Cuts Ng N, Nio
ete” — Hy Z 60.5 29.5 236 409
ete” — qagg 223 24 1.9 3.7
ete” — Wtw- 250 3.2 1.4 4.0
ete- =22 1.4 0.4 0.2 0.6
Total background 48.7 6.0 3.5 8.3

Statistical significance 8.7 120 12.6 142
Min. luminosity [pb—!] 330. 174. 157. 124,

Table 8

Signal and background events left for standard and NN
analyses at my = 90 GeV/c2 and their statistical signifi-
cance.

Reaction Cuts Ng N, Nig
ete” — Hyo Z 380 305 264 220
ete™ — qagg 11.9 5.0 3.0 1.1
ete” — W+wW-— 1.8 3.9 2.6 1.6
ete- - 22 114 6.6 5.3 4.2
Total background 351 155 109 6.9

Statistical significance 6.4 7.7 8.0 8.4
Min. luminosity [pb"] 610. 422. 391. 354,

the three nets as function of the cut on the out-
put for both masses. At least two background
events above the cut are demanded to avoid big
statistical fluctuations. The threshold at 0 is due
to the preselection. The statistical significances
raise almost linearly with the cut, reaching their
maximum around 0.9 .

The number of accepted signal and back-
ground events of the three nets and the statisti-
cal significance are shown in tables 7 and 8 for
the analysis at 70 and 90 GeV/c?, respectively.
The cut on the NN output is chosen such that
the significance is maximal. The results of the
standard cuts (table 3) are included to ease the
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Finding Gluon Jets with a Neural Trigger

Leif Lonnblad,®’ Carsten Peterson, ' and Thorsteinn Régnvaldsson

Department of Theoretical Physics, University of Lund, Sélvegatan 144, 5-22362 Lund, Sweden
(Received 6 April 1990)

Using a neural-network classifier we are able to separate gluon from quark jets originating from
Monte Carlo-generated e e ~ events with 85%-90% accuracy.

PACS numbers: 13.87.Fh, 12.38.Qk, 13.65.+i

In this Letter, we demonstrate how to separate gluon
and quark jets using a neural-network identifier. Being
.able to distinguish the origin of a jet of hadrons is impor-
vt from many perspectives. [t can shed experimental
light on the confinement mechanism in terms of detailed
studies on the so-called string effect’ and related issues.
Also, a fairly precise identification of the gluon jet is re-
quired for establishing the existence of the three-gluon
coupling in e *e ~ annihilation.’ To date the gluon-jet
identification has been done by making various cuts on
the kinematic variables ranging from just identifying the
jet with smallest energy as the gluon jet' to more elab-
orate schemes.>® Such procedures are often based on
the entire event rather than just a single isolated jet. It
would be desirable to focus on the latter alternative given
that in many situations “global” quantities like total jet
energies are less well known. One such example is jets
produced in high-pr hadron-hadron collisions.

A straightforward method for identifying the jets
would be to find the functional mapping between the ob-
served hadronic kinematical information and the feature
(quark or giuon). This reduces the problem from an

~~xpert’s exercise to a “black box™ fitting procedure. This
s exactly what the neural-network approach aims at. [t
has the advantage over other fitting schemes in that it is
very general, inherently parallel, and easy to implement
in custom-made hardware with its simple processor
structure. The latter feature is very important for real-
time triggering.

We confine our studies to Monte Carlo-generated
e*e ™ events using the Lund Monte Carlo model. To
‘some extent this induces a “‘chicken-and-cgg” effect to
our studies; some of the physics one wants to study is al-

_ready there. This effect can be minimized by limiting
ourselves to kinematical quantities that are most model
independent, e.g., considering the fastest particles only.

Although this paper is limited to the separation of
gluon and quark jets, it is clear that the methodology
could be used in a variety of different triggering situa-
tions.

