
H
E

P-
PH

-9
50

52
11

CERN{TH/95{94

hep-ph/9505211

April, 1995

The Higgs Boson Lineshape
and Perturbative Unitarity

Michael H. Seymour,

Division TH, CERN,

CH-1211 Geneva 23, Switzerland.

Abstract

We discuss the lineshape of a heavy Higgs boson, and the behaviour well above

resonance. Previous studies concluded that the energy-dependent Higgs width

should be used in the resonance region, but must not be used well away from

it. We derive the full result and show that it smoothly extrapolates these limits.

It is extremely simple, and would be straightforward to implement in existing

calculations.
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Gauge theories are carefully constructed so as to be well-behaved in the high

energy limit. This means not only that they are �nite, but that they obey

unitarity constraints. This usually comes about by delicate cancelations between

di�erent types of contribution, which means that any small changes in the theory,

for example anomalous couplings, show up as very large changes in the high

energy scattering amplitude.

In the particular case of the electroweak theory, it has long been recognized

that high energy scattering ofW and Z bosons (which are radiated from incoming

quark lines in a hadron-hadron collision) constitutes a crucial test of the theory[1].

Furthermore, if the Higgs boson is heavy, mH � mW ; it will be directly seen as

a resonance in the I = 0 scattering amplitude. In this case, e�ective theories

have been derived that greatly simplify the calculation of high energy scattering

amplitudes[2], since the vector bosons are replaced by the corresponding scalar

Goldstone bosons. We use the non-linear �-model formulation[3], which has

advantages over the usual formulation for our purposes, because the separation

into resonant and non-resonant diagrams is the same as in the electroweak theory,

allowing a simpler interpretation of the �nal result. It should be stressed however

that we use it purely as a calculational device to reach this result, which is equally

valid in the full electroweak theory.

We begin by calculating the amplitude for W+W� ! ZZ; from which all

others V V ! V V can be derived by symmetry relations[4], which we give later.

The lowest order Feynman diagrams are shown in Fig. 1a, and again in the

e�ective theory in Fig. 1b. The e�ective theory correctly reproduces enhanced

terms of order g2m2
H=m

2
W and g2s=m2

W ; but not the remainder of the order g2

amplitude (we assume s;m2
H � m2

W ; but make no assumption about their relative

size). One gauge cancelation has already taken place, since the last three diagrams

of Fig. 1a are separately � s2m4
W but their sum, the second diagram of Fig. 1b,
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Figure 1: Lowest order Feynman diagrams for W+W� ! ZZ in the electroweak

theory (a), and the high-energy e�ective theory (b), in which the vector

bosons are represented by the corresponding Goldstone bosons.
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is � s=m2
W . The result for the amplitude is

iA =
�ig2
4m2

W

(
s2

s�m2
H

� s

)
; (1)

where the two terms correspond to the two diagrams of Fig. 1b. It is clear that at

large s � m2
H; another cancelation occurs so that the amplitude remains �nite,

and satis�es unitarity (except if mH is very large),

iA s�m2

H�! �ig2m2
H

4m2
W

; (2)

although the two contributions separately do not.

In the resonance region, s � m2
H; it is clear that the amplitude (1) diverges.

As is well known, this is regulated by resumming to all orders the diagrams of

Fig. 2. Since each diagram contains an additional factor of 1=(s � m2
H); it is

always the leading diagram at that order, and the resummation is justi�ed. The

result is[5]

iA s�m2

H�! �ig2
4m2

W

s2

s�m2
H + iIm�H(s)

; (3)

where Im�H(s) = mH�Hs
2=m4

H is the imaginary part of the Higgs boson self-

energy�. Since �H=mH � g2m2
H=m

2
W ; including the self-energy in the propagator

promotes the resonant diagram by one order at the resonance, so one is formally

justi�ed in neglecting the non-resonant diagram.

However, inserting (3) into (1), one immediately sees that the high energy

behaviour is spoiled, since the resonant diagram is suppressed and the cancelation

no longer occurs. The conventional resolution is as follows: Outside the resonance

region, the diagrams of Fig. 2 are not enhanced, so there is no justi�cation for

resumming them. Therefore the correct result is (3) in the resonance region and

(1) outside it.

While this statement is correct theoretically it is not very useful for phe-

nomenology, since one needs an amplitude that smoothly extrapolates the di�er-

ent regions. It is the main aim of this paper to calculate such an amplitude.

�Strictly speaking the m2

H
in the denominator of (3) should have been replaced by a scheme-

dependent parameter m2

R
� m

2

H
[3], but for clarity we leave it as m2

H
(or alternatively, choose

a scheme in which they are identical)
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Figure 2: All orders resummation leading to the Higgs boson self-energy.
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Since we have stressed the importance of the cancelation between the resonant

and non-resonant diagrams well above resonance, it is natural to wonder whether

this cancelation also occurs at each higher order. As we shall show, this is indeed

the case, and one can resum a set of diagrams analogous to Fig. 2 but containing

both resonant and non-resonant contributions. The result is a smoothly-varying

amplitude that agrees, to leading order in g2min(m2
H; s)=m

2
W ; with (3) in the

resonant region, and (1) both above and below it.

