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Abstract

Gluon fusion is the main production mechanism for Higgs particles at the

LHC.We present the QCD corrections to the fusion cross sections for the Higgs

boson in the Standard Model, and for the neutral Higgs bosons in the minimal

supersymmetric extension of the Standard Model. The QCD corrections are

in general large and they increase the cross sections signi�cantly. In two steps

preceding the calculation of the production processes, we determine the QCD

radiative corrections to Higgs decays into two photons and gluons.
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1 Introduction

The Higgs mechanism is a cornerstone in the electroweak sector of the Standard Model

[SM ]. The fundamental particles, leptons, quarks and gauge particles, acquire the masses

through the interaction with a scalar �eld [1]. To accomodate the well{established elec-

tromagnetic and weak phenomena, this mechanism requires the existence of at least one

weak{isodoublet scalar �eld. After absorbing three Goldstone modes to build up the lon-

gitudinal W�

L ; ZL states, one degree of freedom is left over which corresponds to a scalar

particle. The properties of the Higgs boson, decay widths and production mechanisms,

can be predicted if the mass of the particle is �xed [2].

Even though the value of the Higgs mass cannot be predicted in the Standard Model,

constraints can nevertheless be derived from internal consistency conditions [3{5]. Upper

bounds on the mass can be set by assuming that the Standard Model can be extended up

to a scale � before perturbation breaks down and new dynamical phenomena emerge. If

the Higgs mass is less than 200 GeV, the Standard Model can be extended, with particles

interacting weakly, up to the GUT scale of order 1016 GeV, a prerequisite to the renor-

malization of sin2 �W from the symmetry value 3/8 down to � 0.2 at low energies [6].

For Higgs masses of more than about 700 GeV, the theory becomes strongly interacting

already at energy scales in the TeV region [7]. For the large top quark mass found experi-

mentally [8{10], the requirement of vacuum stability sets a lower limit on the Higgs mass.

For top masses of 150, 175 and 200 GeV, the lower limits on the Higgs mass are 40, 55 and

70 GeV, respectively, if the �elds of the Standard Model become strongly interacting at

a scale of about 1 TeV. The lower limits are shifted upwards if the Standard Model with

weakly interacting �elds extends up to energies of the order of the Planck scale. They

decrease dramatically, however, if the vacuum is only assumed to be metastable [5].

The most stringent experimental limit on the Higgs mass in the SM has been set by

LEP. A lower bound of 63.9 GeV has been found [11] by exploiting the Bjorken process

Z ! Z�H [12]. The search will be extended to a Higgs mass near 80 to 90 GeV by studying

the Higgs{strahlung e+e� ! Z�! ZH at LEP2 [13, 14]. The detailed exploration of the

Higgs sector in e+e� collisions for yet higher masses requires the construction of linear

colliders [15, 16].

The search for Higgs particles after LEP2 will continue at the pp collider LHC [17{19].

Several mechanisms contribute to the production of SM Higgs bosons in proton collisions

[16]. The dominant mechanism is the gluon fusion process [20]

pp! gg ! H

which provides the largest production rate for the entire Higgs mass range of interest.

For large Higgs masses, the fusion process qq ! WW;ZZ ! H [21] becomes compet-

itive, while for Higgs particles in the intermediate mass range MZ < MH < 2MZ the

Higgs{strahlung o� top quarks [22] and W;Z gauge bosons [23] are additional important

production processes.

Rare decays to two photons will provide the main signature for the search of SM Higgs
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particles in the lower part of the intermediate range for masses below about 130 GeV. To

isolate the narrow  signal in the huge  continuum background, excellent energy and

geometric resolution of the  detectors is mandatory [18, 19]. Besides, excellent �{vertex

detectors may open the gate to the dominant bb decay mode [24] even though the QCD jet

background remains very di�cult to reject [25]. [At the expense of considerably lower rates

the background rejection can be improved for both reactions by selecting Higgs{strahlung

events where additional isolated leptons from the associated production of Higgs and top

or W bosons reduce the QCD background.] Above this mass range, Higgs decays to two

Z bosons { one Z being virtual in the upper part of the intermediate range { will be used

to tag the Higgs particle through Z decays into pairs of charged leptons [18, 19]. The

background rejection becomes increasingly simpler when the Higgs mass approaches the

real{Z decay threshold. At the upper end of the standard Higgs mass range of about 800

GeV the more frequent decays of the Z bosons into neutrino pairs and jets, as well as

the WW decays of the Higgs boson, with the W 's decaying to leptons and jets, must be

exploited to compensate for the quickly dropping production cross section.

Supporting arguments for the supersymmetry extension of the Standard Model are

rooted in the Higgs sector. Supersymmetric theories provide a natural mechanism for

retaining light Higgs particles in the background of high GUT energy scales [26]. In the

minimal supersymmetric extension of the Standard Model [MSSM ] two isodoublet scalar

�elds [27] must be introduced to preserve supersymmetry, leading to two CP{even neutral
bosons h0 and H0, a CP{odd neutral boson A0 and a pair of charged Higgs bosons H�.

The observed value of sin2 �W has been accurately predicted in this theory [28], providing

a strong motivation for detailed studies of this theory [29].

The mass of the lightest Higgs boson h0 is bounded by the Z mass modulo radiative

corrections of a few tens of GeV [30, 31]. [Triviality bounds similar to the SM Higgs

sector suggest an upper limit of � 150 GeV for supersymmetric theories in general [32].]

The masses of the heavy neutral and charged Higgs particles are expected to be in the

range between the electroweak symmetry breaking scale and the TeV scale.

Apart from radiative corrections the structure of the MSSM Higgs sector is deter-

mined by two parameters, one of the Higgs masses, in generalmA0 , and the angle � related

to the ratio of the vacuum expectation values of the two neutral Higgs �elds, tg� = v2=v1.

While the overall strength of the couplings of the Higgs bosons to the SM particles is

given by the masses, the mixing angles in the Higgs sector modify the hierarchy of the

couplings considerably. For example, the coupling of h0 to bottom quarks is strongly

enhanced for large tg� compared with the coupling to the heavier top quarks. Except

for a small area in the [mA0; tg�] parameter space, Z bosons couple predominantly to

h0 while the complementary coupling to the heavy H0 Higgs boson is suppressed. The

pseudoscalar Higgs boson A0 does not couple to the gauge bosons at the Born level. In

addition, the Higgs particles couple to the SUSY particles, with a strength, however,

which is essentially set by the gauge couplings.

The couplings determine the decay modes and therefore the signatures of the Higgs
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particles. Apart from the small region in the parameter space where the heavy Higgs boson

H0 decays into a pair of Z bosons, rare  and �� decays must be utilized to search for

the neutral Higgs particles [18, 19] if b quark decays cannot be separated su�ciently well

from the QCD background. For large Higgs masses, decays into SUSY particles [33, 34]

can provide additional experimental opportunities.

The most important production mechanism for SUSY Higgs particles at hadron col-

liders is the gluon fusion mechanism, similarly to the SM Higgs boson production,

pp! gg ! h0;H0; A0

and the Higgs radiation o� top and bottom quarks. Higgs radiation o� W=Z bosons and

the WW=ZZ fusion of Higgs bosons play minor rôles in the SUSY Higgs sector.

In the present analysis we have studied in detail the gluon fusion of neutral Higgs

particles in the Standard Model and its minimal supersymmetric extension. The coupling

of gluons to Higgs bosons is mediated primarily by heavy top quark loops, and eventually

bottom quark loops in supersymmetric theories. An extensive literature already exists on

various aspects of this mechanism.

The fusion mechanism has been proposed in Ref. [20] for the production of SM Higgs

particles at hadron colliders, and has been discussed later in great detail [see Ref. [2,

17, 18, 19] for a set of references]. The phenomenological issues for the production of

Higgs particles in the minimal supersymmetric extension of the Standard Model through

the gluon fusion mechanism were thoroughly discussed in Refs. [35]. All these analyses,

however, were based on lowest{order calculations.

Higher{order QCD corrections have �rst been carried out in Refs. [36, 37] for the

limit of large loop{quark masses in the Standard Model. Later they were extended to the

MSSM Higgs spectrum [38, 39]; for this case, however, areas of the parameter space in

which b{quark loops are important, are not covered by the approximation. The higher

order QCD corrections of the fusion cross section for the entire Higgs mass range have

been given for the Standard Model in Ref. [40] and for its supersymmetric extension in

Ref. [41]. As anticipated, the QCD corrections to the fusion processes are important and

experimentally signi�cant. Quite generally they are positive and the corresponding K

factors run up to values of � 2.

Besides the total production cross sections, the QCD corrected transverse momentum

spectra of the Higgs particles [42] as well as the cross sections for Higgs + jet �nal states

[43, 44] are of great experimental interest.

The theoretical analysis of QCD corrections to the gluon fusion of Higgs particles

involves complicated two{loop calculations; generic Feynman diagrams are depicted in

Fig. 1. Therefore they have �rst been performed for the simpler case of Higgs couplings to

two photons, Fig. 2, for which the virtual QCD corrections are a subset of the corrections

to the Higgs couplings to gluons, Fig. 3. In the experimentally relevant mass range, the

QCD corrections to the  widths of the SM and MSSM Higgs bosons are small, of
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order �s [38, 45]. In the MSSM , special attention must be paid to the kinematical

range in which the heavy quark{antiquark threshold is nearly mass{degenerate with the

pseudoscalar A0 state so that non{perturbative resonance e�ects must be controlled [46].

The gluon decay width of the Standard Model Higgs particle has been determined also

in next{to{leading order; the QCD corrections are positive and numerically important

[36, 47]. The QCD corrections to the rare Higgs boson decay H ! Z [and to the reverse

process Z ! H] have been presented in Ref. [48]; in the mass ranges of experimental

interest they are tiny, of order �s. [The leading electroweak radiative corrections to the

Hgg, H and HZ couplings have been evaluated in the heavy top quark limit to

O(GFm
2

t ) [49]; they are very small.]

This paper is divided into two parts. In the �rst part we will discuss the gluon{gluon

fusion cross section of the Higgs particle in the SM in next{to{leading order QCD. The

photonic and gluonic partial decay widths of the particle are included in the �rst part

of the discussion. The calculations of the production cross section and the decay widths

have been performed for the entire range of possible Higgs masses. The analytical results

are summarized in the Appendix in terms of one{dimensional Feynman integrals. In the

limit where the Higgs mass is either small or large compared to the quark{loop masses,

the integration can be performed analytically and simple analytical results can be derived

for the production cross sections and the decay widths. In the second part of the paper

the analysis will be extended to the CP{even and CP{odd neutral SUSY Higgs bosons.

To ensure a coherent presentation of the results, some material published earlier in letter

form will be included in the present comprehensive report.

2 The Higgs Particle of the Standard Model

2.1 The Two{Photon Decay Width

The two{photon decay width of the Higgs boson in the Standard Model,

H ! 

is of interest for two reasons. In the lower part of the intermediatemass range of the Higgs

particle, this rare decay mode provides the signature for the search at hadron colliders [18,

19]. The  width determines also the cross section for Higgs production in  collisions

[50]. Since the H coupling is mediated by triangle loops of all charged particles, the

precision measurement of the  width eventually opens a window to particles with masses

much heavier than the Higgs mass. If the masses of these particles are generated through

the Higgs mechanism, the couplings to the Higgs boson grow with the masses, balancing

the decrease of the triangle amplitude with rising loop mass. As a result, the heavy

particles do not decouple. However, if the masses of the particles are generated primarily

by di�erent mechanisms [as in supersymmetric theories, for example], their e�ect on the
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H coupling is in general small.

