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1. Introduction

Duality symmetries are playing an increasing role in the understanding of the behav-

ior of supersymmetric gauge theories at strong coupling. The electric{magnetic dualities

relating strong and weak coupling make sense in the context of N = 4 supersymmetric

gauge theories [1,2], where they are expected to be exact symmetries. They were general-

ized [3,4,5] to N = 2 theories and to some N = 1 theories [6] in the Coulomb phase, and

enabled the computation of non{perturbative results in these theories. There is growing

evidence [7,8] that these SL(2; Z) duality symmetries appear in string theory as well.

A new type of duality symmetry, connecting N = 1 supersymmetric gauge theories

with (generally) di�erent gauge groups, was suggested by Seiberg in [9]. This duality relates

a standard supersymmetric QCD (SQCD) theory with gauge group SU(Nc) andNf avors

of quarks, with another supersymmetric QCD theory, with gauge group SU(Nf �Nc), Nf

quark avors and additional gauge{singlet �elds with a non{trivial superpotential coupling

the singlets to the dual quarks. The evidence for Seiberg's duality consists [9] of (i) the

identi�cation of the global anomalies and gauge{invariant operators in the chiral rings of

the two theories, (ii) the possibility of owing (by mass perturbations) between di�erent

pairs of dual theories and from them to known [10] e�ective descriptions of SQCD (for small

values of Nf ) in terms of bound states, and (iii) the identi�cation of all at directions

of the two theories. These include in particular [11] a at direction along which both

theories ow to the same �eld theory in the IR. The generalization of this duality to the

SO(Nc) case (discussed in [9,12]) is related to the electric{magnetic duality, with the dual

quarks interpreted as monopoles (or dyons) of the original theory. In the SU(Nc) case no

monopoles appear (semi{classically) in the spectrum, so that the connection of the new

duality to the electric{magnetic duality is still obscure, though there may be some relations

between the two [13]. For Nf = Nc + 1 the duality goes over to the description of the

theory in terms of bound states, with the dual quarks becoming baryons.

Another duality of the same type was suggested by Kutasov [14]. The original (\elec-

tric") theory in this duality is an SU(Nc) gauge theory (Nc > 2), with Nf avors of

quarks Qi
a and anti{quarks ~Qa

~i
, and an additional adjoint �eld X, with a superpotential

Wel = Tr (X3). The dual (\magnetic") theory is an SU(2Nf �Nc) gauge theory, with Nf

avors of quarks qai and anti{quarks ~q
~i
a, an adjoint �eld Y , and singlet �eldsM

i
~i
(identi�ed

with Qi ~Q~i) and N
i
~i
(identi�ed with QiX ~Q~i). The superpotential in the \magnetic" theory

[14] is given by

Wmag =M i
~i
qiY ~q

~i +N i
~i
qi~q

~i +Tr (Y 3): (1:1)
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The evidence given in [14] for this duality consists of the identi�cation of the global

anomalies and gauge{invariant operators in the two theories, and the possibility of ow-

ing between di�erent values of Nf by mass perturbations. As in Seiberg's duality, for

Nf =
1
2
(Nc +1) the duality becomes a description of the theory in terms of bound states,

with the dual quarks becoming baryons. In other cases, however, the interpretation of the

dual quarks in terms of the original variables is not clear.

In this paper we present a new duality transformation of the same type, which includes

Kutasov's duality as a special case. In addition to the �elds described above, both theories

in the new duality have ~Nf additional avors of quarks Zj
a and anti{quarks ~Za

j , which

couple to the adjoint �eld by a coupling of the form Zj
aX

a
b
~Zb
j . The new duality will take

the gauge group SU(Nc) to SU(2Nf + ~Nf � Nc). We shall check the 't Hooft anomaly

conditions and the identi�cation of gauge{invariant bound states in the two theories, and

analyze several possible mass perturbations of these theories. We shall also analyze several

at directions of these theories, �nding all of them to be consistent with the new duality.

Our analysis will ignore the possible quantum corrections to the superpotential in both

theories, whose analysis is left for future work. In most cases we will �nd a consistent

picture without the quantum corrections. This indicates that in these cases the quantum

corrections do not seem to be important. Among the theories we ow to we will �nd

Seiberg's dual theories [9]. Thus, our new duality may be viewed as including both Seiberg's

and Kutasov's dualities. Moreover, some cases which will be considered seem to indicate

a possible relation between the new duality and the duality of N = 2 theories [3-5].

In section 2 we describe the new duality transformation, check the 't Hooft anomaly

matching conditions and identify the gauge{invariant bound states. In section 3 we analyze

ows generated by adding mass perturbations, discuss the resulting theories, and verify

that all of them are consistent with the duality. In section 4 we analyze several at

directions of the new dual theories, �nding them too to be consistent with the duality.

In particular these include a at direction along which both theories ow to the same IR

theory. In section 5 we analyze a at direction which is more complicated, and describe

its consistency with the duality. We end in section 6 with a summary and conclusions.

2. The new duality transformation

In this section we present a generalization of the knownN = 1 SUSY duality [14]. The

new dual theories include, in addition to a �eld in the adjoint of the gauge group, two types
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of quarks and anti{quarks (each in the fundamental and anti{fundamental representations

of the gauge group). One type of quark couples to the adjoint �eld and the other does not.

We will have Nf quarks without, and ~Nf quarks with coupling to the adjoint �eld. The

duality will take an SU(Nc) gauge theory to an SU(2Nf + ~Nf �Nc) gauge theory. The

original (\electric") theory will be asymptotically free whenever Nf + ~Nf < 2Nc, and the

dual (\magnetic") theory will be asymptotically free for 3Nf + ~Nf > 2Nc.

2.1. The \electric" theory

The \electric" theory of the new duality includes two types of quarks. There are Nf

avors of quarks Qi
a and anti{quarks ~Qa

~i
, with a = 1; � � � ;Nc and i;~i = 1; � � � ;Nf , and ~Nf

avors of quarks Zj
a and anti{quarks ~Za

j , with a = 1; � � � ;Nc and j = 1; � � � ; ~Nf . There is

also a �eld in the adjoint representation of the gauge group which will be denoted by X.

We take the superpotential of the \electric" theory to be, at the classical level,

Wel = Tr (X3) + 3Zj
aX

a
b
~Zb
j : (2:1)

The superpotential breaks the global symmetry classically to U(Nf )� U(Nf )� U( ~Nf )�

U(1)R, and the instantons break one of the U(1) factors, so that the quantum global

symmetry of this theory is

SU(Nf )� SU(Nf )� SU( ~Nf ) �U(1)B � U(1)Z � U(1)R (2:2)

where we choose U(1)B and U(1)Z to be two arbitrary U(1) symmetries orthogonal to the

U(1)R symmetry.