The neural-network learning algorithm.—The basic
ingredients in a neural network are neurons n, and con-
nectivity weights w;;. For feature recognition problems
like ours the neurons are often organized in a feed-
forward layered architecture (see Fig. 1) with input

(x4), hidden (), and output (3,) nodes. Each neuron
performs a weighted sum of the incoming signals and
thresholds this sum with a *‘sigmoid” function g(x)
=(.5[1 +tanh(x)]. For the hidden and output neurons
one has

h;=g(a;/T), 4D
yi=gla/T), (2)

where the “temperature™ T sets the slope of g and the
weighted input sums a; and a; are given by X, wx;
and X w;h;, respectively.

The hidden nodes have the task of correlating and
building up an “internal representation” of the patterns
to be learned. Training the network corresponds to
chan?ng the weights @;; such that a given input parame-
ter x'? gives rise to an output (feature) value y#’ that
equals the desired output or target value t?® A fre-
quently used procedure for accomplishing this is the
back-propagation learning rule® where the error func-
tion

E-;-Zp:;(yi‘P’—z,-‘P’)z (3)
is minimized. Changing w;; by gradieat descent corre-
sponds to’

Aw;; = —=nd;hj+asw® )
for the hidden to output layers, where §, is given by

5=, —1)g'(a). s)
Correspondingly, for the input to hidden layers one has

Awj = —nX w;dg(a)x+arwfl. (6)
[

y.
UJU !
h,
Xk

FIG. 1. A feed-forward neural network with one layer of
hidden units.

@ 1990 The American Physical Society 1321
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USING NEURAL NETWORKS TO IDENTIFY JETS

Leif LONNBLAD*. Carsten PETERSON * * and Thorsteinn ROGNVALDSSON == =
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Received 29 June 1990

A neural network method for identifying the ancestor of a hadron jet is presented. The idea
is to find an efficient mapping between certain observed hadronic kinematical variables and the
quark-gluon identity. This is done with a neuronic expuansion in terms of a network of sigmoidal
functions using a gradient descent procedure. where the errors are back-propagated through the
network. With this method we are able to separate gluon from quark jets originating from Monte
Carlo generated e “e~ events with ~ 85% approach. The result is independent of the MC
mode] used. This approach for isolating the gluon jet is then used to study the so-called string
effect.

In addition, heavy quarks (b and ¢) in ¢ "¢~ reactions can be identified on the 50% level by
just observing the hadrons. In particular we are able to separate b-quarks with an efficiency and
purity. which is comparable with what is expected from vertex detectors. We also speculate on
how the neural network method can be used to disentangle different hadronization schemes by
compressing the dimensionality of the state space of hadrons.

1. Introduction

During the last couple of years there has been an upsurge in interest for
brain-style computing in terms of artificial neural networks (NN). The origin of this
enthusiasm is the power this new computational paradigm has shown for a wide
variety of real-world feature recognition applications. Not only is the performance
of the NN promising but the entire approach is very appealing with its adaptive-
ness and robustness. Another attractive feature is the inherent parallelism in
neural networks and the feasibility of making custom made hardware with fast
execution times and thereby facilitating real-time performance.

High-energy physics contain many feature recognition problems, ranging from
low-level trigger conditions in experimental setups, to extraction of theoretically
relevant quantities in collected data. Needless to say. the demand for efficient
feature extraction procedures will become more acute with increasing luminosity
and energy. In a previous paper [1] preliminary results for gluon-quark separation

* thepll@ seldcS2 (bitnet) leif@ thep.lu.se (internet)
** thepcap( seldc52 (bitnet) carstend thep.lu.se (internet)
* * * thepdr(« seldc52 (bitnet) denni(u thep.lu.se (internet)