The decay process H !  proceeds in the Standard Model through W and fermion

loops, Fig. 2a,b. Denoting the fermionic amplitude by Af and theW contribution by AW ,

the decay rate is determined by [13, 51]

�(H ! ) =
GF�

2m3

H

128
p
2�3

������
X
f

NcQ
2

fAf(�f ) +AW (�W )

������
2

(1)

where Nc is the color factor, Qf the electric charge of the fermion f . The scaling variables

are de�ned by

�f =
m2

H

4m2

f

and �W =
m2

H

4m2

W

(2)

The amplitudes Af and AW can be expressed as

Af(� ) = 2[� + (� � 1)f(� )]=� 2

AW (� ) = �[2� 2 + 3� + 3(2� � 1)f(� )]=� 2 (3)

where the function f(� ) is given by

f(� ) =

8>><
>>:

arcsin2
p
� � � 1

�1
4

"
log

1 +
p
1 � ��1

1�
p
1 � ��1

� i�

#2
� > 1

(4)

If the Higgs mass is smaller than the WW and f �f pair thresholds, the amplitudes are

real; above the thresholds they are complex, Fig. 4. Below the thresholds theW amplitude

is always dominant, falling from (�7) for very light Higgs masses to (�5� 3�2=4) at the

WW threshold; for large Higgs masses the W amplitude approaches AW ! (�2). Quark
contributions increase from 4/3 for light Higgs masses (compared with the quark mass) to 2

at the quark{antiquark threshold; far above the fermion threshold, the amplitude vanishes

linearly in � mod. logarithmic coe�cients, Af ! �[log(4� ) � i�]2=2� , i.e. proportional

to m2

f=m
2

H . The contribution of the W loop interferes destructively with the quark loop.

For Higgs masses of about 600 GeV, the two contributions nearly cancel each other [52].

Since the Hff coupling is proportional to the fermion mass, the contribution of light

fermions is negligible so that in the Standard Model with three families, only the top

quark and the W gauge boson e�ectively contribute to the  width. Since the W and

fermion loops interfere destructively, a fourth generation of heavy fermions would reduce

the size of the H coupling. For small Higgs masses the additional contributions of the

heavy quarks and the charged lepton would suppress the decay width by about one order

of magnitude.

To fully exploit the potential of the  decay mode of the Higgs particle and the

production in  collisions, the QCD corrections must be shown to be under proper
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control. To include the gluonic QCD corrections, twelve two{loop diagrams plus the

associated counter terms must be taken into account. Generic examples are depicted in

Fig. 2c.

Throughout this analysis we have adopted the on{shell renormalization scheme which

is convenient for heavy quarks. In this scheme the quark mass mQ is de�ned as the pole

of the propagator1, related in the following way to the running mass

mQ(�
2

Q) = mQ

"
�s(�

2

Q)

�s(m
2

Q)

#12=(33�2NF )
f1 +O(�2

s)g (5)

at the mass renormalization point �Q. It should be noted that this de�nition of the running

mass does not coincide with the running MS mass. The wave function is renormalized

[Z
1=2
2

] such that the residue at the pole is equal to unity. The photon{quark vertex

is renormalized at zero{momentum transfer; the standard QED Ward identity renders

the corresponding renormalization factor equal to the renormalization factor of the wave

function. Since the fermionmasses are generated in the Standard Model by the interaction

with the Higgs �eld, the renormalization factor associated with the Higgs{quark vertex

[ZHQQ] is �xed unambiguously by the renormalization factors Zm for the mass and Z2 for

the wave function. From the Lagrangian

L0 = �m0
�Q0Q0

H

v

= �mQ
�QQ

H

v
+ ZHQQmQ

�QQ
H

v
(6)

we �nd [53]

ZHQQ = 1 � Z2Zm (7)

In contrast to the renormalized photon{fermion vertex, the scalar HQQ vertex �(p0; p) is

renormalized at zero momentum transfer by a �nite amount m of order �s after subtract-

ing ZHQQ due to the lack of a corresponding Ward identity. The �nite renormalization

m corresponds to the anomalous mass dimension discussed later.

We have calculated the two{loop amplitudes using dimensional regularization. The

�ve{dimensional Feynman parameter integrals of the amplitudes have been reduced an-

alytically down to one{dimensional integrals over polylogarithms [54] which have been

evaluated numerically2 [see Appendix A]. In the two limits where m2

H=4m
2

Q is either very

small or very large, the amplitudes could be calculated analytically.

The QCD corrections of the quark contribution to the two{photon Higgs decay am-

plitude can be parameterized as

AQ = ALO
Q

�
1 + CH

�s

�

�
(8)

1We have chosen mt = 174 GeV for the t pole mass [9] and mb = 5 GeV for the b pole mass.
2The scalar integral associated with the gluon correction to the HQQ vertex has also been analyzed

by means of analytical [55] and novel approximation methods [56]. The results are in agreement within
an accuracy of 10�5.
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The coe�cient CH splits into two parts,

CH = c1 + c2 log
�2Q

m2

Q

(9)

where the functions ci depend only on the scaling variable � = m2

H=4m
2

Q(�
2

Q). The same

running quark mass mQ(�
2

Q), evaluated at the renormalization scale �Q, enters in the

lowest{order triangle amplitude ALO
Q . The scale in �s is arbitrary to this order; however,

in practice it should be de�ned of order mH. As a typical renormalization scale we have

chosen �Q = mH=2. This choice suggests itself for two reasons. The QQ decay threshold

is [perturbatively] de�ned at the correct position 2mQ(mQ) = 2mQ. In addition, it turns

out a posteriori that all relevant large logarithms are e�ectively absorbed into the running

mass for the entire physically interesting range of the scaling variable � .

The correction factor CH is displayed in Fig. 5, illustrating the preferred choice �Q =

mH=2 for the renormalization scale. The coe�cient is real below the quark threshold

and complex above. Near the threshold, within a margin of a few GeV, the present

perturbative analysis is not valid. The formation of a P{wave 0++ resonance, interrupted

however by the rapid quark decay [57], modi�es the amplitude in this range [46]. The

perturbative analysis may nevertheless account for the resonance e�ects in a dual way.

Since QQ pairs cannot form 0++ states at the threshold, =mCH vanishes there. <eCH

develops a maximum very close to the threshold.

The QCD{corrected  decay width of the Higgs boson is shown in Fig. 6a. The

correction relative to the lowest order is small in general, Fig. 6b. The corrections are

seemingly large only in the area where the destructiveW{ and Q{loop interference makes

the decay amplitude nearly vanish.

The Limit of Large Quark{Loop Mass

In the limit m2

H=4m
2

Q ! 0, the �ve{dimensional Feynman parameter integrals can be

evaluated analytically. The correction factor for the H coupling

m2

H=4m
2

Q ! 0 : 1 + CH

�s

�
! 1� �s

�
(10)

agrees with the result of the numerical integration in this limit.

The H coupling can also be derived by means of a general low{energy theorem for

amplitudes involving soft Higgs particles [13, 51], limpH!0A(XH) = (m0=v)@A(X)=@m0.

The theorem is easy to prove. For zero 4{momentum the kinetic derivative term in

the Lagrangian can be neglected and the [space{time independent] Higgs �eld can be

incorporated by adding the potential energy to the bare mass term, m0 ! m0(1 +H=v),

in the Lagrangian. The expansion of the bare propagators for small values of H=v is then

equivalent to inserting a zero{momentum Higgs �eld in an arbitrary amplitude A(X),

1

6k �m0

! 1

6k �m0

m0

v

1

6k �m0

(11)
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and generating this way the amplitudeA(XH). Since the bare massm0 and the renormal-

ized mass mQ are related by the anomalous mass dimension, d logm0 = (1+m)d logmQ,

we �nd for the �nal form of the theorem

lim
pH!0

A(XH) =
1

1 + m

mQ

v

@

@mQ

A(X) (12)

It is well{known that the theorem can be exploited to derive the H coupling in

lowest order [13, 51]. However, the theorem is also valid if radiative QCD corrections

are taken into account. For large fermion masses, the vacuum polarization of the photon

propagator at zero momentum is given by

� = �e2Q
�

�
�(�)

 
4��2

m2

Q

!� "
1 +

�s

2�
�(1 + �)

 
4��2

m2

Q

!�
+O(�)

#
(13)

so that

mQ

@�

@mQ

= 2
�

�

�
1 +

�s

�

�
(14)

From the anomalous mass dimension to lowest order,

m = 2�s=� (15)

one readily derives the correction CH of the H coupling

m2

H=4m
2

Q ! 0 : 1 + CH

�s

�
! 1 + �s=�

1 + 2�s=�
= 1� �s

�
(16)

Compared with the radiative QCD correction to the photon propagator, (1 + �s=�), just

the sign of the correction is reversed, (1 � �s=�), for the H coupling [45]. In the

notation of eq.(9) the correction is attributed to c1 while c2 � 1=m2

Q vanishes for large

quark masses.

The same result can be derived by exploiting well{known results on the anomaly in

the trace of the energy{momentum tensor [58],

��� = (1 + m)m0Q0
Q0 +

1

4

��

�
F��F�� (17)

�� denotes the mixed QED/QCD � function de�ned by @�(�2)=@ log � = ��. Since

the matrix element hj���j0i vanishes for infrared photons, the coupling of the two{

photon state to the Higgs source (m0=v)Q0
Q0 is given by �0�=[4�(1 + m)], with �0� =

2e2Q�
2=�(1 + �s=�) including only the heavy quark contribution to the QED/QCD �

function. Thus the H coupling is described by the e�ective Lagrangian

L(H) =
e2Q�

2�

�p
2GF

�1=2 �
1 � �s

�

�
F��F�� H (18)
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which is apparently equivalent to the previous derivation of the H coupling in the limit

m2

H=4m
2

Q ! 0.

The Limit of Small Quark{Loop Masses

In the limit mQ(�
2

Q) ! 0 the leading and subleading logarithms of the QCD correction

CH can be evaluated analytically:

mQ(�
2

Q)! 0 : CH !� 1

18
log2(�4� � i�)� 2

3
log(�4� � i�) + 2 log

�2Q

m2

Q

(19)

and, split into real and imaginary parts,

=mCH ! �

3

�
1

3
log(4� ) + 2

�

<eCH ! � 1

18

h
log2(4� )� �2

i
� 2

3
log(4� ) + 2 log

�2Q

m2

Q

(20)

The choice of the renormalization scale �Q is crucial for the size of CH . Choosing the

on{shell de�nition �Q = mQ leads to very large corrections in the imaginary as well as the

real part, as demonstrated in Fig. 5. By contrast, for �Q = 1

2
mH , the corrections in the

real and imaginary part remain small in the entire � range of interest, � <� a few � 104

for mb � 3 GeV and mH
<� 1 TeV. [This coincides with the corresponding observation

for the decay H ! bb where the running of the b{mass up to the scale 1

2
mH absorbs the

leading logarithmic coe�cients [53].] Only for log � values above the physical range must

the leading logarithmic corrections be summed up; such an analysis is beyond the scope

of the present investigation.