The quantum numbers of all �elds under the local symmetry SU(Nc) and under the

global symmetry (2.2) may be easily computed, and they are summarized in the following

table:

Qi
a Nc ( Nf , 1, 1, 1

Nc
, �

Nf�Nc

Nc
, 1 + 1

3

~Nf�2Nc

Nf
)

~Qa
~i

Nc ( 1, Nf , 1, � 1
Nc

,
Nf�Nc

Nc
, 1 + 1

3

~Nf�2Nc

Nf
)

Zj
a Nc ( 1, 1, ~Nf ,

1
Nc

, �
(Nc+ ~Nf)Nf

Nc
~Nf

, 2
3

)

~Za
j Nc ( 1, 1, ~Nf , � 1

Nc
,

(Nc+ ~Nf )Nf

Nc
~Nf

, 2
3

)

Xa
b (N2

c � 1) ( 1, 1, 1, 0, 0, 2
3

)

W� (N2
c � 1) ( 1, 1, 1, 0, 0, 1 )

where the R charge always pertains to the lowest component of the super�eld.
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2.2. The \magnetic" theory

The \magnetic" theory has a �eld content similar to that of the \electric" theory, for

gauge group SU(2Nf + ~Nf�Nc), with additional gauge singlet �elds. There are Nf avors

of quarks qai and ~q
~i
a,

~Nf avors of quarks zaj and ~zja and an adjoint �eld Y . Note that

the non{abelian global representations of the \magnetic" quarks are conjugate to those

of the \electric" quarks. In addition to these there are gauge singlet �elds, which will be

identi�ed with mesons of the \electric" theory. These are M i
~i
, N i

~i
, M

j
~i
and M i

j , where i

is an index of the �rst SU(Nf ) factor of the global symmetry, ~i is an index of the second

SU(Nf ) factor of the global symmetry, and j is an index of SU( ~Nf ). The global symmetry

group is the same as (2.2). The classical superpotential of the \magnetic" theory is

Wmag = Tr (Y 3) + 3zaj Y
b
a ~z

j
b +M i

~i
qai Y

b
a ~q

~i
b +N i

~i
qai ~q

~i
a +M i

j ~z
j
aq

a
i +M

j
~i
zaj ~q

~i
a: (2:3)

The non{renormalizable term in (2.3) is analogous to the one in [14], and can be relevant (as

in [14]), due to non{perturbative e�ects, when the \magnetic" theory is strongly coupled.

We will see in section 5 how to deal with this term when analyzing perturbations and at

directions of the theory.

The local and global symmetry charges of the �elds may easily be computed. Making

a choice of the U(1) symmetries that will �t with the choice we made in the \electric"

theory, we �nd them to be :

qai 2Nf + ~Nf �Nc ( Nf , 1, 1, 1

2Nf+ ~Nf�Nc

, �1,
2Nc�Nf�

~Nf

3Nf
)

~q
~i
a 2Nf + ~Nf �Nc ( 1, Nf , 1, � 1

2Nf+ ~Nf�Nc

, 1,
2Nc�Nf�

~Nf

3Nf
)

M i
~i

1 ( Nf , Nf , 1, 0, 0,
6Nf+2 ~Nf�4Nc

3Nf
)

N i
~i

1 ( Nf , Nf , 1, 0, 0,
8Nf+2 ~Nf�4Nc

3Nf
)

M
j
~i

1 ( 1, Nf , ~Nf , 0, �
Nf+ ~Nf

~Nf

,
5Nf+ ~Nf�2Nc

3Nf
)

M i
j 1 ( Nf , 1, ~Nf , 0,

Nf+ ~Nf

~Nf
,

5Nf+ ~Nf�2Nc

3Nf
)

zaj 2Nf + ~Nf �Nc ( 1, 1, ~Nf ,
1

2Nf+ ~Nf�Nc

,
Nf

~Nf

, 2
3

)

~zja 2Nf + ~Nf �Nc ( 1, 1, ~Nf , � 1

2Nf+ ~Nf�Nc

, �
Nf

~Nf

, 2
3

)

Y ((2Nf + ~Nf �Nc)
2 � 1) ( 1, 1, 1, 0, 0, 2

3
)

W� ((2Nf + ~Nf �Nc)
2 � 1) ( 1, 1, 1, 0, 0, 1 ).
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2.3. Comparing the two theories

The �rst things which one should check in verifying a duality symmetry are the 't Hooft

anomaly matching conditions and the identi�cation of the gauge{invariant operators in the

chiral ring, which we will perform in this section. In later sections we will compare the

mass perturbations of the two theories and several of their at directions as well. One

should also check that by performing the duality transformation twice one returns to the

original theory. This works in our case in the same way as in the cases described in [9]

and in [14].

The global anomalies in both theories may easily be calculated to be :

SU(Nf )
3 Ncd

(3)(Nf )

SU(Nf )
2U(1)B d(2)(Nf )

SU(Nf )
2U(1)R

Nc( ~Nf � 2Nc)

3Nf
d(2)(Nf )

SU( ~Nf )
2U(1)R �

2

3
Ncd

(2)( ~Nf )

SU(Nf )
2U(1)Z (Nc �Nf )d

(2)(Nf )

U(1)R �
2

3
(N2

c + 1)

U(1)3R
1

27
(26N2

c � 2 ~NfNc � 26) +
2Nc

27N2
f

( ~Nf � 2Nc)
3

U(1)2BU(1)R �
4

3

U(1)2ZU(1)R �
4

3
N2
c �

2

3 ~Nf

NcN
2
f +

2

3
Nc

~Nf �
8

3
N2
f �

4

3
Nf

~Nf +
8

3
NfNc

(2:4)

with all other anomalies vanishing trivially. Hence, the anomaly matching conditions

indeed hold.

Next, let us compare the gauge{invariant operators, starting with the meson{like

operators in the two theories. The \normal" mesons of the \electric" theory, which include

at least one of Q or ~Q, may all be identi�ed with gauge singlets of the \magnetic" theory :

M i
~i
� Qi

a
~Qa
~i
; M

j
~i
� Zj

a
~Qa
~i
; M i

j � Qi
a
~Za
j : (2:5)

The mesons made out of a pair of Z-quark �elds reside in the adjoint and singlet repre-

sentations of the SU( ~Nf ) avor group. Naively, all of them may be identi�ed with the

corresponding mesons in the \magnetic" theory, Zj ~Zk � zk~z
j , but we shall see that this
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is only true for the adjoint mesons and not for the singlet. The other \normal" mesons of

the \magnetic" theory are not in the chiral ring due to the equations of motion associated

with the superpotential (2.3).

There are also generalized mesons which include the adjoint �eld. In the \electric"

theory, these are the operatorsQi
aX

a
b
~Qb
~i
, which may be identi�edwithN i

~i
in the \magnetic"

theory. All other generalized mesons, in both theories, which include Z-quarks or more

than one power of the adjoint �eld, are not in the chiral ring. This can be veri�ed by using

the equations of motion associated with the superpotentials of the two theories, which

allow us to set them to zero or to combinations of other singlet �elds.

There is one more relatively simple operator in each of the chiral rings of these theories.

It is Tr (X2) in the \electric" theory, and Tr (Y 2) in the \magnetic" theory. Super�cially

these two operators should be identi�ed, but in fact there is another operator with the

same quantum numbers, which is the singlet meson Zj
a
~Za
j in the \electric" theory and zaj ~z

j
a

in the \magnetic" theory. Thus, there can be a mixing between the two operators, and

the most general possible identi�cation is of the form

Tr (Y 2) � aTr (X2) + bZj
a
~Za
j

zaj ~z
j
a � cTr (X2) + dZj

a
~Za
j :

(2:6)

We shall see that all the coe�cients a; b; c and d are in fact non{zero.

The equations of motion resulting from the superpotential also force the baryon{like

operators in the chiral ring of the two theories to be of the form :

B[i1;���;ik][ik+1;���;in][j1;���;jm] = ��1;���;�NcX�1
�1
� � �X�k

�k
Qi1
�1
� � �Qik

�k
Qik+1
�k+1

� � �Qin
�n
�

Zj1
�n+1

� � �Zjm
�n+m

(2:7)

with n + m = Nc. It can easily be checked that these baryons in the \electric" theory

have exactly the same global symmetry numbers as the baryons in the \magnetic" theory

(constructed in the same way from Y 's, q's and z's) with ~k = Nf � n + k, ~n = 2Nf � n

and ~m = ~Nf �m. Hence, all these operators may be identi�ed.