TaBLE 7

Re;ults for the 7 = {n,) /{n,) measured on a sample of 10000 MC events (ARIADNE] for
different methods of identifying the gluon jet: using the true gluon jet of the MC. the NN

approach and the “smallest jet™ approach V/

MC truth Neural network Smallest jet
Success rate 100%% 74 67c;
r={n/(ng 2.16 £ 0.03 2.00 £ 0.02 1.60 =002
rimy g 3my) 30+0.1 27+01 1.9 = 0.1
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A comparison between a neural network and the likelihood
method to evaluate the performance of a transition
radiation detector
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A classification system able to evaluate the performances of a transition radiation detector prototype for electrons /hadrons
discrimination is presented. It is based both on a layered feed-forward neural network trained using back-propagation and a
likelihood ratio technique. The information fed into the classification system consists of the number of hits detected by each
multiwires proportional chamber of the detector. The best results are obtained by the neural network approach that
successfully identifies 4.0 GeV /¢ electrons with an hadron contamination of about 4% 10~ at 98% acceptance efficiency.

1. Introduction

Several detectors have been proposed, so far,
for particle identification in high energy physics.
Transition radiation detectors (TRDs) can be
used to discriminate particles with a different vy
Lorentz factor [1]: they have been employed for
2ugh energy particle identification in experiments
at CERN [2,3] and Fermilab [4,5] and in the
future also in LHC (see e.g. ref. [6]) and SSC
experiments (see e.g. ref. [7]). Moreover, TRDs
can be used to distinguish positrons from protons
up to 1 TeV energy in cosmic ray space experi-
ments [8-10].

Pattern recognition methods, involving power-
ful statistical and neurocomputing techniques, are
taken into account in high energy physics to study

- the classification power of detectors. For this

purpose, the output patterns of the detectors,
produced by known particle-classes, are stored in

Correspondence to: M. Castellano, INFN, Sez. di Bari, Via
Amendola 173, 70126 Bari, Italy.

tagged data files. They are examined by a classifi-
cation system in order to carry out explicit rela-
tionship among data in terms of mapping a pat-
tern from pattern space into class-membership
space. A measure of the separability of the classes
in a suitable feature space provides the detector
classification power.

In this paper is presented a pattern recogni-
tion system based on a back-propagation neural
network and likelihood ratio algorithm to evalu-
ate the performances of a TRD developed [10,11]
for electrons/hadrons discrimination in cosmic
ray experiments. In the next section the classifica-
tion system is presented and the neural architec-
ture and the likelihood ratio test are described; in
the third section the application to experimental
data and test results are discussed.

2. The pattern classification system

The TRD prototype [10] consists of 10 mod-
ules, each one made of a carbon fiber radiator
followed by a Xe-CH, filled proportional cham-

0010-4655 /93 /$06.00 © 1993 - Elsevier Science Publishers B.V. All rights reserved
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fixed momentum, by means of Cherenkov coun-
ters, lead glass scintillators and a standard mod-
ule electronic logic. A mean tagging inefficiency
for the electrons is evaluated of about 10~* [10].

The TRD data, according to the scheme in fig.
1, are taken at the different beam momenta avail-
able. Typical data for pions and electrons are
shown in fig. 3. The pion events are mainly de-
tected with a small number of hits in the whole
detector, while the electron patterns have some
counts in each chamber. Using the same data
sets, i.e. about 5000 events for each beam mo-
mentum, the N, and L feature spaces are gener-
ated, as shown in fig. 4 for 4 GeV/c momentum
only. Better accumulation around 0 and 1 of the
feature values is achieved in the N, space with
respect to the L one. This behaviour is well
emphasized in fig. 5 where pion contamination
versus electron acceptance is computed according
to the procedure described in the second section.
As a result, the NN technique reaches the mini-
mum pion contamination value around 95% of
electron acceptance efficiency. The table 1 sum-
merizes pion contamination against acceptance at
three different momentum data set for both

4 Gev/C Dote

Fiun Lontamination

Neurc! Network

10 =«

. . . L L
0.88 0.9 092 0.94 0.96 0.98
Electron Acceptonce

Fig. 5. Pion contamination versus electron acceptance for 4

GeV /¢ data: the TRD performance evaluated by the likeli-

hood ratio technique (dotted line) and the neural network
(solid line).