2.2 The Gluonic Decay Width

Gluonic decays of the Higgs boson

H ! gg

are of physical interest for arguments similar to the preceding section. However, there

are some qualitative di�erences. Since the particle loops mediating the Hgg coupling

carry color charges, the color{neutral W;Z gauge bosons do not contribute. The gluonic

branching ratio can only be measured directly at e+e� colliders and for Higgs masses

presumably less than about 140 GeV [15] since it drops quickly to a level below 10�3

for increasing masses. In this range, a fourth generation of fermions would enhance the

branching ratio to a level where it becomes competitive with the dominant b�b decay mode.

The gluonic width determines the production cross section of Higgs bosons in gluon{

gluon fusion to leading order at hadron colliders. The cross section, however, is strongly

a�ected by QCD radiative corrections so that the width can be measured in this indirect
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way only within about 20%.

At the Born level the contribution of heavy quarks to the gluonic width in the Standard

Model is given by

�(H ! gg) =
GF�

2

s

36
p
2�3

m3

H

������
3

4

X
Q

AQ(�Q)

������
2

(21)

where AQ denotes the quark amplitude, already discussed in eq.(3), without the color

factor. The top quark contribution is by far dominant in the SM . Any additional heavy

quark from a fourth family etc. increases the decay amplitude by a factor 2 in the limit

where the Higgs mass is small compared with the QQ threshold energy.

The QCD corrections to the gluonic decay width [36, 47] are large. Several classes

of diagrams must be calculated in addition to those familiar from the two{photon decay

amplitude. Generic examples are shown in Fig. 3. The virtual corrections involve the non{

abelian three{gluon and four{gluon couplings, and the counter terms associated with the

renormalization Zg � 1 = (Z1 � 1)� 3

2
(Z3 � 1) of the QCD coupling. We have de�ned �s

in the MS scheme with �ve active quark avors and the heavy top quark decoupled [59].

Besides the virtual corrections, three{gluon and gluon plus quark{antiquark �nal states

must be taken into account,

H ! ggg and gq�q

In the quark channel we will restrict ourselves to the light quark species which we will

treat as massless particles3. As a consequence of chirality conservation, the gluon decay

amplitude does not interfere in this limit with the amplitude in which the qq pair is

coupled directly to the Higgs boson [g(Hqq) of order mq, but kept non{zero]. This would

be di�erent for top quark decays H ! ttg where the decay mechanism of Fig. 3, however,

is a higher{order e�ect, suppressed to O(g2s ) already at the amplitude level with respect

to the gluon bremsstrahlung correction of the basic t�t decay amplitude. The light{quark

�nal states in the QCD corrections to the gluonic decays, on the other hand, must be

taken into account since they are energy{degenerate with the gluon �nal states.

The result can be written in the form

�(H ! gg(g); gq�q) = �LO(H ! gg)

�
1 + E(�Q)

�s

�

�
(22)

with

E(� ) =
95

4
� 7

6
NF +

33 � 2NF

6
log

�2

m2

H

+�E (23)

3We include c; b quarks among the light quarks so that all large logarithms logm2

H=m
2

c;b, associated
with �nal state particle splitting, are removed by virtue of the Kinoshita{Lee{Nauenberg theorem. This
assumes that when the theoretical prediction will be compared with data, c and b quark �nal states in
collinear con�gurations are not subtracted. Note that in Higgs decays to c; b quark pairs plus an additional
gluon jet, the heavy quarks are emitted preferentially back{to{back and not in collinear con�gurations.
[A more detailed phenomenological analysis of these �nal states is in progress.]
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The �rst three terms survive in the limit of large loop masses while �E vanishes in this

limit. � is the renormalization point and de�nes the scale parameter of �s. It turns out a

posteriori that the higher order corrections are minimized by choosing the pole mass mQ

for the renormalized quark mass; this is evident from Fig. 7a. The correction �E, given

explicitely in the Appendix, is displayed in Fig. 7b for the physically relevant mass range.

In Fig. 8 we present the gluonic width of the Higgs boson including the QCD radiative

corrections4.

The total decay width and the branching ratios of all decay processes in the Standard

Model are shown in Fig. 9 for Higgs boson masses up to 1 TeV. All known QCD and

leading electroweak radiative corrections are included.

The size of the QCD radiative corrections depends on the choice of the renormalization

scale � for any �xed order of the perturbative expansion. A transparent prescription is

provided by the BLM scheme [60] in which theNF dependent coe�cient of the correction is

mapped into the coupling �s, summing up quark and gluon loops in the gluon propagators.

We shall apply this prescription in the large loop{mass limit where the amplitude can be

calculated analytically:

m2

H=4m
2

Q ! 0 : E(� ) =
95

4
� 7

6
NF +

33� 2NF

6
log

�2

m2

H

(24)

Choosing

�BLM = e�
7

4mH � 0:17mH (25)

the NF dependent part drops out of E(� ) and we are left with

�(H ! gg(g) + gq�q) = �B[�s(�BLM )]

�
1 +

9

2

�s

�

�
(26)

A large fraction of the total QCD correction is thus to be attributed to the renormalization

of the coupling.

We shall conclude this subsection with a few comments on the e�ective Hgg La-

grangian [37]. In the same way as for H, we can derive the e�ective gluon Lagrangian

for quark{loop masses large compared to the Higgs mass by taking the derivative of the

gluon propagator with respect to the bare quark mass for q2 = 0. Introducing again the

anomalous mass dimension m, one �nds for the gauge{invariant Lagrangian,

LHgg =
1

4

�(�s)

1 + m(�s)
Ga
��G

a
��

H

v
(27)

where

� =
�s

3�

�
1 +

19

4

�s

�

�
and m = 2

�s

�
(28)

4In all numerical analyses and �gures, the contributions of the b quark loops have been included. Even
for small Higgs masses these e�ects remain less than about 10% of the leading t quark contributions.
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so that to second order

LHgg =
�s

12�

�p
2GF

�
1=2
�
1 +

11

4

�s

�

�
Ga
��G

a
�� H (29)

As a consequence of the non{abelian gauge invariance the Lagrangian describes, besides

the Hgg coupling, also the Hggg and Hgggg couplings, Fig. 10a.

In contrast to the e�ective H Lagrangian, LHgg does not describe the Hgg inter-

action to second order in �s in total. This Lagrangian accounts only for the interactions

mediated by the heavy quarks directly, but it does not include the quantum e�ects of the

light �elds5: LHgg must be added to the light{quark and gluon part of the basic QCD

Lagrangian, and this sum then serves as a new e�ective Lagrangian for Higgs{gluon{light

quark interactions. Physical observables associated with the low{energy Higgs particle

are calculated by means of this e�ective Lagrangian in the standard way, generating gluon

self{energies, vertex corrections, gluon{by{gluon scattering, gluon splitting to gluon and

light quark pairs, etc. In summa, the diagrams displayed in Fig. 10b must be evaluated,

taking into account also the corresponding counter terms that renormalize the coupling

�s and the gluon wave function.

The �xed{order program discussed so far can be applied to the mass region where

mH=2mQ is small [in essence < 1] [36, 37, 61] but logmQ=mH still moderate so that

logarithmic terms need not be summed up. This is the kinematical region of physical

interest. Based on a careful RG analysis [47], the logarithmic terms have been summed

up in the limit where also logmQ=mH is large. This leads to the plausible result that

the energy scale in the e�ective Hgg Lagrangian is set by the heavy{quark mass while

the Higgs mass is the scale relevant for the additional light{quantum uctuations. This

can be incorporated by substituting �sE(� ) ! [11=2]�s(mQ) + [73=4 � 7=6NF ]�s(mH)

in eq.(24), leaving us with the light{quantum uctuations as the main component of

the QCD corrections in this mathematical limit. For moderate values of logmQ=mH the

splitting is of higher order in the QCD coupling and can be neglected.

2.3 Higgs Boson Production in pp Collisions

Gluon fusion [20]

pp! gg ! H

is the main production mechanism of Higgs bosons in high{energy pp collisions throughout

the entire Higgs mass range. As discussed before, the gluon coupling to the Higgs boson

in the Standard Model is mediated by triangular loops of top quarks. The decreasing

form factor with rising loop mass is counterbalanced by the linear growth of the Higgs

5Technically, the additional contributions are proportional to a common factor (�2=m2

H )
� which van-

ishes if the Higgs mass is set to zero before � is driven to (�0). [Note that these mass singularities are
regularized formally for � < 0.] However, keeping the Higgs mass non{zero but small, the expansion in �

gives rise to log�=mH terms which �x the size of the renormalization scale of the physical process.
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coupling with the quark mass. [Heavier quarks still, in a fourth family for instance, would

add the same contribution to the production amplitude if their masses were generated

through the standard Higgs mechanism.]

To lowest order the parton cross section, Fig. 1a, can be expressed by the gluonic

width of the Higgs boson,

�̂LO(gg ! H) =
�0

m2

H

�(ŝ�m2

H) (30)

�0 =
8�2

m3

H

�LO(H ! gg)

where ŝ is the gg invariant energy squared. Recalling the lowest{order two{gluon decay

width of the Higgs boson, we �nd

�0 =
GF�

2

s(�
2)

288
p
2�

����� 34
X
q

AQ(�Q)

�����
2

(31)

The �Q dependence of the form factor has been given in eq.(3). With rising mass, the

width of the SM Higgs boson quickly becomes broader. This e�ect can be incorporated in

the lowest{order approximation by substituting the Breit{Wigner form for the zero{width

�{distribution

�(ŝ�m2

H)!
1

�

ŝ�H=mH

(ŝ�m2

H)
2 + (ŝ�H=mH)2

(32)

and changing kinematical factors m2

H ! ŝ appropriately.

Denoting the gluon luminosity as

dLgg
d�

=

Z
1

�

dx

x
g(x;M2)g(�=x;M2) (33)

the lowest{order proton{proton cross section is found in the narrow{width approximation

to be

�LO(pp! H) = �0�H
dLgg
d�H

(34)

where the Drell{Yan variable is de�ned, as usual, by

�H =
m2

H

s
(35)

with s being the invariant pp collider energy squared. The expression �HdLgg=d�H is only

mildly divergent for �H ! 0.

The QCD corrections to the fusion process gg ! H [36, 37, 40], Fig. 1b,

gg ! H(g) and gq! Hq; qq! Hg
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involve the virtual corrections for the gg ! H subprocess and the radiation of gluons in

the �nal state; in addition, Higgs bosons can be produced in gluon{quark collisions and

quark{antiquark annihilation. These subprocesses contribute to the Higgs production at

the same order of �s. The virtual corrections modify the lowest{order fusion cross section

by a coe�cient linear in �s. Gluon radiation leads to 2{parton �nal states with invariant

energy ŝ � m2

H in the gg; gq and qq channels. The parton cross sections for the subprocess

i+ j ! H +X may thus be written

�̂ij = �0

�
�ig�jg

�
1 + C(�Q)

�s

�

�
�(1� �̂ ) +Dij(�̂ ; �Q)

�s

�
�(1 � �̂)

�
(36)

for i; j = g; q; q. The new scaling variable �̂ , supplementing the variables �H = m2

H=s and

�Q = m2

H=4m
2

Q introduced earlier, is de�ned at the parton level,

�̂ =
m2

H

ŝ
(37)

The quark{loop mass is de�ned as the pole mass in the scaling variable �Q. The coef-

�cients C(�Q) and Dij(�̂ ; �Q) have been determined by means of the same techniques as

described for the H and Hgg couplings at great detail. The lengthy analytic expres-

sions for arbitrary Higgs boson and quark masses are given in the Appendix in the form

of one{dimensional Feynman integrals. The quark{loop mass has been de�ned in the on{

shell renormalization scheme, while the QCD coupling is taken in the MS scheme. If all

the corrections (36) are added up, ultraviolet and infrared divergences cancel. However

collinear singularities are left over. These singularities are absorbed into the renormaliza-

tion of the parton densities [62]. We have adopted the MS factorization scheme for the

renormalization of the parton densities. The �nal result for the pp cross section can be

cast into the form

�(pp! H +X) = �0

�
1 + C

�s

�

�
�H

dLgg
d�H

+��gg +��gq +��q�q (38)

with the renormalization scale in �s and the factorization scale of the parton densities to

be �xed properly.