More general hadronic operators involving quarks and anti{quarks also appear in these

theories [14]. These are, in the \electric" theory, of the form

C
[i1;���;ik][j1 ;���;jl]

[~i1;���;~im][k1;���;kn]
= ��1;���;�Nc ��1;���;�NcQ

i1
�1
� � �Qik

�k
Zj1
�k+1

� � �Zjl
�k+l

~Q�1
~i1
� � � ~Q�m

~im
�

~Z
�m+1

k1
� � � ~Z

�m+n

kn
X�m+n+1

�k+l+1
� � �X

�Nc
�Nc

(2:8)
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with k + l = m + n. Similar operators exist in the \magnetic" theory. It can easily

be checked that these operators may also be identi�ed between the two theories, with

~k = Nf � k, ~m = Nf �m, ~l = n and ~n = l.

The operators we analyzed in this section seem to be the only independent gauge{

invariant operators in the chiral ring of the two theories (actually not all of the B and C

hadrons are independent operators in the chiral ring), and we have established that they

are identical in the two theories.

2.4. Special cases of the new duality

As described above, the new duality holds for all values of Nf , Nc and ~Nf , as long

as 2Nf + ~Nf > Nc. The only di�erence for ~Nf = 0 or Nf = 0 is that some of the U(1)

symmetries disappear. In the case of ~Nf = 0 one U(1) symmetry disappears, and the new

duality goes over to Kutasov's duality [14]. Hence, the evidence we give in the next sections

for the new duality may be used as further support for Kutasov's duality. Of course, the

quantum corrections may destroy the duality in some of these cases, if they remove the

origin of moduli space from the quantum moduli space. This happens for instance in

SQCD when Nf � Nc [10]. However, we see no a{priori reason for this to occur in our

theories, and in particular we have a solution for the 't Hooft anomaly conditions whenever

2Nf + ~Nf > Nc.

For Nf = 0 two of the U(1) symmetries disappear (for general ~Nf ), and in particular

we no longer have a U(1)R symmetry. In both theories we are left with only the adjoint

�eld and with the Z-quarks, which have an R-charge of 2=3 and an interaction with the

adjoint �eld. The duality in this case takes the gauge group SU(Nc) to SU( ~Nf � Nc),

like the duality described by Seiberg [9] without the adjoint �eld. The \electric" theory is

now asymptotically free for ~Nf < 2Nc, and the \magnetic" theory is asymptotically free

for ~Nf > 2Nc. Therefore, we do not have an IR �xed point for any value of ~Nf . This

is consistent with the fact that we have no U(1)R symmetry in this case. For ~Nf = 2Nc

the U(1)R symmetry remains unbroken, and we �nd that the original theory is equal

to the dual theory (except for the avor representations of the quarks). In this case the

theory may be exactly conformal, and the new duality may be related to the N = 2 duality

discovered by Seiberg and Witten [3-5]. Note that the coupling of the quarks to the adjoint

�elds is the same as in the N = 2 theory. The main di�erence seems to be the existence

of the Tr (X3) term in the superpotential, which explicitly breaks the N = 2 symmetry

(and the R charge associated with it). It is possible that by turning on a perturbation
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proportional to this operator in the N = 2 theory, one may ow from the N = 2 duality

(with Nf = 2Nc and Nc > 2) to our duality for Nf = 0 and ~Nf = 2Nc. From there, one

can ow to other values of ~Nf as described in the next sections. Unfortunately, we have

not identi�ed any ows which increase the value of Nf . We, therefore, still do not know

how to ow to all cases from this one. However, one can ow from the case of general

Nf to the case of Nf = 0. Hence, the understanding of the case of Nf = 0 may help in

understanding the general case as well.

3. Mass perturbations of the dual theories

Another comparison which one can make between the two theories concerns their

behavior under mass perturbations. In this section we will analyze mass perturbations of

the dual theories. We will ignore the possible quantum corrections to the superpotential

whenever this is possible. In most cases we will see that this indeed gives a ow consistent

with the duality. However, it seems clear that, as in Seiberg's duality [9], whenever one

of the gauge groups is completely broken the quantum corrections become important.

Therefore, all the ows we describe here, and in the next section when we analyze the ow

along at directions, are presumably relevant only when neither gauge group is completely

broken.

3.1. Quark mass perturbations of the dual theories

When we add amass to an \electric"Q-quark, i.e. a termmM
Nf

Nf
in the superpotential,

the behavior is the same as in Kutasov's original theory [14]. In the \electric" theory the

quarks QNf and ~QNf
become massive, reducing Nf by one. In the \magnetic" theory the

equation of motion of M
Nf

Nf
forces us to give VEVs to qNf

, ~qNf and Y , reducing Nf by

one and the number of colors by two. The resulting theories are again dual under the new

duality.

Adding a mass to the Z-quarks is more subtle, due to the identi�cation (2.6), and

will be discussed later. However, it is relatively simple to perturb the theory by a mass

operator of the form mQNf ~Z ~Nf
� mM

Nf

~Nf

. In the \electric" theory, this gives a mass to

QNf and to ~Z ~Nf
, and leaves Z

~Nf without a coupling to the adjoint �eld, i.e. it becomes

a regular Q-quark. Thus, we reduce ~Nf by one, leaving Nc and Nf as they were. In

the \magnetic" theory, the equation of motion of M
Nf

~Nf

forces ~z
~Nf and qNf

to get VEVs,

breaking the \magnetic" gauge symmetry to SU(2Nf + ~Nf �Nc � 1). Let us choose the

8



components that get non{zero VEVs to be q1Nf
and ~z

~Nf

1 . Then, ~z
~Nf and qNf

are swallowed

by the Higgs mechanism, and the �elds za~Nf
and Y 1

a get a mass from the superpotential

(as well as some other �elds). When integrating out the massive �elds we �nd that Y a
1

now couples just like a regular q-quark. Hence, Nf does not change while ~Nf is reduced

by one. This is exactly the dual of the result we found in the \electric" theory. Thus, this

perturbation preserves the new duality.

3.2. Mass perturbations of the Z-quarks

Since the identi�cation of the singlet Z-meson in (2.6) is complicated, let us analyze

�rst the Z mass terms which are in the adjoint representation of the avor group. An

example of such a term is m(Z1 ~Z1 � Z2 ~Z2) � m(z1~z
1 � z2~z

2). Super�cially this gives

a mass to two Z-quarks in both theories, reducing ~Nf by two in both theories. This is

obviously inconsistent with the duality. However, because of the coupling of the Z-quarks

to the adjoint �eld, we must be careful in interpreting m as the actual \physical" mass of

the quarks. There is a vacuum in which X (Y ) does not get a VEV, and then m is indeed

the mass of the quarks. However, there could also be some other vacua. There is a-priori

no reason to identify the vacuum in which the VEVs of all �elds are zero in the \electric"

theory with the same vacuum of the \magnetic" theory. The only demand is to identify

all the gauge{invariant operators in the corresponding theories. Let us try, therefore, to

�nd a vacuum for which X gets a VEV in the \electric" theory, in the theory with �nite m