Table 1
Pion contamination (x 10~ 2) evaluated for different electron

acceptance by the likelihood ratio test and neural network
techniques.

Acceptance 1 GeV 2GeV 4 GeV

L NN L NN L NN
90% 253 151 148 6.0 3.0 42
95% 834 267 219 6.0 6.8 42
97% 1349 26.7 46.6 81 141 45
98% 236.3 267 979 900 214 4Ss

methods. In the NN method a very low contami-
nation is already achieved at full acceptance. This
performance is never shown by other methods
[12,19,20] and it can be useful to employ TRDs in
space cosmic ray experiments [9,10] where,
searching for rare events with the constraint of
short duration exposures, an acceptance as large
as possible is required.

4. Conclusions

A comparison between statistical and neural
approaches to evaluate the TRD performances
for the electron/pion discrimination problem has
been presented. The ability of the net to explore
many hypotheses simultaneously with respect to
the likelihood ratio statistical technique has
played a fundamental role in obtaining better
results. Finally, from the practical view point, the
parallel distributed processing model of the net
could be hardware implemented using neuron-like
components to speed up the particle classification
task.
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A feed-back neural network is described which solves the problem of finding an optimal set of compatible nodes in a

compatibility graph. The properties of the network are explored with random graphs. The performance is illustrated with
simulated data of the DELPHI detector.

1. Introduction In our specific application we have found it use-
ful to define the track QI as a combination of
An important constraint on any track recon- track angle and chi-square probability. The pro-
struction algorithm is given by the fact that any cedure is described in section 4.
two tracks in the final selection have to be com- The problem of finding maximal compatible
patible, i.e. must not share data. The selectinn sets in a compatibility graph has been analyzed in
algorithm therefore has to solve a “derable detail in ref. {1]. Bv - +ifi-
mization problem by selecting a~ = Hopfield ne*
of co—==tible tracks. It has °*
t'Table 2 '
Classification of simulated tracks.
Data set 1 Data set 1T
Algorithm neural net standard neural net standard
- Simulated tracks 5000 5000 10000 10000
Reconstructable tracks 4331 4331 8279 8279
Tracks in class 1 3867 3712 5518 4874
Tracks in class 2 240 251 903 850
Tracks in class 3 94 149 1176 1625
Processing time [CPU s) 483 518 2067 2538
quUC. e 101€ ACLAUS UL tuv veaaawnsallON
' . with the largest sum . performance of the network algorithm
aw---., wicicators (QIs) will be called the dess are presented in section 4. :

maximal set.
2. Architecture of the network

Correspondence to: R. Frithwirth, Nikolsdorfer Gasse 18, The relation of compatibi_lit_y. in a set (?f tragks
A-1050 Wien, Austria (permanent address). can be mapped on a compatibility graph in which
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Abstract
We present a method to test the agreement between two multidimensional
empirical distributions which is not restricted to wark with projections in fewer
dimensions due to the lack of data, and with the relevant fact that it is free of
binning. The method, which can be successfully implemented on layered neural

nets, gives a lower bound value on any estimator that measures the inconsistency
between the two distributions.

(Submitted to Computer Physics Communications)

1 Introduction

An everyday task in all areas of science is the comparison of theoretical models with
experimental data. In some cases the theoretical models cannot be checked directly
because their explicit analytical form does not exist ( e.g.: the models are the result
of a large number of calculations with complex algorithms) and/or there are additional
effects not included in the model ( e.g.: detector effects during the acquisition of the
experimental data). A commonly used strategy to overcome this problem is to generate
Monte Carlo events according to the theoretical model and to fold them with the addi-
tional effects. The result is a simulated data sample (MC) that can be checked against
the experimental data.
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Fig. 11.3  Example of two cumulative distributions, S (X) and $4(X), of the type (11.9).
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