The coe�cient C(�Q) denotes the contributions from the virtual two{loop corrections

regularized by the infrared singular part of the cross section for real gluon emission.

This coe�cient splits into the infrared part �2, a logarithmic term depending on the

renormalization scale � and a �nite �Q{dependent piece c(�Q),

C(�Q) = �2 + c(�Q) +
33� 2NF

6
log

�2

m2

H

(39)

The term c(�Q) can be reduced analytically to a one{dimensional Feynman{parameter

integral [see Appendix B] which has been evaluated numerically [40]. In the heavy{quark

limit �Q = m2

H=4m
2

Q � 1 and in the light{quark limit �Q � 1, the integrals could be
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solved analytically.

The (non{singular) hard contributions from gluon radiation in gg scattering, gq scat-

tering and qq annihilation depend on the renormalization scale � and the factorization

scale M of the parton densities [Fig. 1b],

��gg =

Z
1

�H

d�
dLgg
d�

� �s

�
�0

(
��̂Pgg(�̂ ) log

M2

ŝ
+ dgg(�̂ ; �Q)

+12

" 
log(1� �̂ )

1 � �̂

!
+

� �̂ [2� �̂(1 � �̂)] log(1 � �̂ )

#)

��gq =
Z

1

�H

d�
X
q;�q

dLgq
d�

� �s

�
�0

(
�̂Pgq(�̂)

"
�1
2
log

M2

ŝ
+ log(1� �̂ )

#
+ dgq(�̂ ; �Q)

)

��q�q =
Z

1

�H

d�
X
q

dLq�q
d�

� �s

�
�0 dq�q(�̂ ; �Q) (40)

with �̂ = �H=� . The renormalization scale enters through the QCD coupling �s(�
2) in

the radiative corrections and the lowest{order parton cross section �0[�s(�
2)]. Pgg and

Pgq are the standard Altarelli{Parisi splitting functions [63],

Pgg(�̂ ) = 6

(�
1

1 � �̂

�
+

+
1

�̂
� 2 + �̂(1 � �̂)

)
+
33 � 2NF

6
�(1� �̂ )

Pgq(�̂ ) =
4

3

1 + (1� �̂)2

�̂
(41)

F+ denotes the usual + distribution such that F (�̂)+ = F (�̂)� �(1� �̂ )
R
1

0
d�̂ 0F (�̂ 0). The

coe�cients dgg; dgq and dqq can be reduced to one{dimensional integrals [Appendix C]

which have been evaluated numerically [40] for arbitrary quark masses. They can be

solved analytically in the heavy and light{quark limits.

In the heavy{quark limit the coe�cients c(�Q) and dij(�̂ ; �Q) reduce to very simple

expressions [36, 37],

�Q = m2

H=4m
2

Q � 1 : c(�Q) ! 11

2

dgg(�̂ ; �Q) ! �11
2
(1� �̂ )3

dgq(�̂ ; �Q) ! �1 + 2�̂ � �̂ 2

3

dq�q(�̂ ; �Q) ! 32

27
(1� �̂ )3 (42)

The corrections of O(�Q) in a systematic Taylor expansion have been shown to be very

small [61]. In fact, the leading term provides an excellent approximation up to the quark
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threshold mH � 2mQ.

For the sake of completeness we quote the di�erential parton cross sections for hard{

gluon radiation and quark scattering in the heavy quark{loop limit [36, 37, 43, 44],

d�̂

dt̂
=

GF�
3

s

288
p
2�2

H(ŝ; t̂) (43)

with

H(gg ! Hg) =
3

2

ŝ4 + t̂4 + û4 +m8

H

ŝ2t̂û

H(gq! Hq) = �2
3

ŝ2 + û2

ŝt̂

H(q�q! Hg) =
16

9

t̂2 + û2

ŝ2

The Mandelstam variables t̂; û are the momentumtransfer squared from the initial partons

gg; gq; qq, respectively, to the Higgs boson in the �nal state. [The singularities for t̂; û! 0

can be regularized in n dimensions.]

In the opposite limit where the Higgs mass is very large compared with the top mass,

a compact analytic result can be derived, too:

�Q = m2

H=4m
2

Q � 1 :

c(�Q) ! 5

36
log2(�4�Q � i�)� 4

3
log(�4�Q � i�)

dgg(�̂ ; �Q) ! �2
5
log(4�Q)

n
7 � 7�̂ + 5�̂ 2

o
� 6 log(1� �̂ )

n
1� �̂ + �̂ 2

o

+2
log �̂

1� �̂

n
3� 6�̂ � 2�̂ 2 + 5�̂ 3 � 6�̂ 4

o

dgq(�̂ ; �Q) ! 2

3

(
�̂ 2 �

h
1 + (1� �̂ )2

i " 7
15

log(4�Q) + log

 
1 � �̂

�̂

!#)

dq�q(�̂ ; �Q) ! 0 (44)

These approximate expressions are valid to leading and subleading logarithmic accuracy.

The �nal results of our analysis are presented in Fig. 11 and the subsequent �gures

for the LHC energy
p
s = 14 TeV. [A brief summary is also given for 10 TeV.] They

are based on a top{quark mass of 174 GeV [8{10]. If not stated otherwise, we have

adopted the GRV parameterizations [64] of the parton densities. These are de�ned in the

MS scheme6. We have chosen �(5)

s (mZ) = 0:117 of the MS scheme in next{to{leading

6We may switch to di�erent schemes by adding the appropriate �nite shift functions [62] fij to the
integrals ��ij, i.e. substituting Pij(�̂ ) logM

2=ŝ! Pij(�̂ ) logM
2=ŝ+ fij(�̂ ) in eqs.(40).
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order. This corresponds to the average measured QCD coupling for �ve quark degrees of

freedom [65] with �
(5)

MS
= 214 MeV; the standard matching conditions [66] are adopted

at � = mt : �
(6)

s (� = mtj�(6)

MS
) = �(5)

s (� = mtj�(5)

MS
) with �

(6)

MS
= 0:413 �

(5)

MS
. The GRV

�ts are based on a somewhat smaller value of �s. This introduces a slight inconsistency

into the numerical evaluation of the cross section which we allow for since, on the other

hand, the basic parton cross section is quadratic in �s and thus depends strongly on the

choice of the QCD coupling. In order to correct the di�erence in the �MS values, the

factorization scale M at which the parton densities are evaluated, has been changed to

adjust appropriately the ratio M2=�2

MS
which enters in the structure functions7. The

cross section is sensitive to gluon and quark densities down to x values of order 10�2 to

10�3, so that subtle non{linear e�ects in the evolution at small x need not be taken into

account yet.

We introduce K factors in the standard way,

Ktot =
�HO

�LO
(45)

The cross sections �HO in next{to{leading order are normalized to the cross sections �LO,

evaluated consistently for parton densities and �s in leading order; the QCD NLO and

LO couplings are taken from the GRV parameterizations of the structure functions. The

K factor can be broken down to several characteristic components. Kvirt accounts for the

regularized virtual corrections, corresponding to the coe�cient C; KAB [A;B = g; q; �q] for

the real corrections as de�ned in eqs.(40). These K factors are shown for LHC energies

in Fig. 11 as a function of the Higgs boson mass. For both the renormalization and the

factorization scales, � =M = mH has been chosen. Apparently Kvirt and Kgg are of the

same size and of order 50% while Kgq and Kqq are quite small. [Note that (Kvirt+�KAB)

di�ers from (Ktot � 1) since the cross sections �0 are evaluated with di�erent NLO and

LO �s values in the numerator and denominator.] Apart from the threshold region for

Higgs decays into tt pairs, Ktot is insensitive to the Higgs mass.

The absolute magnitude of the correction is positive and large, increasing the cross

section for Higgs production at the LHC signi�cantly by a factor of about 1.5 to 1.7.

Comparing the exact numerical results with the analytic expressions in the heavy{quark

limit, it turns out that these asymptotic solutions provide an excellent approximation

even for Higgs masses above the top{decay threshold. For Higgs masses below � 700

GeV, the deviations of the QCD corrections from the asymptotic approximation are less

than 10%.

There are two sources of uncertainties in the theoretical prediction of the Higgs cross

section, the variation of the cross section with di�erent parametrizations of the parton

densities and the unknown next{to{next{to{leading corrections. Since all mass scales,

the Higgs mass as well as the loop{quark mass, are very large, the notorious uncertainties

from higher{twist e�ects can safely be assumed absent.

7The dependence of the cross section on the factorization scale is very small.
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One of the main uncertainties in the prediction of the Higgs production cross section

is due to the gluon density. This distribution can only indirectly be extracted through

order �s e�ects from deep{inelastic lepton{nucleon scattering, or through complicated

analyses of �nal states in lepton{nucleon and hadron{hadron scattering. Adopting a set

of representative parton distributions [64, 67, 68] which are up{to{date �ts to all available

experimental data, we �nd a variation of about 7% between the maximum and minimum

values of the cross section for Higgs masses above � 100 GeV, Fig. 12a. This uncertainty

will be reduced in the near future when the deep{inelastic electron/positron{nucleon

scattering experiments at HERA will have reached the anticipated level of accuracy.

The [unphysical] variation of the cross section with the renormalization and factor-

ization scales is reduced by including the next{to{leading order corrections. This is

demonstrated in Fig. 13 for two typical values of the Higgs mass, mH = 150 GeV and

mH = 500 GeV: The renormalization/factorization scale � = M is varied as � = �mH

for � between 1/2 and 2. The ratio of the cross sections is reduced from 1.62 in leading

order to 1.32 in next{to{leading order for mH = 500 GeV. While for small Higgs masses

the variation with � for � � 1 is already small at the LO level, the improvement by the

NLO corrections is signi�cant at the NLO level for large Higgs masses. However, the �g-

ures indicate that further improvements are required since the � dependence of the cross

section is still monotonic in the parameter range set by the scale of order mH. These

uncertainties associated with higher{order corrections appear to be less than about 15%

however.

If the total energy is reduced from
p
s = 14 TeV to 10 TeV the production cross section

for the SM Higgs boson decreases by a little less than a factor 2 for small Higgs masses

and a little more than 2 for large Higgs masses, Fig. 12b. The K factors agree within less

than � 5% for the two energies.