(the analysis of the \magnetic" theory is analogous). Note that this theory does not have

an R symmetry, and, therefore, in the IR m must ow either to zero or to in�nity. One

can easily �nd that the following VEVs satisfy all the F -term and D-term constraints of

the perturbed theory :

hX1
1 i = �

1

3
m; hX2

2 i =
1

3
m; hZ1

1 i =
1

3
m; h ~Z1

1 i = �
1

3
m; hZ2

2 i =
1

3
m; h ~Z2

2 i = �
1

3
m (3:1)

with all other VEVs vanishing. Along this at direction we �nd that the gauge group is

broken to SU(Nc � 2), and all components of Z1; ~Z1; Z
2 and ~Z2 become massive, either

by contributions from the superpotential or through the Higgs mechanism. Hence, along

this at direction we ow to a theory with both ~Nf and the number of colors reduced by

two. This is dual to the theory we found for zero VEVs, which had ~Nf reduced by two

without a change in the number of colors. Thus, when we include all at directions, this

mass perturbation preserves the duality symmetry.
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Let us now discuss the perturbation by the mass operator of one of the z-quarks in

the \magnetic" theory. In the \magnetic" theory, this perturbation is mz1~z
1 which we

may write as

m(( ~Nf � 1)z1~z
1 � z2~z

2 � � � � � z ~Nf
~z

~Nf + zj ~z
j )= ~Nf (3:2)

dividing it into components which are in the adjoint and singlet representations of the

avor group SU( ~Nf ). Now, according to (2.6), we should identify this operator in the

\electric" theory with

m(( ~Nf � 1)Z1 ~Z1 � Z2 ~Z2 � � � � � Z
~Nf ~Z ~Nf

+ cTr (X2) + dZj ~Zj)= ~Nf (3:3)

which equals

m(( ~Nf + d� 1)Z1 ~Z1 + (d � 1)(Z2 ~Z2 + � � �+ Z
~Nf ~Z ~Nf

) + cTr (X2))= ~Nf : (3:4)

As in the previous section, it is not obvious that m is actually the \physical" mass

of z1 and ~z1, because of the z1Y ~z1 coupling in the superpotential. However, there is

certainly a at direction of the \magnetic" theory for which the VEV of Y vanishes, and

then m is indeed the \physical" mass of these �elds. Along this at direction, we �nd in

the \magnetic" theory that ~Nf decreases by one with no change in Nf and in the gauge

group. Thus, we should be able to �nd in the \electric" theory the dual of this result, i.e.

a at direction along which Nf is unchanged, and both ~Nf and Nc decrease by one. By

demanding the existence of such a at direction we will be able to �x the values of c and

d in equation (2.6).

The most general VEVs we can have in the \electric" theory which will satisfy the

D-term equations, break the color group to SU(Nc � 1), break the Z-avor group to

SU( ~Nf � 1) and will not a�ect the Q-avor group, are of the form (up to global and local

transformations)

hX1
1 i = A

hX
j
j i = B (j = 2; � � � ;Nc)

hZ1
1 i = h ~Z1

1 i = F

(3:5)

with some constants A;B and F . All other VEVs vanish. We can obtain several equations

relating A;B;F; c and d. First of all, since X must be traceless, we �nd that

A+ (Nc � 1)B = 0: (3:6)
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Next, we demand that these VEVs be solutions of the equations of motion resulting from

the perturbed superpotential. The equation of motion of X in the perturbed theory implies

that the matrix 3X2 + 2mc
~Nf
X + 3Zj ~Zj must be proportional to the identity matrix. This

gives an additional equation,

3B2 +
2mc

~Nf

B = 3A2 +
2mc

~Nf

A + 3F 2: (3:7)

The equations of motion of Z1 and ~Z1 lead to another equation,

3A+m
~Nf + d� 1

~Nf

= 0: (3:8)

We need two more equations to determine all the constants, and these will be obtained by

demanding that all the �elds Zj , ~Zj for j = 2; � � � ; ~Nf and Xj
k for j; k = 2; � � � ;Nc remain

massless along this at direction. (Recall that we want to ow to the \electric" theory

with ~Nf � 1 massless avors of Z-quarks and Nc � 1 colors). By demanding that ~Nf � 1

avors of Z-quarks remain massless we �nd

3B +m
d� 1

~Nf

= 0 (3:9)

and by demanding that the SU(Nc � 1) adjoint components of X remain massless we �nd

3B +
cm

~Nf

= 0: (3:10)

The above �ve equations have a unique solution for A;B;F; c and d. Thus, we have found

the values of c and d in (2.6):

c = �
~Nf

Nc
; d = 1�

~Nf

Nc
: (3:11)

We have also found, in the \electric" theory, a at direction along which the theory ows

to the dual of the theory that we have found when we considered the \magnetic" theory.

The duality is, therefore, consistent with this mass perturbation.

We can �nd the other constants in equation (2.6) by using the inverse equation

Tr (X2) � ~aTr (Y 2) + ~bzaj ~z
j
a

Zj
a
~Za
j � ~cTr (Y 2) + ~dzaj ~z

j
a:

(3:12)
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By repeating the previous analysis with a perturbation proportional to Z1 ~Z1, we can easily

�nd that

~c = �
~Nf

2Nf + ~Nf �Nc

; ~d = 1�
~Nf

2Nf + ~Nf �Nc

: (3:13)

The consistency of (2.6) and (3.12) requires that c~a+ d~c = a~c+ c ~d = b~a+ d~b = a~b+ b ~d = 0

and that c~b+ d ~d = b~c+ d ~d = a~a+ b~c = a~a+ c~b = 1. The solution to all these equations is

a =
Nc � 2Nf

Nc
; b = �

2Nf

Nc
; ~a =

~Nf �Nc

2Nf + ~Nf �Nc

; ~b = �
2Nf

2Nf + ~Nf �Nc

:

(3:14)

The identi�cation of the operators with these values of the constants is the only one which

is consistent with the duality, and we will assume it to hold.

3.3. Mass perturbations of the adjoint �elds

Next, we consider the behavior of the theories under a mass perturbation associated

with a mass operator for the adjoint �elds. We shall start with the case ~Nf = 0, and later

analyze the di�erences which arise in the case ~Nf > 0. When ~Nf = 0, the identi�cation

of the mass operator for the adjoint �elds is necessarily mTr (X2) / mTr (Y 2). As in the

previous discussions, we ignore the quantum corrections to the superpotential. However,

for this perturbation we will �nd that (at least) in some cases they do play an important

role.

When we add this operator to the \electric" theory, the equation of motion of X

implies that 3X2 + 2mX (where X here is the VEV of the �eld X) must be proportional

to the identity matrix. One trivial solution of this equation of motion is X = 0. In this

case we will have no breaking of the gauge symmetry, and m will be the \physical" mass

of the �eld X. However, there are also other solutions. Since X obeys Tr (X) = 0, it

can easily be seen that the most general solution (up to gauge transformations) for which

no other �elds get VEVs is Xi
i = A; i = 1; � � � ; k and X

j
j = B; j = k + 1; � � � ;Nc, where

0 < k < Nc=2, A = 2
3
m Nc�k

2k�Nc
and B = 2

3
m k

Nc�2k
. The previous case of X = 0 may be

obtained from this one by taking k = 0. To analyze the spectrum along this at direction,

let us write the matrix X in the form

X =

�
AI +X1 X2

X3 BI +X4

�
(3:15)

where I is the identity matrix and we divide the rows/columns of X into groups of size

(k;Nc � k). By examining the superpotential, we can see that the �elds corresponding
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to the matrices X1 and X4 become massive, while those corresponding to X2 and X3

remain massless and are swallowed by the Higgs mechanism. The gauge group breaks into

SU(k) � SU(Nc � k) � U(1). The quarks and anti{quarks are divided into two groups.

The �rst one includes those which are charged under SU(k) and singlets of SU(Nc � k),

while the other includes those which are charged under SU(Nc� k) and singlets of SU(k).

When we integrate out the massive �elds, the generated superpotential of the \electric"

theory along this at direction turns out to be zero. Thus, we ow to a theory containing

two copies of supersymmetric QCD, one with Nf avors and gauge group SU(k), and the

other with Nf avors and gauge group SU(Nc � k). There is an additional local U(1)

symmetry whose charge is proportional to the baryon number in each of the two theories.