We begin by deriving this amplitude for V V ! V V; then show how to gen-

eralize it to full electroweak calculations of the process qq ! qqV V [6]. As a

by-product, we also show how an s-channel calculation can be modi�ed to obey

unitarity and more closely reproduce the full result. We also discuss the gg ! V V

channel and show that the same result applies there. Finally we show numerical

results and make some concluding remarks.

For s � m2
H; the amplitudes to scatter W+W� or ZZ to W+W� or ZZ are

all equal to the W+W� ! ZZ amplitude,

iA =
�ig2m2

H

4m2
W

s

s�m2
H

;

where we have included the resonant and non-resonant contributions without

keeping track of which is which. The full amplitude for W+W� ! ZZ is then

given by a resummation analogous to Fig. 2, but with both resonant and non-

resonant graphs appearing in each cell, as shown in Fig. 3. The result is then

i �A =
1X
n=0

 
3

2

1

16�

Z
0

�s

dt

s
iA
!n

iA;

where the integral is the momentum owing around each loop, and the factor
3

2
comes from the sum of WW and ZZ in each loop with a factor of 1

2
for ZZ
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Figure 3: All orders resummation leading to the vector boson pair self-energy.

Note that both resonant and non-resonant diagrams are included.

3



because they are identical. Using the expression for the Higgs boson width,

�H =
3

2

1

16�

g2m3
H

4m2
W

;

we obtain

i �A =
1X
n=0

 
�i �H

mH

s

s�m2
H

!n  �ig2m2
H

4m2
W

s

s�m2
H

!

=
�ig2m2

H

4m2
W

s

s�m2
H + i�Hs=mH

(4)

� �ig2m2
H

4m2
W

s

s�m2
H + iIm�V V (s)

;

where we dub the function �V V (s) the vector boson pair self-energy. Since we

have

Im�V V (s) =
m2

H

s
Im�H(s)

it is clear that Im�V V (m
2
H) = Im�H(m

2
H); and (4) is identical to (3) on the

resonance.

Equation (4) is the central result of this paper. For s� m2
H; it becomes

i �A s�m2

H�! �ig2m2
H

4m2
W

1

1 + i3
2

1

16�

g2m2

H

4m2

W

=
�ig2m2

H

4m2
W

 
1 +O

 
g2m2

H

m2
W

!!
;

and for s� m2
H; it becomes

i �A s�m2

H�! �ig2s
4m2

W

1

�1 + i3
2

1

16�

g2s

4m2

W

=
ig2s

4m2
W

 
1 +O

 
g2s

m2
W

!!
:

Thus (4) agrees with (1) to leading order in g2min(m2
H; s)=m

2
W above and be-

low the resonance, and (3) on it, smoothly extrapolating the three regions. We

therefore describe it as the full leading order amplitude for W+W� ! ZZ.

The amplitudes for other scattering processes V V ! V V can be read o� from

the SO(3) symmetry of the e�ective theory[4],

A(W+W� ! ZZ) � A(s; t; u);
A(ZZ ! W+W�) = A(s; t; u);

A(W+W� ! W+W�) = A(s; t; u) +A(t; s; u);
A(ZZ ! ZZ) = A(s; t; u) +A(t; s; u) +A(u; t; s);

A(W�W� ! W�W�) = A(t; s; u) +A(u; t; s);
A(W�Z !W�Z) = A(t; s; u):

4



It is important to realize however, that

Im�V V (s) = 0; s < 0;

since a space-like pair cannot appear as on-shell lines in a bubble.

To translate (4) to the full electroweak theory, we rewrite it

s

s�m2
H + i�Hs=mH

=
s2=mH(1 + i�H=mH)

s�m2
H + i�Hs=mH

� s

m2
H

: (5)

The apparently higher order term in the numerator is essential for the high energy

limit, and cannot be neglected. Equation (5) provides a calculational implemen-

tation of (4) that is equally valid in the full electroweak theory. Namely that one

makes the replacement

i

s�m2
H

! i(1 + i�H=mH)

s �m2
H + i�Hs=mH

for the s-channel Higgs boson propagator, leaving all other amplitudes unchanged.

It would be extremely simple to make this substitution in computer programs that

calculate the amplitude for qq! qqV V such as [6] and, with slightly more e�ort,

in those that directly calculate the di�erential cross-section.

Unitarity requires that each partial wave of de�nite angular momentum and

isospin, aIJ ; obeys

jaIJ j � 1:

Since the condition applies to the exact amplitude, one expects small violations

at any given order in perturbation theory, owing to the truncation of the series.