3 The Neutral SUSY Higgs Particles

3.1 The Basic Set{Up

Supersymmetric theories are very attractive extensions of the Standard Model. At low

energies they provide a theoretical framework in which the hierarchy problem in the Higgs

sector is solved while retaining Higgs bosons with moderate masses as elementary particles

in the context of the high mass scales demanded by grand uni�cation. The minimal

supersymmetric extension of the Standard Model (MSSM) [69] may serve as a useful

guideline in this domain [70]. This point is underlined by the fact that the model led to a

prediction of the electroweak mixing angle [28] that is in striking agreement with present

high{precision measurements of sin2 �W [29]. Although some of the phenomena will be

speci�c to this minimal version, the general pattern will nevertheless be characteristic to

more general extensions [32, 71] so that the analyses can be considered as representative

for a wide class of SUSY models.
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Supersymmetry requires the existence of at least two isodoublet scalar �elds �1 and

�2, thus extending the physical spectrum of scalar particles to �ve [27]. The MSSM

is restricted to this minimal extension. The �eld �2 [with vacuum expectation value v2]

couples only to up{type quarks while �1 [with vacuum expectation value v1] couples to

down{type quarks and charged leptons. The physical Higgs bosons introduced by this

extension are of the following type: two CP {even neutral bosons h0 and H0 [where h0

will be the lightest particle], a CP {odd neutral boson A0 [usually called pseudoscalar] and

two charged Higgs bosons H�.

Besides the four massesmh0 ,mH0, mA0 and mH�, two additional parameters de�ne the

properties of the scalar particles and their interactions with gauge bosons and fermions:

the mixing angle �, related to the ratio of the two vacuum expectation values tg� = v2=v1,

and the mixing angle � in the neutral CP{even sector. Supersymmetry gives rise to several

relations among these parameters and, in fact, only two of them are independent. These

relations impose a strong hierarchical structure on the mass spectrum [mh0 < mZ;mA0 <

mH0 and mW < mH�] which however is broken by radiative corrections [30, 31] due to

the large top quark mass. The parameter tg� will in general be assumed in the range

1 < tg� < mt=mb [�=4 < � < �=2], consistent with the restrictions that follow from

interpreting theMSSM as the low energy limit of a supergravity model.

The MSSM Higgs sector is generally parameterized by the mass mA0 of the pseu-

doscalar Higgs boson and tg�. Once these two parameters [as well as the top quark mass

and the associated squark masses which enter through radiative corrections] are speci�ed,

all other masses and the mixing angle � can be predicted. To discuss the radiative correc-

tions we shall neglect, for the sake of simplicity, non{leading e�ects due to non{zero values

of the supersymmetric Higgs mass parameter � and of the parameters At and Ab in the

soft symmetry breaking interaction. The radiative corrections are then determined by the

parameter � which grows as the fourth power of the top quark massmt and logarithmically

with the squark mass MS ,

� =
3�

2�

1

s2W c2W

1

sin2 �

m4

t

m2

Z

log

 
1 +

M2

S

m2
t

!
(46)

with s2W = 1� c2W = sin2 �W . [The main part of the two{loop e�ects can be incorporated

by using the running MS top mass evaluated at the pole mass [72].]

These corrections are positive and they shift the mass of the light neutral Higgs boson

h0 upward with increasing top mass. The variation of the upper limit on mh0 with the

top quark mass is shown in Fig. 14a for MS = 1 TeV and two representative values of

tg� = 1:5 and 30. While the dashed lines correspond to the leading radiative corrections

in eq.(46),

m2

h0 � m2

Z cos
2 2� + � sin2 � (47)

the solid lines correspond to the Higgs mass parameter � = �200; 0;+200 GeV and the

Yukawa parameters At = Ab = 1 TeV. The upper bound on mh0 is shifted from the
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tree{level value mZ up to � 140 GeV for mt = 174 GeV.

Taking mA0 and tg� as the base parameters, the mass of the lightest scalar state h0

is given to leading order by

m2

h0 =
1

2

h
m2

A0 +m2

Z + �

�
q
(m2

A0 +m2

Z + �)2 � 4m2

A0m
2

Z cos
2 2� � 4�(m2

A0 sin
2 � +m2

Z cos
2 �)

�
(48)

The masses of the heavy neutral and charged Higgs bosons follow from the sum rules

m2

H0 = m2

A0 +m2

Z �m2

h0 + �

m2

H� = m2

A0 +m2

W (49)

In the subsequent discussion we will assume for de�niteness that mt = 174 GeV, MS =

1 TeV and � = At = Ab = 0. For the two representative values of tg� introduced above,

the masses mh0;mH0 and mH� are displayed in Figs. 14b{d as a function of mA0. [The

dependence of the masses on the parameters �;At; Ab is weak and the mass shifts are

limited by a few GeV [34].]

The mixing parameter � is determined by tg� and the Higgs mass mA0 ,

tg2� = tg2�
m2

A0 +m2

Z

m2

A0 �m2

Z + �= cos 2�
with � �

2
< � < 0 (50)

The couplings of the various neutral Higgs bosons to fermions and gauge bosons depend

on the angles � and �. Normalized to the SM Higgs couplings, they are summarized in

Table 1. The pseudoscalar particle A0 has no tree level couplings to gauge bosons, and

its couplings to down (up){type fermions are (inversely) proportional to tg�.

� g��uu g� �dd g�V V

SM H 1 1 1

MSSM h0 cos�= sin � � sin�= cos � sin(� � �)

H0 sin�= sin � cos�= cos � cos(� � �)

A0 1=tg� tg� 0

Table 1: Higgs couplings in theMSSM to fermions and gauge bosons relative to SM couplings.

Typical numerical values of these couplings are shown in Fig. 15 as a function of mA0

and for two values of tg�. The dependence on the parameters � and At; Ab is very weak

and the leading radiative corrections provide an excellent approximation [34]. There is in
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general a strong dependence on the input parameters tg� and mA0. The couplings to down

(up){type fermions are enhanced (suppressed) compared to the SM Higgs couplings. If

mA0 is large, the couplings of h0 to fermions and gauge bosons are SM like. It is therefore

very di�cult to distinguish the Higgs sector of the MSSM from that of the SM , if all

Higgs bosons, except the lightest neutral Higgs boson, are very heavy.

Apart from cascade decays in some corners of the SUSY parameter space, the main

decay modes of the neutral Higgs particles are in general b�b decays [� 90%] and �+��

decays [� 10%], and top decays above threshold. The branching ratios for all the dominant

decay modes are shown in Fig. 16. The gold{plated ZZ decays of the SM Higgs particle

above 140 GeV play only a minor rôle in the SUSY Higgs sector | and in large parts of

the parameter space their rôle is even negligible. The total widths of the states remain

small, O(1 GeV), anywhere in the intermediate mass range and they do not exceed a few

tens of GeV even for Higgs masses of the order of 1 TeV, Fig. 17.

In addition to the conventional decays into SM particles, the Higgs particles may also

decay into chargino and neutralino pairs [33, 34]. Depending on the details of the SUSY
parameters, the branching ratios for decays into these channels can add up to a few tens

of percent; invisible LSP (lightest neutralino) decays, in particular, can even dominate in

some domains of the MSSM parameter space. When kinematically allowed, the Higgs

particles also decay into squarks and sleptons, with generally small branching ratios,

though. For the present experimental bounds on non{colored and colored supersymmetric

particles, see Refs. [73] and [74], respectively.

The neutral Higgs particles will be searched for mainly in the decay channels �+�� and

 at the LHC [18, 19]. Large QCD backgrounds render the analysis of the dominating

bb �nal states very di�cult. Nonetheless, detailed feasibility studies have demonstrated

that the bb decay channel [75] may be accessible in associated Wh0 and tt=bbh0 events if

a set of strong detector requirements is met [25].

3.2 The Two{Photon Decay Widths

Similarly to the Standard Model Higgs boson, the precise prediction of the  widths of

the SUSY Higgs particles is motivated by several points. This rare decay mode provides

the most important signature for the search of the light Higgs bosons at hadron colliders.

The values of the coupling constants are a�ected by the charged particle loops of the entire

SUSY spectrum with masses far exceeding the light Higgs mass. The e�ect however is

small in general for heavy SUSY particles since the main component of their masses is

not generated by the Higgs mechanism so that these particles decouple asymptotically.

The  coupling to Higgs bosons in supersymmetric theories is mediated by charged

heavy particle loops built up by W bosons, standard fermions f , charged Higgs bosons

H�, charginos ~c and sfermions ~f in the scalar cases h0;H0, and standard fermions and

charginos [in the absence of sfermion mixing] in the pseudoscalar case A0. Denoting the
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amplitudes by Af etc., the  decay rates are given8 by

�(H0 ! ) =
GF�

2m3

H

128
p
2�3

������
X
f

Nce
2

fg
H

f A
H

f + gHWAHW + gHH�A
H

H�

+
X
~c

gH
~c A

H

~c +
X
~f

Nce
2

~f
gH~f A

H
~f

������
2

(51)

and

�(A0 ! ) =
GF�

2m3

A

32
p
2�3

������
X
f

Nce
2

fg
A
f A

A
f +

X
~c

gA
~c A

A
~c

������
2

(52)

The spin 1, spin 1/2 and spin 0 amplitudes read to lowest order for the scalar Higgs bosons

AH
1

= �[2� 2 + 3� + 3(2� � 1)f(� )]=� 2

AH
1=2 = 2[� + (� � 1)f(� )]=� 2

AH
0

= �[� � f(� )]=� 2 (53)

and for the pseudoscalar Higgs boson

AA
1=2 = f(� )=� (54)

As usual, the scaling variable is de�ned as � = m2

�
=4m2

i with mi denoting the loop

mass. The universal scaling function f(� ) is the same as in eq.(4). The coe�cients g�i
denote the couplings of the Higgs bosons to W bosons, top and bottom quarks given in

Table 1 and the couplings to sfermions and charginos which are recollected for the sake

of convenience in Table 2 in the absence of sfermion mixing. [Including mixing e�ects in

the scalar squark sector due to the soft parameters At; Ab and � does not change the

production cross sections and photonic decay widths of the SUSY Higgs bosons in most

of the parameter space, except in small regions where they play a signi�cant rôle and lead

to an enhancement of the signal [76].]

Since the contributions of the squark loops are strongly suppressed compared to t; b

loops, we shall restrict the discussion of the QCD corrections to the standard quark loops.

These corrections will be parameterized again as

AQ = ALO
Q

�
1 + C

�s

�

�
(55)

The coe�cient C depends on � = m2

�
=4m2

Q(�
2

Q), where the running mass mQ(�
2

Q) is

de�ned at the renormalization point �Q,

C = c1[mQ(�
2

Q)] + c2[mQ(�
2

Q)] log
�2Q

m2

Q

(56)

8The scalar particles h0;H0 will generically be denoted by H0, and all the neutral Higgs particles by
�.
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� Hc ~ci

SM H 0 0

MSSM h0
m2
W

m2
Hc

h
sin(� � �) + cos2� sin(�+�)

2 cos2 �W

i
2mW

m~ci

(Sii cos��Qii sin�)

H0 m2
W

m2
Hc

h
cos(� � �)� cos2� cos(�+�)

2 cos2 �W

i
2mW

m~ci

(Sii sin�+Qii cos�)

A0 0 2mW

m~ci

(�Sii cos � �Qii sin�)

� ~fL;R

SM H 0

MSSM h0
m2
f

m2
~f

ghf �
m2
Z

m2
~f

(I
f
3 � ef sin

2 �W ) sin(� + �)

H0
m2
f

m2
~f

gHf �
m2
Z

m2
~f

(I
f
3 � ef sin

2 �W ) cos(�+ �)

A0 0

Table 2: Higgs couplings in the MSSM to charged Higgs bosons, charginos and sfermions

relative to SM couplings. Qii and Sii (i = 1; 2) are related to the mixing angles between the

charginos ~c1 and ~c2, Ref.[70].