Let us now analyze the same perturbation in the \magnetic" theory. The analysis of

the possible VEVs of Y is similar to the one we have performed in the \electric" theory.

The possible breakings of the gauge group are to SU(~k)�SU(2Nf �Nc � ~k)�U(1) with

0 � ~k < Nf �Nc=2. The only di�erence is that in the \magnetic" theory there is also a

coupling of the formMqY ~q, and we must understand what a large VEV for Y does to this

non{renormalizable term. We postpone the analysis of this issue to section 5.2 and mention

here only the results. We �nd that a large VEV for Y causes, after integrating out the

massive �elds, this term to go over to a term of the formM i
~i
qai ~q

~i
a, plus non{renormalizable

terms which appear to be irrelevant. The constant in front of this term depends on the

VEV of Y , and thus we will �nd a di�erent constant for the �elds qa~qa with a = 1; � � � ; ~k

and for the �elds qa~qa with a = ~k + 1; � � � ; 2Nf �Nc. We can then add this term to the

original Nq~q term in the superpotential. We �nd that we have two independent meson

�elds in the (Nf ;Nf ) representation of the SU(Nf ) � SU(Nf ) avor group. One of the

mesons (a linear combination ofM andN) couples only to the �rst ~k colors of quarks while

the other couples only to the last 2Nf �Nc�~k colors of quarks. As in the \electric" theory,

the �elds Y2 and Y3 also remain massless, and are swallowed by the Higgs mechanism. We

thus ow to two copies of Seiberg's \magnetic" theory [9], one with Nf avors and a gauge

group SU(~k) and the other with Nf avors and a gauge group SU(2Nf �Nc � ~k). As in

the \electric" theory, there is also a local U(1) whose charge is proportional to the baryon

number in each of the two theories.

Now that we have found the resulting theories in both cases, we should see how they

are dual to each other. This means that we should match the at directions which we have

found, along which (when adding the mass perturbation) one can ow, between the two

theories. Let us start with the case of Nf � Nc and 0 < k < Nc=2. This condition means
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that in the \electric" theory we have Nf > k and Nf > Nc � k. From Seiberg's results

[9] we know that the theories of Nf avors and k colors and of Nf avors and Nc � k

colors each have a dual IR description. This description includes Nf avors, Nf � k colors

and additional meson{like singlet �elds for the �rst theory, and Nf avors, Nf �Nc + k

colors and additional meson{like singlet �elds for the second theory. (Strictly speaking,

Seiberg's results regarding duality apply only for Nf > Nc + 1, but we can use them also

for Nf = Nc+1 since then they lead to a dual description in terms of mesons and baryons

with no gauge symmetry [10]). This is exactly the theory we �nd when going along the at

direction of ~k = Nf �Nc+k in the \magnetic" theory. Thus, along these at directions we

�nd that our duality goes over to two copies of Seiberg's duality [9], with an additional local

U(1) symmetry coupling to the baryon number of the respective \electric" and \magnetic"

theories. The same analysis applies to the case of Nf � Nc and 0 < ~k < Nf �Nc=2 when

we interchange the roles of the \electric" and \magnetic" theories.

We still need to understand the cases of k = 0 and ~k = 0, the cases of 0 < ~k < Nf �Nc

when Nf > Nc and the cases of 0 < k < Nc�Nf when Nf < Nc, for which we did not �nd

dual theories in the discussion above. These cases all lead, at least in one of the theories

(when identifying ~k = Nf � Nc + k), to a SQCD theory in which the number of quark

avors is smaller or equal to the number of colors. For these theories it is known that the

quantum e�ects are important, and the quantum moduli space is not equal to the classical

moduli space [10]. We will assume that the quantum e�ects along these at directions in

our theories are the same as in the corresponding SQCD theories [10]. We shall see that

this assumption is consistent with the duality.

Let us start with the case of k = 0 for Nf > Nc. According to the above discussion,

this should be dual to the case of ~k = Nf � Nc, which gives rise to a gauge theory of

SU(Nf ) � SU(Nf � Nc) � U(1) in the \magnetic" theory. In the \electric" theory we

get just SQCD with Nf avors and Nc colors, for which we have [9] a dual description

in terms of a \magnetic" theory based on the gauge group SU(Nf �Nc). Thus, we need

to understand the \extra" SU(Nf ) gauge theory with Nf avors which we obtain in the

\magnetic" theory. According to [10], when performing an exact quantum analysis of this

theory (without the additional singlets which we have here), it has an IR description in

terms of mesonsm
~i
i and baryons B and ~B, constrained by det(m)�B ~B = �2Nf . With the

additional singlets we, therefore, �nd that our SU(Nf ) gauge theory is equivalent to the

theory of mesons and baryons with this constraint and with an additional superpotential

of the form M i
~i
m

~i
i (M denotes the mesons which couple, in the \magnetic" theory, to the
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quarks which are charged under the local SU(Nf ), as described above). Integrating out

the �eldM we �nd that m = 0. Hence, we are left just with the �elds B and ~B constrained

by B ~B = ��2Nf . These �elds are charged under the local U(1) symmetry, with opposite

charges. We claim that this theory, when combined with the SU(Nf � Nc) \magnetic"

theory and with a U(1) gauge symmetry coupling the two, is equivalent to the \electric"

SU(Nc) gauge theory. To form a gauge{invariant operator in the \magnetic" theory, we

must take an operator in the SU(Nf �Nc) \magnetic" theory (these are known to be in a

one-to-one correspondence with the operators of the \electric" theory [9]) and add to it an

appropriate power of B or ~B so that the result is invariant under the local U(1) symmetry.

Obviously there is just one way to do this. Thus, the resulting theories along these at

directions are also dual. A similar analysis holds for the case ~k = 0 when Nf < Nc.

The other cases we had problems with were those of k < Nc�Nf when Nf < Nc, and

those of ~k < Nf �Nc when Nf > Nc. In all of these cases one of the gauge theories we �nd

along this at direction has a number of avors smaller than the number of colors. In this

case it is known that SQCD does not have a stable vacuum, due to quantum e�ects. Thus,

it is possible that these at directions may not even exist in the full quantum theory,

due to the quantum e�ects that we have ignored. In any case we expect the quantum

corrections to be important along these at directions and we shall not analyze them here

any further. Except for these cases, all at directions in the \electric" theory are identi�ed

with at directions in the corresponding \magnetic" theory. In all cases we ow to theories

which are already known to be dual, either by the description of SQCD for Nf = Nc and

Nf = Nc + 1 in terms of bound states [10], or by the duality transformation of SQCD [9].

The case of ~Nf > 0 is similar to the previous case. However, according to (2.6), in

this case the mass operator mTr (X2) is identi�ed with a non{trivial linear combination

of Tr (Y 2) and zj ~z
j :

mTr (X2) � m(~aTr (Y 2) + ~bzj ~z
j): (3:16)

In the \electric" theory, the analysis of the VEVs of X is the same as in the previous case

(assuming that the Z-quarks do not get VEVs). The VEV ofX gives a mass to all Z-quarks

(except in the case k = 0), and, therefore, we ow to the same theories we discussed above

(for k > 0). In the \magnetic" theory, we must now �nd VEVs for Y and for the z-quarks

which will solve the equations of motion coming from the superpotential perturbed by the

terms Tr (Y 2) and zj ~z
j . The solutions for which the z-quarks do not get VEVs are dual to

solutions in which the Z-quarks do get VEVs. Hence, we will analyze here the case in which
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all z-quarks get VEVs. These VEVs must be orthogonal and of equal magnitude for all the

z-quarks and anti{quarks (i.e. they have the form zaj = A�aj ; ~z
j
a = A�ja). In this case we �nd

that we ow exactly to the theories described above. The VEVs of z, ~z and Y break the

gauge symmetry to SU(~k)�SU(2Nf�Nc�~k)�U(1). All the z-quarks and components of

Y either become massive or are swallowed by the Higgs mechanism. The resulting theories

are exactly the theories discussed above, for which we already investigated the duality.