However, gross violations should be taken as an indication of the failure of the

perturbation series. The I=0 case is obtained by scattering the state (2W+W�+

ZZ)=
p
6 to itself, and J=0 from the integral

aI
0
=

1

16�

Z
0

�s

dt

s
AI :

For a00; the only partial wave to which the Higgs resonance contributes, we obtain

a00 = �
�H

mH

s

s�m2
H + i�Hs=mH

� 2

3

�H

mH

 
1 � m2

H

s
log

 
1 +

s

m2
H

!!
:

This is shown in Fig. 4, in comparison with various amplitudes that have been

used in the past. Note that only the full amplitude satis�es unitarity both in the

resonance region and well above it. Note also that it peaks very close to mH;

unlike the other cases.
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Figure 4: The I =0; J =0 partial wave for elastic vector boson scattering with

various treatments of the Higgs boson width: zero width (dotted), �xed

width (dashed), using the Higgs boson self-energy (dot-dashed), and the

full result using the vector boson pair self-energy (solid).

In the resonance region all the possibilities (except the divergent one) are

equally valid at leading order, but show marked di�erences in the lineshape,

indicating the need for a full next-to-leading order calculation. However, since

the full amplitude is correct above, below and on the resonance, we expect it to

give the most accurate lineshape.

Comparing equations (4) and (5), we see the opportunity to make an improve-

ment to the s-channel approximation. The s-channel approximation consists of

using only the diagrams in which the s-channel Higgs boson propagator appears,

i.e. it gives us the �rst term of (5). If we multiply this by m2
H=s instead of

(1 + i�H=mH); we obtain exactly (4). Thus in the W+W� ! ZZ case, this

improved s-channel approximation is exact. We show numerical results for the

I=0 case in Fig. 5.

We turn now to the gluon fusion process. Although the coupling of gluons to

electroweak bosons, which is mediated by quark loops, is rather weak, the high

density of gluons within a hadron means that this is a competitive source of vector

boson pairs. The lowest order diagrams are shown in Fig. 6. The amplitude is[7]

iB =
�ig2g2s
m2

W

(
s2

s�m2
H

� s

)
I(s);

I(s) =
1

2

m2
q

s

2
4
 
log

s

m2
q

� i�

!2
� 4

3
5 :

Since this has the identical form to (1), it is clear that exactly the same conclusions

6



Figure 5: As in Fig. 4, using the full result (solid), the na��ve s-channel approxi-

mation (dotted) and the improved s-channel approximation (dashed).

will apply: the resonant and non-resonant diagrams can be canceled at high

energy in each order; they can be resummed to all orders; the result can be

implemented by the replacement

i

s�m2
H

! i(1 + i�H=mH)

s�m2
H + iIm�V V (s)

:

Since gluons and vector bosons couple together so weakly, we neglect the e�ect

of internal gluon lines, so

Im�V V (s) = �Hs=mH

exactly as before.

We have modi�ed the programs of [6] for qq ! qqV V and [8] for gg ! V V

according to this prescription, and the results are shown for the LHC in Fig. 7.

It can clearly be seen that the di�erences in lineshape and behaviour well above

the resonance persist even in the full electroweak calculations convoluted with

parton densities. Owing to the fall of parton densities with increasing energy, the

full result no longer peaks at the Higgs mass.

We would also like to compare the full result with our improved s-channel

approximation. However, since the s-channel approximation is only intended to
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Figure 6: Lowest order Feynman diagrams for gg ! ZZ.
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Figure 7: The ZZ invariant mass spectrum at the LHC from (a) qq! qqZZ and

(b) gg ! ZZ. We set mt = 175 GeV, mZ = 91:2 GeV, � = 1=128;

sin2 �w = 0:23; mW = mZ cos �w and �s(mZ) = 0:120; and use the MRS

D{0 parton distribution functions. Curves are as in Fig. 4.

model the Higgs boson `signal', and not the O(g2) `background' we compare it

with the full result after subtraction of this background. As usual[9], we de�ne

the background to be the full result in the limit mH ! 0; as this gives the lowest

rate one could expect. It is clear from (1) that this background is zero in the

e�ective theory. The comparison is shown in Fig. 8, where it can be seen that

the improved s-channel approximation performs much better than the na��ve one.

To conclude, the principal result of this paper is shown in Fig. 3 and Eq. (4).

It is that it is possible to resum the sum of resonant and non-resonant diagrams to

all orders, and the result smoothly extrapolates the well-known correct behaviour

below, above and on the resonance. As a calculational prescription, it is possible

to represent the result as a modi�cation of the Higgs boson propagator,

i

s�m2
H

! i(1 + i�H=mH)

s�m2
H + i�Hs=mH

;

although it should be stressed that it includes e�ects that are not strictly as-

sociated with the propagation of a Higgs boson, namely the interference with

non-resonant diagrams. In calculations that use the s-channel approximation, a

better modi�cation is

i

s�m2
H

! im2
H=s

s�m2
H + i�Hs=mH

:

We have shown that the impact on the Higgs boson lineshape, and hence on the

whole phenomenology of high energy vector boson pair production, is signi�cant.
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Figure 8: The excess of the ZZ invariant mass spectrum over the mH ! 0 ex-

pectation at the LHC from (a) qq! qqZZ and (b) gg ! ZZ. Curves

are as in Fig. 5 and parameters as in Fig. 7.
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