The renormalization point is taken to be �Q = m�=2; this value is related to the pole

mass by the QCD formula noted in eq.(5). The lowest order amplitude ALO
Q must be

evaluated for the same mass value mQ(�
2

Q = [m�=2]
2). The choice �Q = m�=2 of the

renormalization point ensures, a posteriori, a behavior of the  couplings which is well

controlled for Higgs masses much larger than the quark mass. The QCD coupling �s is

evaluated at � = m� for �
(5)

MS
= 214 MeV.

To regularize the pseudoscalar amplitude involving the 5 coupling, we have adopted

the 't Hooft{Veltman prescription [77]. A technical remark ought to be added on a subtle

problem related to this implementation of 5 which reproduces the axial{vector anomaly to

lowest order automatically. The multiplicative renormalization factor of the scalar (QQ)

current is given by ZHQQ = 1 � Z2Zm where Z2; Zm are the wave{function and mass

renormalization factors, respectively. To ensure the chiral{symmetry relation �5(p
0; p)!

5�(p
0; p) in the limit mQ ! 0 for the fermionic matrix element of the pseudoscalar and

scalar currents, the renormalization factor of the pseudoscalar current has to be chosen

[78] as

ZAQQ = ZHQQ +
8

3

�s

�
(57)

The additional term, supplementing the naive expectation, is due to spurious anomalous
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contributions that must be subtracted by hand.

The Limit of Large Loop Masses

For large mQ, the coe�cient c2 in eq.(56) is of order 1=m2

Q and approaches zero for the

scalar and pseudoscalar Higgs bosons. It has been shown before that c1 approaches (�1)
for scalar Higgs bosons; for the pseudoscalar Higgs particle c1 vanishes asymptotically, i.e.

mQ !1 : cH
1
! �1

cA
1
! 0 (58)

This result for the pseudoscalar Higgs boson can also be derived from the non{renormali-

zation of the anomaly of the axial{vector current. In the same way in which the H
coupling in the local limit can be related to the anomaly of the trace of the energy{

momentum tensor, we can derive the A0 coupling from the anomaly of the axial{vector

current [79],

@�j
5

� = 2mQQi5Q+Nce
2

Q

�

4�
F�� eF�� (59)

with eF�� = �����F�� denoting the dual �eld strength tensor. Since, as familiar from the

Sutherland{Veltman paradox, the matrix element hj@�j�5 j0i of the divergence of the

axial-vector current vanishes for zero photon energy, the matrix element hjmQQi5Qj0i
of the Higgs source can be linked directly to the anomalous term in eq.(59). It is well{

known that the anomaly is not renormalized if the QCD strong interactions are switched

on [79]. As a result, the e�ective A0 Lagrangian

Leff (A0) = Nce
2

Q

�

8�

�p
2GF

�
1=2

F�� eF��A0 (60)

is valid to all orders of perturbation theory in �s in the limit m2

A0 � 4m2

Q.

The Limit of Small Loop Masses

Also in the opposite limit of small quark{loop masses compared with the Higgs masses, the

H0 and A0 couplings can be calculated analytically. This limit is useful in practice

for large tg� values where the b quark coupling to the heavy Higgs bosons H0 and A0 is

strongly enhanced. As anticipated theoretically, the leading and subleading logarithmic

terms are chirally invariant and we obtain the same QCD correction in this limit for the

scalar and pseudoscalar couplings,

mQ(�
2

Q)! 0 : CH;A ! � 1

18
log2(�4� � i�)� 2

3
log(�4� � i�) + 2 log

�2Q

m2

Q

(61)

The �nite non{logarithmic contributions to C may be di�erent in the scalar and pseu-

doscalar cases.

The amplitudes CH for scalar loops and CA for pseudoscalar loops are shown in Fig. 18

as a function of � [38]. The coe�cients are real below the quark threshold � < 1, and
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complex above. Very close to the threshold, within a margin of a few GeV, the present

perturbative analysis9 can not be applied. [It may account to some extent for resonance

e�ects in a global way.] Since QQ pairs cannot form 0++ states at the threshold, =mCH
vanishes there; <eCH develops a maximumvery close to the threshold. By contrast, since

QQ pairs do form 0�+ states, the imaginary part =mCA develops a step that is built up

by the Coulombic gluon exchange [familiar from the Sommerfeld singularity of the QCD

correction to QQ production in e+e� annihilation]; <eCA is singular at the threshold.

The singular behavior of the A0 coupling demands a more careful analysis at the

quark threshold [46]. The form factor is given to lowest order near the threshold by

A
A;LO
Q (�Q) = f(�Q)=�Q !

�2

4
+ i�� for �Q ! 1 (62)

Where � =
q
1� ��1Q is the quark velocity above the threshold. The QCD corrections to

the imaginary part can be found by attaching the Sommerfeld rescattering correction [80]

CCoul =
Z

1 � e�Z
� 1 +

1

2
Z for Z =

4��s

3�
(63)

which corresponds to the exchange of a ladder of Coulombic gluon quanta between the

slowly moving quarks. The QCD corrected imaginary part of the A0 coupling may thus

be written

=m AA
Q = ��CCoul = �� +

2

3
�2�s (64)

approaching a non{zero value at threshold. The real part can be derived from a once{

subtracted dispersion relation so that near the threshold

AA
Q ! A

A;LO
Q +

2��s

3
[� log(�Q � 1) + i� + const] (65)

The smooth constant term needs not be �xed if we analyze only the singular behavior.

For the QCD correction CA near the threshold we therefore obtain the simple relations,

�Q ! 1 : <e CA ! �8
3
log(�Q � 1) + const

=m CA ! +
8

3
� � 8:38 (66)

The absolute size of the imaginary part and the logarithmic singularity of the real part

are in agreement with the numerical analysis presented in Fig. 18b.

In Figs. 19a,b the QCD corrected  widths for the h0;H0; A0 Higgs bosons are dis-

played, taking into account only quark and W boson loops for two values tg� = 1:5 and

9By choosing the renormalization point �Q = m�=2 the perturbative threshold Eth = 2mQ(m
2

Q)
coincides with the on{mass shell value proper. A shift between m�=2 and m�, for instance, a�ects the
widths very little away from the threshold.
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tg� = 30. While in the �rst case top loops give a signi�cant contribution, bottom loops

are the dominant component for large tg�. The overall QCD corrections are shown in

Figs. 19c,d. The corrections to the widths are small, � O(�s=�) everywhere. [Arti�cially
large values of � occur only for speci�c large Higgs masses when the lowest order ampli-

tudes vanish accidentally as a consequence of the destructive interference between W and

quark{loop amplitudes, see also [52].] Thus, the QCD corrections are well under control

across the physically interesting mass range if the running of the quark masses is properly

taken into account.

3.3 The Gluonic Decay Widths

The gluonic decays of the Higgs bosons

h0;H0; A0 ! gg

are mediated by quark and squark triangle loops. In the same notation as in the preceding

section we �nd for the widths in lowest order

�(h0 ! gg) =
GF�

2

s

36
p
2�3

m3

h

�������
3

4

X
Q

ghQA
h
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eQ gheQAheQ

�������
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Q
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A
Q

������
2

(67)

Since the contribution of heavy squark loops is small, we will neglect these e�ects in the

following discussion and we will focus on the dominant quark contributions.

The QCD corrections to the gluonic decay widths are large. Besides the virtual correc-

tions, the widths are a�ected by three{gluon and gluon plus light quark{antiquark �nal

states,

h0;H0; A0 ! ggg and gq�q (68)

Proceeding in the same way as for the Standard Model, the result can be written in the

form [� = h0;H0; A0]

�(�! gg(g); gq�q) = �LO(�! gg)

�
1 + E�(�Q)

�s

�

�
(69)

with

EH(�Q) =
95

4
� 7

6
NF +

33 � 2NF

6
log

�2

m2

H

+�EH

EA(�Q) =
97

4
� 7

6
NF +

33 � 2NF

6
log

�2

m2

A

+�EA (70)
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In the limit of large loop masses, a contribution 11/2 to the coe�cients for scalar

states is related to the e�ective Lagrangian after the heavy quarks are integrated out; the

remaining part is associated with the rescattering and splitting corrections. As a result

of the non{renormalization of the axial anomaly, the coe�cient for the pseudoscalar state

is entirely due to the rescattering and splitting corrections. The corrections �E� are dis-

played in Figs. 20a,b as functions of the corresponding Higgs masses within their relevant

mass ranges for tg� = 1:5 and 30. Due to the bottom contribution, the deviations from

the heavy quark{loop limit are signi�cantly larger than in the SM case, thus rendering

this limit useful only for tg� close to unity. In Fig. 21 the gluonic decay widths including

the QCD radiative corrections are presented for tg� = 1:5 and 30. They are enhanced by

about 50% to 70% as a result of the large QCD corrections. In a margin of a few GeV near

the threshold [mA � 2mt] the perturbative result of the pseudoscalar decay width is not

valid due to the Coulomb singularity in analogy to the photonic decay A0 ! . The

�nal branching ratios of all decay processes in theMSSM are shown in Fig. 16. For the

light Higgs particle h0 the gluonic decay mode is signi�cant only for h0 masses close to

the maximal value, where h0 has SM like couplings. For H0 the gluon decay mode is

signi�cant only slightly below the top{antitop threshold and for small values of tg� where

the coupling to top quarks is su�ciently large. For the pseudoscalar Higgs boson A0,

the gluonic decay mode is important for small values of tg� and below the top{antitop

threshold, where it can reach a branching fraction of � 20%.

In the limit of large quark masses, the Higgs{gluon{gluon coupling can be described

by gauge{invariant e�ective Lagrangians,

LH0gg =
1

4

�p
2GF

�1=2 �(�s)

1 + m(�s)
Ga
��G

a
��H0

LA0gg =
�s

8�

�p
2GF

�1=2
Ga
��
eGa
��A

0 (71)

with � and m de�ned previously. They take account of the local interactions of the

particles involved and serve as kernels for the standard gluon and light{quark corrections.

3.4 Higgs Production in pp Collisions

The production of SUSY Higgs particles at hadron colliders has received much attention

in recent years after the pioneering investigations in Refs. [35]. The situation is critical

since the �rst analyses could not ensure that the entireMSSM Higgs parameter space

could be covered at the LHC. Yet, high statistics analyses appear to solve this problem

if the decays to SM particles are dominant [19]. A second similarly severe problem

has arisen from the di�culty to detect the heavy Higgs particles for masses above a few

hundred GeV and moderate values of tg� where the production rates in the experimentally

clear �+�� channel are too small to be exploited in practice. However, no �nal picture

has emerged yet, since the detailed conclusions depend strongly on the detector design.

Additional h0 decay and production channels, based on the tagging of heavy quarks, may
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also help close the hole in the parameter space [75].