The cases in which the Z-quarks get VEVs (and the z-quarks do not), and the cases in

which we add a term Tr (Y 2) instead of Tr (X2) are all analogous. Note that we assumed

here that Nf > Nc=2. If this does not hold, we expect the quantum corrections always to

be important, since we always seem to ow to a SQCD theory with a number of avors

smaller than the number of colors.

We must still discuss what happens when k = 0 and ~Nf > 0. In this case in the

\electric" theory the Z-quarks do not become massive, and integrating out the �eld X

generates a (non{renormalizable) interaction between them of the form W = Zj
a
~Za
kZ

k
b
~Zb
j ,

which forces their R charge to be 1
2
. Thus, we ow to a SQCD theory with Nf avors of

one type, ~Nf avors of another type (with R = 1
2
) andNc colors. In the \magnetic" theory,

along the corresponding at direction, only Y gets a VEV, which breaks the gauge group

to SU(Nf )�SU(Nf + ~Nf �Nc)�U(1). The mass of the z-quarks gets contributions both

from the explicit mass term (3.16) and from the VEV of Y through the superpotential. For

the duality to hold, these terms must cancel out for the z-quarks which are charged under

the SU(Nf + ~Nf �Nc) gauge group. Using the values of ~a and ~b which we found above

we see that this indeed occurs. The \magnetic" theory turns out to be a \sum" of two

theories. The �rst is a \magnetic" theory of Nf avors and Nf colors (which behaves as

in the discussion above). The second is a theory of Nf \normal" avors and ~Nf additional

avors, which have a superpotential analogous to the one we have found in the \electric"

theory, with gauge group SU(Nf + ~Nf � Nc). We claim that this theory is dual to the

theory which we have found when we considered the corresponding ow from the \electric"

theory. It includes couplings of the form Mq~q +Mq~z +Mz~q, but not Mz~z, where the

mesons may be identi�ed with the operators Q ~Q, Z ~Q and Q ~Z in the \electric" theory.

This new duality satis�es the usual requirements, i.e. the 't Hooft anomaly conditions for

the global symmetry group (which is the same as the original global symmetry group) and

the identi�cation of the bound states. In fact, we can ow to this new duality also directly

from Seiberg's duality [9], starting from a SQCD theory with Nf + ~Nf avors and Nc

colors and perturbing it by an operator of the form M
j
kM

k
j , where we include all mesons

composed of the last ~Nf avors. Thus, we �nd that also this case is compatible with the

duality.
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4. Flat directions in the dual theories

In this section we will analyze some of the at directions of the new dual theories,

verifying that their behavior is consistent with the duality. Since we do not analyze here

the quantum corrections to the superpotentials of the two theories, we cannot prove that

these at directions indeed exist and behave as we describe. However, all the terms one can

imagine in the superpotential do not seem to eliminate these at directions of the classical

theory. We shall, therefore, assume their existence in the full theory. The consistency of

our results strongly suggests that these at directions do indeed exist. In this section we

study, for simplicity, only at directions along which just one gauge{invariant operator gets

a VEV while all others do not. We �nd that along some at directions the theory ows to

another new dual theory, along some other at directions the \electric" and \magnetic"

theories both ow to the same theory in the IR, and along one at direction the new

duality ows to Seiberg's duality [9]. The discussion of the at direction for which the

meson operator M i
~i
gets a VEV is more complicated and, therefore, is postponed to the

next section.

4.1. Mesonic at directions

In Seiberg's duality [9], the e�ect of giving a meson a VEV on the \electric" (\mag-

netic") theory is equivalent to the e�ect of adding a mass term (proportional to the meson

operator) on the \magnetic" (\electric") theory. For the new dual theories, it can easily

be seen that giving the mesonM i
~i
a VEV is similar to adding a term proportional to N i

~i
to

the superpotential. Similarly, giving the generalized meson N i
~i
a VEV is dual in this sense

to adding a perturbation proportional to M i
~i
(i.e. a mass term in the \electric" theory).

Thus, the analysis of the at direction along which only N i
~i
gets a VEV follows the analysis

of the Q-quark mass perturbation described in the previous section.

Let us give a VEV only to the generalized meson Q1X ~Q1 � N1
1 , keeping the VEVs

of all other gauge{invariant operators zero. In the \electric" theory, this corresponds (up

to color transformations) to Q1
1,

~Q2
1 and X1

2 getting VEVs, which can be checked to be a

at direction of the theory. The color group breaks to SU(Nc � 2), with Nf � 1 avors

remaining massless. Some components of X also get a mass from the superpotential,

leaving the adjoint of SU(Nc � 2) massless. Thus, along this at direction we ow to

the \electric" theory with Nf � 1 avors and Nc � 2 colors. ~Nf remains unchanged

along this at direction. In the \magnetic" theory, along this at direction only N1
1
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gets a VEV. This leads to a mass term for q1 and ~q1, and we ow to the \magnetic"

theory with (Nf � 1) q-avors, 2Nf + ~Nf � Nc colors, and with ~Nf unchanged. Since

2Nf + ~Nf �Nc = 2(Nf �1)+ ~Nf � (Nc�2) this is exactly the dual to the \electric" theory

which we found above. We conclude that the duality holds along this at direction.

Another at direction of these theories is realized by giving a VEV to Zj ~Q~i � M
j
~i
.

The analysis of this at direction is similar to the analysis of the perturbation by this

operator carried out in the previous section. We should just interchange the \electric" and

\magnetic" theories. In the \electric" theory, ~Nf decreases by one and the gauge group

breaks to SU(Nc � 1), while in the \magnetic" theory, ~Nf decreases by one without a

change in the gauge group. Again, the duality is preserved.

Yet another at direction is obtained by giving a VEV to Z2 ~Z1 � z1~z
2. In both

theories, this reduces the number of colors by one. The quarks Z2, ~Z1,z1 and ~z2 are all

swallowed by the Higgs mechanism, while the quarks Z1, ~Z2,z2 and ~z1, as well as some

components of X and Y , get masses from the superpotential. Thus, in both theories ~Nf

is reduced by two while the number of colors is reduced by one. This result is compatible

with the duality. The discussion of the at direction along which a diagonal Z-meson gets

a VEV is analogous to the discussion of the perturbation by the Z-mass operator in the

previous section and, therefore, will not be repeated here.

4.2. The baryonic at direction

In Seiberg's dual theories [9], the baryon composed of quarks is equivalent to the

baryon composed of dual quarks. In [11] the at direction along which this baryon gets a

VEV was analyzed. It was found that the same IR theory results from both the \electric"

and the \magnetic" theories. In the new dual theories we also expect the gauge groups

to be completely broken along this at direction, and to �nd the same IR e�ective theory

resulting from both theories. However, in the present case the baryon which is composed

of only quarks in one theory is equivalent to the baryon composed of quarks and adjoint

�elds in the dual theory. We shall analyze here the simplest case, in which the baryon

made of only quarks (in one of the theories) gets a VEV. It seems quite obvious (and

has been checked in several cases) that the behavior along at directions for which other

baryons (which are made in both theories out of the corresponding Q and Z quarks and

adjoint �elds) is similar. We shall �nd in this case that the \electric" and the \magnetic"

theories indeed give rise to the same IR theory.
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As described in section 2, the baryon operator in the \electric" theory is given by

B
[i1;���;ik][ik+1;���;in][j1;���;jm]

el = ��1;���;�NcX�1
�1
� � �X�k

�k
Qi1
�1
� � �Qik

�k
Qik+1
�k+1

� � �Qin
�n
�

Zj1
�n+1

� � �Zjm
�n+m

(4:1)

with m+ n = Nc, and in the \magnetic" theory by

B
[~i1;���;~i~k][

~i~k+1;���;
~i~n][~j1 ;���;~j ~m]

mag = ��1;���;�2Nf+ ~Nf�Nc
Y �1
�1

� � �Y
�~k
�~k

q
�1
~i1
� � � q

�~k
~i~k
q
�~k+1
~i~k+1

� � � q�~n~i~n
�

z
�~n+1
~j1

� � � z
�~n+~m

~j ~m

(4:2)

with ~m+~n = 2Nf+ ~Nf�Nc. The identi�cation between the operators in the two theories is

by ~k = Nf�n+k, ~n = 2Nf�n, ~m = ~Nf �m, and by �i1;���;ik;
~i~k+1;���;

~i~n = �
~i1;���;~i~k;ik+1;���;in =

�j1;���;jm;~j1;���;~j ~m = 1.

Let us choose the baryon made of the �rst Nc Q-quarks, B
[ ][1;���;Nc][ ]

el , to get a non{

zero VEV. This baryon only exists for Nf � Nc which we will assume in this subsection.

In the \magnetic" theory this baryon is equivalent to B
[Nc+1;���;Nf ][1;���;Nf ][1;���; ~Nf ]
mag . In

the \electric" theory, the �rst Nc Q-quarks get VEVs and are swallowed by the Higgs

mechanism, with the gauge group being completely broken (one chiral super�eld remains

massless, labeling the at direction. We shall ignore it since it is a non{interacting singlet).

All other �elds remain massless. As in Seiberg's theory [11], the global symmetry breaks

to

SU(Nc)� SU(Nf �Nc) � SU(Nf )� SU( ~Nf ) �U(1)B̂ � U(1)Ẑ � U(1)R̂; (4:3)

and the charges of the massless �elds turn out to be :

Qî
a ( Nc, Nf �Nc , 1, 1,

Nf

(Nf�Nc)Nc
, �

Nf

Nc
,

3Nf+ ~Nf�2Nc

3(Nf�Nc)
)

~Qa
~i

( Nc, 1, Nf , 1, � 1
Nc

,
Nf�Nc

Nc
, 1 + 1

3

~Nf�2Nc

Nf
)

Zj
a ( Nc, 1, 1, ~Nf ,

1
Nc

, �
(Nc+ ~Nf)Nf

Nc
~Nf

, 2
3

)

~Za
j ( Nc, 1, 1, ~Nf , � 1

Nc
,

(Nc+ ~Nf )Nf

Nc
~Nf

, 2
3

)

Xa
b ( N2

c � 1, 1, 1, 1, 0, 0, 2
3

).

The superpotential associated with these massless �elds is (assuming no quantum correc-

tions) the same as the original superpotential (2.1), since all the �elds involved remain

massless. This is the only classical interaction between the �elds in the IR.
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In the \magnetic" theory it is obvious from the form of the baryon operator that

all Nf + ~Nf quarks must get a VEV. This is, of course, possible since Nf � Nc implies

Nf+ ~Nf � 2Nf+ ~Nf �Nc. We can always choose (by avor and color transformations) the

VEV of q to be diagonal, qij = �ijAi. The F -term equations force us to choose the non{zero

components of z (by avor and color transformations) to be of the form z
Nf+j
j = zj for

j = 1; � � � ; ~Nf . Then, the simplest choice for the VEV of Y leading to a non{zero baryon

is Y
Nf+ ~Nf+i

Nc+i
= yi for i = 1; � � � ;Nf �Nc with all other components of Y vanishing. The

gauge group is completely broken (the q and z VEVs break it to SU(Nf�Nc), which the Y

VEV then breaks completely), and the D terms in the scalar potential lead to constraints

which determine (up to an overall constant) the VEVs Ai, zi and yi. The solution turns

out to be Ai = A for i = 1; � � � ;Nc, Ai = B for i = Nc+1; � � � ;Nf , zi = z for i = 1; � � � ; ~Nf

and yi = y for i = 1; � � � ;Nf �Nc, with three linear equations relating jAj2,jBj2,jzj2 and

jyj2. Thus, we have found the VEVs of all �elds along this at direction (all other VEVs

vanish).

The VEV of q breaks the q-avor SU(Nf ) and color SU(2Nf + ~Nf �Nc) symmetries

together to SU(Nc) � SU(Nf �Nc) � SU(Nf + ~Nf �Nc) where the �rst two factors are

global symmetries which are diagonal products of the avor and color symmetries, and

the last factor is a local symmetry. The VEV of z breaks the local SU(Nf + ~Nf � Nc)

symmetry to a global SU( ~Nf ) (which is a diagonal combination of the original SU( ~Nf )

avor group and part of the color group) and a local SU(Nf �Nc). The Y VEV breaks

the SU(Nf � Nc) � SU(Nf � Nc) symmetry to its diagonal subgroup which remains a

global symmetry. The SU(Nf ) ~q-avor symmetry still remains, and thus we are left with

the same global symmetry as we found for the \electric" theory (4.3).

Next, we should check which �elds become massive along this at direction. All of the

terms in the superpotential (2.3) directly give a mass to some of the �elds when plugging

in the VEVs. To analyze the e�ect of these terms on Y it is simplest to decompose the

matrix Y as follows :

Y =

0
B@

Y1 Y2 Y3 Y4
Y5 Y6 Y7 Y8
Y9 Y10 Y11 Y12
Y13 Y14 Y15 Y16

1
CA (4:4)

where the 2Nf + ~Nf �Nc rows and columns of the matrix Y are decomposed into groups

of size (Nc;Nf �Nc; ~Nf ;Nf �Nc). We chose a VEV in which Y8 is diagonal and the VEVs

of all the other submatrices vanish. It is then easy to see that the �elds which get a mass

from the superpotential are all the components of ~q and ~z; M i
~i
for i = Nc + 1; � � � ;Nf ;

20



N i
~i
; M

j
~i
; M i

j for i = Nc + 1; � � � ;Nf ; Y2; Y6 + Y16; a linear combination of Y9 and M i
j

for i = 1; � � � ;Nc; Y10; Y11; Y12; Y13; Y14; and Y15. Some of the �elds which remain

massless ((2Nf + ~Nf �Nc)
2 � 1 of them) are swallowed by the Higgs mechanism and, as

in the \electric" theory, one �eld remains massless and labels the at direction. These can

be seen to be all the components of q (including Nf (2Nf + ~Nf �Nc) super�elds), all the

components of z (including ~Nf (2Nf+ ~Nf�Nc) super�elds) and the matrices Y5,Y6�Y16,Y7

and Y8, which include (Nf �Nc)(2Nf + ~Nf �Nc) more super�elds.

The �elds which remain massless are thus Y4; M
i
~i
for i = 1; � � � ;Nc; Y3; a linear

combination of Y9 and M i
j for i = 1; � � � ;Nc; and Y1. By computing the global quantum

numbers of all these �elds, one can �nd that they are exactly the same as those we found

above for the \electric" �elds, if we identify them (in the order in which they appear

above) with the \electric" �elds which remained massless (in the order they appear in the

table which gives their quantum numbers). The superpotential of the massless �elds turns

out to be, after integrating out the massive �elds, exactly the same as the one we have

found in the \electric" theory, with the appropriate identi�cation of the �elds. The only

contribution is from the Tr (Y 3) term acting on the submatrix

Ŷ =

�
Y1 Y3
Y9 Y11

�
: (4:5)

Thus, we �nd, as in Seiberg's duality, that along this baryonic at direction the

\electric" and \magnetic" theories go over to the same IR theory, providing additional

support for the new duality conjecture.