The dominant production process for SUSY Higgs particles at the LHC is the gluon

fusion mechanism. Besides the virtual corrections, the bremsstrahlung of additional glu-

ons, the inelastic Compton process and quark{antiquark annihilation,

gg ! h0=H0=A0(g) and gq! h0=H0=A0q; q�q! h0=H0=A0g

contribute to the Higgs production. The diagrams relevant to the various subprocesses

are the same as for the Standard Model in Fig. 1b. The parton cross sections may thus

be written

�̂ij = �0

�
�ig�jg

�
1 + C(�Q)

�s

�

�
�(1� �̂ ) +Dij(�̂ ; �Q)

�s

�
�(1� �̂)

�
(72)

for i; j = g; q; �q and �̂ = m2

�
=ŝ. The �nal result for the pp cross sections can be cast into

the compact form [� = h0;H0; A0]

�(pp! h0=H0=A0 +X) = �0

�
1 + C

�s

�

�
��
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d��

+��gg +��gq +��q�q (73)
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(74)

after folding the parton cross sections with theMS renormalized quark and gluon densities

[�Q = m2

�
=4m2

Q and �� = m2

�
=s]. The virtual/IR and hard corrections have the same

generic form as before, eqs. (39{41). As a result of the factorization theorem, the parity

and the speci�c couplings of the Higgs bosons are not relevant for the infrared/collinear

form of the cross sections, related to interactions at large distances. The speci�c properties

of the Higgs bosons a�ect only the non{singular coe�cients c and d in eqs.(39{41).

In the limit of large quark{loop masses compared with the Higgs masses, only the

coe�cients c depend on the parity of the Higgs particle,

�Q = m2

�
=4m2

Q ! 0 : ch
0=H0 ! 11

2

cA
0 ! 6 (75)

The coe�cients d are universal. The next{to{leading term in the expansion for the scalar

Higgs bosons has also been calculated analytically [61]. The form of the cross sections for

the parton subprocesses in the heavy quark{loop limit if the �nal states are analyzed, is

given by the same expressions as eq. (43). In the opposite limit of small quark{loop masses,
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chiral symmetry is restored for the leading and subleading logarithmic contributions to

the coe�cients, which are given by the same expressions as eq. (44).

The �nal results of the pp cross sections are predicted in the subsequent �gures for

the LHC energy
p
s = 14 TeV. [A brief summary is appended for

p
s = 10 TeV.] Again,

the two representative values tg� = 1.5 and 30 are chosen and the top mass is �xed to

mt = 174 GeV. If not stated otherwise, we have adopted the GRV parameterizations of

the quark and gluon densities. For the QCD coupling we have chosen the average value

�(5)

s (mZ) = 0:117 in the �nal cross sections while the discussion of the K factors is carried

out consistently in the GRV frame. [The GRV NLO coupling is close to the lower 1�

boundary of the global �s �t.]

The K factors, Ktot = �HO=�LO, are de�ned by the ratios of the HO cross sections

to the LO cross sections. They are shown for LHC energies in Fig. 22. They vary little

with the masses of the scalar and pseudoscalar Higgs bosons in general, yet they depend

strongly on tg� as shown in Fig. 23. For small tg�, their size is about the same as in

the SM , varying between 1.5 and 1.7; for large tg� however they are in general close

to unity, except when h0 approaches the SM domain. The cross sections are shown in

Fig. 24. Apart from exceptional cases, they vary in the range between 100 and 10 pb for

Higgs masses up to several hundred GeV. Beyond � 300 GeV they drop quickly to a level

below 10�1 pb. Similarly to the SM , a factor of about 2 is lost if the pp collider energies

is reduced to 10 TeV, Fig. 25.

The variation of the cross sections with the renormalization/factorization scale is re-

duced by including the next{to{leading order corrections. The dependence of the cross

sections for low masses, Fig. 26, is of order 15%; the � dependence remains monotonic.

Thus the next{to{leading order corrections stabilize the theoretical predictions for the

Higgs particles in the intermediate to large mass range, yet further improvements must

be envisaged in the future.

It is apparent from the previous �gures that the next{to{leading order corrections

increase the production cross sections for the SUSY Higgs particles, in some areas of the

parameter space even strongly.

4 Summary

We have presented a complete next{to{leading order calculation for the production of

Higgs particles at the LHC in the Standard Model of the electroweak interactions as well

as in its minimal supersymmetric extension. These corrections stabilize the theoretical

predictions compared with the (ill{de�ned) leading{order predictions. The QCD radiative

increase the production cross sections signi�cantly so that experimental opportunities to

discover and detect these fundamental particles increase.
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APPENDIX A: The H and A Couplings

In this Appendix, we summarize the complete analytical result for the QCD corrected

CP{even H and CP{odd A vertex form{factors, in the case of arbitrary Higgs boson

and quark masses.

As discussed in sections 2.1 and 3.1, the radiative QCD corrections to the quark

contribution to the two{photon Higgs boson decay amplitudes can be written as

AQ = ALO
Q

�
1 + C�

�s

�

�
(A.1)

where the coe�cients C� split into two parts,

C� = C�

1
+ C�

2
log

�2Q

m2

Q

(A.2)

with the two functions C�

1
and C�

2
depending only on the scaling variable � 10,

� � m2

�
=(4m2

Q) � ��=4 (A.3)

For the CP{even and CP{odd Higgs bosons, the coe�cients C�

1
and C�

2
are given by
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with

FH
0
(� ) =

3

2
��1

h
1 + (1 � ��1)f(� )
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In terms of the auxiliary variables

�� = (1�
p
1� ��1)=2 (A.6)

10Singularities are �xed by attributing to the quark{loop mass a small imaginary part: m2

Q ! m2

Q� i�.
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the functions f; g; l; k and h are de�ned by
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Here, Li2; Li3 and S1;2 are polylogarithms, de�ned [77] as
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The expressions of I1;:::;5, which have been reduced from four{ and �ve{dimensional down

to one{dimensional Feynman integrals, are much more involved:
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In terms of the variables � = (ad� bc)=d and � = b=d, and the functions
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F2(a; b; c; d) =
1

d

(
log2 � log

 
c+ d

c

!
+ 2 log �

"
Li2

 
��c
�

!
� Li2

 
��

�
(c+ d)

!#

+2S1;2

 
��

�
(c+ d)

!
� 2S1;2

 
��c
�

!)
(A.15)

the expressions Ki, which appear in the integral I2, are given by [K5 and K8 will be used

later on]
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APPENDIX B: The Infrared Regularized Virtual Corrections for

the Hgg and Agg Couplings

The complete analytical expressions for the virtual, infrared regularized, QCD radiative

corrections to the Hgg and Agg couplings are summarized in this appendix. As discussed

in section 2.3 and 3.3, the virtual corrections split into an infrared part �2, a logarithmic

part depending on the renormalization scale � and a �nite piece depending on �

C = �2 +
33 � 2NF

6
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Again the coe�cient c� can be split into two parts
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where �Q is the scale at which the quark mass is de�ned; the coe�cients B1; B2 read in

the case of CP {even and CP {odd Higgs bosons,
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The functions FH
0
; FA

0
are given in eq. (A.5), while the functions f; g; l; k and h are given

in eq. (A.7); the two remaining functions r and p read
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The integrals I1 to I5 were presented in eqs. (A.9{A.13); the integrals I6; I7 and I8 are
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+�x(1 � x)K3 [1;��x(1� x); x; (1� x)(1� �x)]g (B.7)

While the functionsK1{K11 are de�ned in eqs.(A.16), the remaining functions follow from

K12(a; b) =
1

a� b

�
1 + a

1 + b
log2(1 + a)� 2aK2(1; a; 1; b)

�

K13(a; b; c) = � log(1 + a) log(1 + b)

c(1 + c)
+
1

c

(
a2

a� c
K2(1; b; 1; a)

� ac

a� c
K2(1; b; 1; c) +

b2

b� c
K2(1; a; 1; b)�

bc

b� c
K2(1; a; 1; c)

)
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K14(a) = a� (1 + a) log(1 + a)

K15(a) = �(1 + a) log2(1 + a)� 2aLi2(�a)
K16(a; b) = K7(a+ b;�b)

K17(a; b; c; d) = K1(a+ b;�b; c+ d;�d)

K18(a; b) =
1

b

(
log

 
a+ b

a

!"
Li2

 
�b
a

!
� �(2)

#
+ S1;2

 
�b
a

!
� 2Li3

 
�b
a

!)

K19(a; b) =
1

ab
Li2

 
b

a+ b

!
� 1

b(a+ b)
Li2

 
� b

a

!
� �(2)

a(a+ b)

K20(a; b; c; d) =
1

d

(
b

�d

"
Li2

 
b

a+ b

!
� Li2

 
d

c+ d

!#

+
1

c+ d
Li2

 
b

a+ b

!
� d

c+ d
K2(a; b; c; d)

)
(B.8)

APPENDIXC: The Real Corrections for pp!H; A and H; A! gg

Finally, we give here the complete analytical expressions for the real corrections to the

processes pp ! H=A and H=A ! gg. We start with the corrections to the production

process and de�ne the variables

� =
m2

H

m2

Q

; S =
ŝ

m2

Q

; T =
t̂

m2

Q

; U =
û

m2

Q

(C.1)

ŝ =
m2

H

�̂
; t̂ = �ŝ(1 � �̂)v ; û = �ŝ(1 � �̂ )(1 � v) (C.2)

�Q =
�

4
; �s =

S

4
; �t =

T

4
; �u =

U

4
(C.3)

The coe�cients dq�q; dgq and dgg which appear in the real QCD corrections, eq. (40), for

the Higgs production, can be cast into the form

dq�q(�̂ ; �Q) =
2

3
���PQ F

�

0 (�Q)
���2 (1 � �̂ )3

������
X
Q

A�

qqg(S)

������
2

dgq(�̂ ; �Q) =
2

3
�̂ 2 +

2

3
�̂ 2
Z

1

0

dv

v

(
�1� 2

1 � �̂

�̂ 2

+
1 + (1� �̂ )2(1 � v)2

�̂ 2

������
3

2
P

Q F
�

0 (�Q)

X
Q

A�

qqg(T )

������
2
9>=
>;

dgg(�̂ ; �Q) =
3

1 � �̂

Z
1

0

dv

v

8><
>:�̂ 4

A�

ggg(S; T; U)���PQ F
�

0 (�Q)
���2 � 1� �̂ 4 � (1 � �̂ )4

9>=
>; (C.4)
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with F�

0
given in eq. (A.5). With the functions f and g given in eq. (A.7), A�

qqg and A�

ggg

can be represented as

AH
qqg(S) =

8

S � �

(
1� 2S

g(�s)� g(�Q)

S � �
�
 
1 +

4

S � �

!
[f(�s)� f(�Q)]

)

AA
qqg(S) =

16

3(S � �)
[f(�s)� f(�Q)]

A�

ggg(S; T; U) = jC�

1
j2 + jC�

2
j2 + jC�

3
j2 + jC�

4
j2 (C.5)

The functions C�

i follow from

C�

2
(S; T; U) = �C�

1
(T; S; U) C�

3
(S; T; U) = C�

1
(U; T; S) (C.6)

C�

i =
X
Q

1

2�2

12X
j=1

P�

ij Tj (C.7)

The coe�cients Ti read

T1 = 1 ; T2 = 2f(�Q) ; T3 = 2f(�s) ; T4 = 2f (�t) (C.8)

T5 = 2f (�u) ; T6 = 2[1� g(�Q)] ; T7 = 2 [1� g(�s)] ; T8 = 2 [1 � g (�t)]

T9 = 2 [1 � g (�u)] ; T10 = J(S; T; U) ; T11 = J(S;U; T ) ; T12 = J(T; S; U)

with

J(S; T; U) = I3(S; T; U; S) + I3(S; T; U; U)� I3(S; T; U; �)

I3(S; T; U;X) =
1

SU

2

�+ � ��

(
Li2

 
��

�� � ��

!
� Li2

 
�+

�+ � �+

!
(C.9)

+ Li2

 
��

�� � �+

!
� Li2
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�+ � ��

!
+ log

 
��+
��

!
log
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1 +

XT

SU

�)

and

�� =
1

2

0
@1�

s
1 � 4

X

1
A ; and �� =

1

2

0
@1�

s
1 +

4T

SU

1
A (C.10)

The coe�cients Pij for CP {even neutral Higgs bosons are given [44] by

P1;1 = �12 S UT � S2

(U + S)(T + S)

P1;2 = 3
n
4U3T 3 + 8U3T 2S + 4U3TS2 + 8U2T 3S + 15U2T 2S2 + 4U2T 2S

+8U2TS3 + 8U2TS2 + U2S4 � 4U2S3 + 4UT 3S2 + 8UT 2S3

41



+8UT 2S2 + 8UTS4 + 16UTS3 + 4US5 � 8US4 + T 2S4 � 4T 2S3

+4TS5 � 8TS4 + 3S6 � 12S5

o
� 1

S(U + S)2(T + S)2

P1;3 = �3 (S � 4)

P1;4 = �3 4U3T + 8U2TS � U2S2 + 4U2S + 4UTS2 + 8US2 + S4 � 4S3

S(U + S)2

P1;5 = �3 4UT 3 + 8UT 2S + 4UTS2 � T 2S2 + 4T 2S + 8TS2 + S4 � 4S3

S(T + S)2

P1;6 = �12 UT U2T + 2U2S + UT 2 + 4UTS + 5US2 + 2T 2S + 5TS2 + 4S3

(U + S)2(T + S)2

P1;7 = 0

P1;9 = 12 UT (T + 2S)(T + S)�2

P1;11 = 3 TS (4 � S)=2

P4;1 = 12 �

P4;3 = 3 (4� �)

P4;5 = 3 (4� �)

P4;7 = 0

P4;9 = 0

P4;11 = 3 TS (4 � �)=2

P1;8 = 12 UT (U + 2S)(U + S)�2

P1;10 = 3 US (4� S)=2

P1;12 = �3 UTS�1(4UT � S2 + 12S)=2

P4;2 = �9 (4 � �)

P4;4 = 3 (4� �)

P4;6 = 0

P4;8 = 0

P4;10 = 3 US (4� �)=2

P4;12 = 3 UT (4 � �)=2

Similarly for CP{odd neutral Higgs bosons,

P1;1 = 0

P1;3 = �2S
P1;6 = 0

P1;7 = 0

P1;9 = 0

P1;11 = �TS2

P4;1 = 0

P4;3 = �2�
P4;5 = �2�
P4;7 = 0

P4;9 = 0

P4;11 = ��TS

P1;2 = �2S(UT � US � TS � 3S2)(U + S)�1(T + S)�1

P1;4 = 2S (U � S)(U + S)�1

P1;5 = 2S(T � S)(T + S)�1

P1;8 = 0

P1;10 = �US2

P1;12 = STU

P4;2 = 6�

P4;4 = �2�
P4;6 = 0

P4;8 = 0

P4;10 = ��US
P4;12 = ��UT
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For the QCD corrections to the gluonic decays of the Higgs bosons the correction

factors �E� de�ned in eqs. (23) and (70) can be written as

�E� = �E�

virt +�E�

ggg +NF�E
�

gq�q (C.11)

�EH

virt = cH(�Q)�
11

2
(C.12)

�EA
virt = cA(�Q)� 6 (C.13)

�E�
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Z
1
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>:
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2stu m2

�

9>=
>; (C.14)

�E�

gq�q =

Z
1

0

dx1

Z
1

1�x1

dx2
s2 + u2

t m2

�

8<
:m

2

�

s

�����
P

QA�

qqg(T )P
Q F

�

0 (�Q)

�����
2

� 1

9=
; (C.15)

with cH and cA given in eqs. (B.2, B.3); the kinematical variables are de�ned as

s = m2

H(1� x3) ; t = m2

H(1 � x2) ; u = m2

H(1� x1) ; x1 + x2 + x3 = 2 (C.16)

and

S =
s

m2

Q

; T =
t

m2

Q

; U =
u

m2

Q

(C.17)

for the Mandelstam variables normalized by the quark mass.
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Figure Captions

Fig. 1: Generic diagrams of the gluon fusion mechanism gg ! H for the production of

Higgs bosons: lowest order amplitude (a), and QCD radiative corrections (b).

Fig. 2: Generic diagrams for the amplitude of the Higgs boson decay into two photons

H ! : (a) lowest order W{boson amplitude, (b) lowest order quark amplitude,

and (c) QCD radiative corrections to the quark amplitude.

Fig. 3: Generic Feynman diagrams for the amplitude of the Higgs boson decay into gluons

H ! gg: (a) lowest order amplitude, and (b) QCD radiative corrections.

Fig. 4: The real and imaginary parts of the lowest order amplitudes Af (a) and AW (b) of

the H vertex as a function of �f;W = m2

H=4m
2

f;W .

Fig. 5: Real and imaginary parts of the radiative correction factor to the quark amplitudes

for the H coupling; the renormalization point for the quark mass is taken to be

�Q = mH=2 in (a) and �Q = mQ in (b).

Fig. 6: (a) The QCD corrected partial decay width of the Higgs boson to two photons as a

function of the Higgs mass, and (b) the size of the QCD radiative correction factor

(in %).

Fig. 7: (a) Comparison of the size of the infrared regularized virtual QCD corrections to the

quark amplitude for the pole massmQ(mQ) and the running quark massmQ(mH=2);

for large quark{loop masses the coe�cient C approaches the value C = �2=2+11=4;

(b) The deviation �E of the radiative QCD correction to the decay H ! gg from

its value in the heavy quark{loop limit; the renormalization scale is taken to be

� = mH.

Fig. 8: (a) The QCD corrected partial decay width of the Higgs boson into two gluons

(in MeV) as a function of the Higgs mass, and (b) the size of the QCD radiative

correction factor; the renormalization scale is taken to be � = mH .

Fig. 9: (a) Total decay width (in GeV) of the Standard Model Higgs boson as a function

of its mass, and (b) the branching ratios (in %) of the dominant decay modes

(mt = 174 GeV). All known QCD and leading electroweak radiative corrections are

included.

Fig. 10: (a) Feynman diagram for the e�ective couplings of the Higgs boson to gluons in the

heavy{quark{loop limit, and (b) generic Feynman diagrams of the e�ective QCD

corrections to the decay H ! gg in the heavy{quark{loop limit.

Fig. 11: K factors of the QCD corrected cross section �(pp ! H + X) at the LHC with

c.m. energy
p
s = 14 TeV. Kvirt and KAB (A;B = q; g) are the regularized virtual

correction and the real correction factors, respectively; Ktot is the ratio of the QCD
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corrected total cross section to the lowest order cross section. The renormalization

and factorization scales are taken to be � = M = mH and the GRV parameteriza-

tions for the parton densities have been used.

Fig. 12: (a) The spread of the Higgs boson production cross section at the LHC with c.m.

energy of
p
s = 14 TeV for two parameterizations of the parton densities. (b) The

total Higgs production cross section at the LHC for two di�erent c.m. energy values:p
s = 14 TeV and

p
s = 10 TeV.

Fig. 13: The renormalization and factorization scale dependence of the Higgs production

cross section at lowest and next{to{leading order; the Higgs mass is chosen to be

(a) mH = 150 GeV, and (b) mH = 500 GeV.

Fig. 14: (a) The upper limit of the lightest scalar Higgs boson mass in the MSSM as a

function of the top quark mass for two values of tg� = 1:5 and 30; the top quark

and the common squark masses are taken to be mt = 174 GeV and MS = 1 TeV,

respectively. The dashed line corresponds to the case where At = Ab = � = 0 (only

the leading radiative correction is included), while the full lines correspond to the

case where At = Ab = 1 TeV and � = �200; 0;+200 GeV (from top to bottom). The

masses of theMSSM Higgs bosons h0,H0 andH�, as a function of the pseudoscalar

Higgs mass for the two previous values of tg� and for At = Ab = � = 0;MS = 1

TeV, are displayed in (b), (c) and (d), respectively.

Fig. 15: The coupling parameters of the MSSM neutral Higgs bosons as functions of the

pseudoscalar A0 Higgs mass for two values of tg� = 1:5 and 30 and for At = Ab =

� = 0;MS = 1 TeV. The couplings are normalized to the SM couplings as de�ned

in Table 1.

Fig. 16: The branching ratios of the MSSM Higgs bosons h0 (a), H0 (b), A0 (c) and H�

(d) as functions of their masses for two values of tg� = 1:5 and 30; the values

At = Ab = � = 0 and MS = 1 TeV have been chosen. [The arrows in (a) denote the

branching ratios in the SM limit of large A0 masses.]

Fig. 17: The total decay widths of theMSSM Higgs bosons h0, H0, A0 and H� as functions

of their masses for two values of tg� = 1:5 (a) and tg� = 30 (b); the values

At = Ab = � = 0 and MS = 1 TeV have been chosen.

Fig. 18: Real and imaginary parts of the QCD radiative correction factor to the quark am-

plitudes of the two{photon couplings for theMSSM neutral Higgs bosons: (a) h0

and H0 and (b) A0; the renormalization scale for the quark mass is taken to be

�Q = m�=2.

Fig. 19: The QCD corrected partial decay widths into two photons of the MSSM Higgs

bosons h0;H0; A0 for (a) tg� = 1:5 and (b) tg� = 30, and the the size of the

QCD radiative corrections to the processes h0=H0 !  and A0 !  (in %) as
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functions of the Higgs boson masses for two values of tg� = 1:5 (c) and 30 (d). The

renormalization scale for the quark mass is taken to be �Q = m�=2.

Fig. 20: The deviation �EH (a) and �EA (b) of the coe�cients E� of the radiative QCD

correction factors to the process �! gg from their values in the heavy quark limit,

for two values of tg� = 1:5 and 30; the renormalization scale is taken to be � = m�.

Fig. 21: The QCD corrected gluonic partial decay widths of the MSSM neutral Higgs

bosons h0;H0 (a) and A0 (b), for two values of tg� = 1:5 and 30; the size of

the QCD radiative correction factor for h0=H0 ! gg (c) and A0 ! gg (d). The

renormalization scale is taken to be � = m�.

Fig. 22: K factors of the QCD corrected cross sections �(pp! h0=H0+X) (a) and �(pp !
A0+X) (b) for two values of tg� = 1:5 and 30; Kvirt and KAB (A;B = q; g) are the

regularized virtual correction and real correction factors, respectively, and Ktot is

the ratio of the QCD corrected total cross section to the lowest order cross section.

The renormalization and factorization scales are taken to be � =M = m� and the

GRV parameterization for the parton densities have been used.

Fig. 23: The dependence of the total K factors for the processes �(pp! �+X) on the value

of tg� for a characteristic set of Higgs boson masses.

Fig. 24: The spread of theMSSM Higgs production cross sections �(pp! h0=H0+X) (a)

and �(pp! A0 +X) (b) for two parameterizations of the parton densities.

Fig. 25: The total production cross sections of the scalar CP{even Higgs bosons h0;H0 (a)

and the pseudoscalar Higgs boson A0 (b) at the LHC for two di�erent c.m. energy

values:
p
s = 14 TeV and

p
s = 10 TeV.

Fig. 26: The renormalization/factorization scale dependence of the MSSM Higgs boson

production cross sections at lowest and next{to{leading order, for a characteristic

set of Higgs boson masses and tg� values.
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