4.3. The adjoint at direction { ow to Seiberg's duality

Another �eld which can sometimes get a VEV along a at direction is the �eld Tr (X2)

(or Tr (Y 2) in the \magnetic" theory). Since Tr (X) = 0 and the equation of motion of

X (in the absence of VEVs for the Z-quarks) forces X2 to be proportional to the identity

matrix, this is only possible when Nc is even. In this case we may have a at direction

for which Xi
i = A (i = 1; � � � ;Nc=2) and X

i
i = �A (i = Nc=2 + 1; � � � ;Nc). Along this at

direction the gauge group breaks to SU(Nc=2)� SU(Nc=2) � U(1), and the Z-quarks all

become massive. Thus, we ow to two SQCD theories with Nf avors and Nc=2 colors,

coupled by a U(1) gauge symmetry. The �elds corresponding to the diagonal submatrices

of X become massive, while those corresponding to the o�{diagonal submatrices of X

remain massless and are swallowed by the Higgs mechanism.
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In the \magnetic" theory, according to (2.6), Y , z, and ~z must all get VEVs along

this at direction (since the operator identi�ed with Tr (X2) must be non{zero while the

operator identi�ed with Zj ~Zj must be zero). In fact, z and ~z must get diagonal VEVs,

because we assume that the adjoint z-mesons do not get VEVs. Examining the equations

of motion and the tracelessness condition of Y we �nd that this is only possible for even

2Nf � Nc. Then, Y can get a VEV of the form Y i
i = A (i = 1; � � � ;Nf � Nc=2) and

Y i
i = �A (i = Nf � Nc=2 + 1; � � � ; 2Nf �Nc), where A is proportional to the VEV of z

and ~z. The gauge group breaks to SU(Nf �Nc=2) � SU(Nf �Nc=2)� U(1), and the z-

quarks are swallowed by the Higgs mechanism (or get a mass from the superpotential). We,

therefore, ow to two \magnetic" SQCD theories with Nf avors and Nf �Nc=2 colors.

The �elds which were contained in Y either get a mass from the superpotential or remain

massless and are swallowed by the Higgs mechanism. There is also an additional U(1) local

symmetry which couples the two theories. The superpotentials in the \magnetic" theories

ow to two copies of the superpotential of Seiberg's \magnetic" theory in the same way as

described in the discussion of the adjoint mass perturbation in section 3.3.

Thus, we �nd here the same results as those that we obtained in the investigation of

the adjoint mass perturbation (in the cases for which the quantum corrections were not

important). Again, we ow to two copies of Seiberg's dual theories [9], this time with the

same gauge group for the two copies, and with an additional U(1) gauge symmetry in both

theories. As in the analysis of the adjoint mass perturbation, we expect quantum e�ects

to be important when Nf � Nc=2. The above analysis is only relevant when Nf > Nc=2.

5. The mesonic at direction

Unlike the previous at directions, we can prove that a at direction along which

the meson operator gets a VEV exists in the quantum theory. This may be done as for

ordinary SQCD, by giving masses to all the �elds, computing the gluino condensate in

the low{energy Yang{Mills theory, and relating it by the Konishi anomaly to the meson

VEV. This gives the VEV of the meson in the massive theory. By taking the masses to

zero in various ways, we can get any meson VEV of rank smaller than Nc. We cannot

prove in this way that no other �elds get VEVs along this at direction, but this is a

reasonable assumption, which we will justify by discussing the possible corrections to the

superpotential in the two theories. Although, for simplicity, we shall limit the discussion

of this section to the case ~Nf = 0 corresponding to [14], it can be generalized to arbitrary

~Nf .
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5.1. The mesonic at direction in the \electric" theory

The classical superpotential in the \electric" theory of ~Nf = 0 is of the form

Wel = Tr (X3): (5:1)

In the quantum theory, there are two types of operators which may appear in the superpo-

tential without breaking any of the symmetries of the theory. The �rst type of operators

involves the quark �elds. In order to respect the avor symmetries these can be of the

form det(QXn ~Q) for some integer n (which must be larger than zero if Nf � Nc, and non{

negative otherwise). The second type of operators involves only the �eld X, like Tr (Xn)

(there is a �nite number of independent operators of this sort) or det(X). All these opera-

tors must of course appear with appropriate powers so that the resulting R charge will be

2. Of course, products of operators of both types may also appear. Envisioning the most

general superpotential which one can write down using these terms, it is hard to see how

X = 0 will not turn out to be a solution of the equations of motion also when we give a

VEV to one quark and one anti{quark avor (so as to be along the mesonic at direction).

We assume, of course, that the point for which all VEVs vanish is in the quantum moduli

space of the theory for all Nf > Nc=2. Otherwise the discussion of the duality should

be changed completely. Of course, in the \electric" theory, the rank of the meson VEV

cannot be larger than Nc. Hence, it is reasonable to assume that the quantum theory has

a mesonic at direction, for which the meson is the only gauge{invariant operator getting

a VEV, at least for mesons of small rank.

Along this at direction (assuming a meson VEV of rank one), since one quark and one

anti{quark acquire a VEV and X does not, the gauge symmetry is broken to SU(Nc� 1).

We will choose the �elds which acquire non{zero VEVs to be Q
Nf

Nc
and ~QNc

Nf
. The �elds

QNf and ~QNf
(all components apart from one which labels the at direction) now get

swallowed by the Higgs mechanism. The �eld X includes an adjoint, a fundamental,

an anti{fundamental and a singlet representation of the new gauge group. Ignoring the

quantum corrections all of these �elds also remain massless. Thus, we obviously do not

ow to the \electric" theory with Nf �1 avors and Nc�1 colors, since we have additional

super�elds which have non{trivial interactions (classically among themselves and with the

�eld X, and in the quantum theory perhaps with the quarks as well). Denoting the

SU(Nc � 1) adjoint �eld in X by X̂ , the fundamental and anti{fundamental �elds by Z

23



and ~Z, and the singlet �eld (with an arbitrary normalization) by A, one can easily �nd

that the original superpotential becomes

W = Tr (X3)

= Tr (X̂3) + 3ATr (X̂2) + 3ZaX̂
a
b
~Zb � 3(Nc � 2)AZa ~Z

a � (Nc � 2)(N2
c �Nc + 1)A3:

(5:2)

The resulting theory has a global symmetry

SU(Nf � 1)� SU(Nf � 1)� U(1)B̂ �U(1)Z �U(1)R̂; (5:3)

where U(1)B̂ and U(1)R̂ are the new baryon number and R-charge symmetries (the old

ones were broken by the VEV). There is an additional U(1)Z which remains a symmetry

of the theory. It is a combination of two U(1)'s originating from the two (broken) avor

SU(Nf ) groups and of a U(1) originating from the (broken) color group.

In addition to the previously mentioned �elds, the quarks (and anti{quarks) whose

color index corresponds to the direction of the VEVs also remain massless and decouple

from the theory. The full �eld content of the resulting theory, with the quantum numbers

of SU(Nc � 1) and of the global symmetry group SU(Nf � 1) � SU(Nf � 1) � U(1)B̂ �

U(1)Z � U(1)R̂, is :

Qi
a Nc � 1 ( Nf � 1 , 1, 1

Nc�1
,

Nc�Nf

Nc�1
,

Nf�
2
3
Nc

Nf�1
)

Qi
Nc

1 ( Nf � 1, 1, 0, Nf ,
Nf�

2
3
Nc

Nf�1
)

~Qa
~i

Nc � 1 ( 1, Nf � 1, � 1
Nc�1

,
Nf�Nc

Nc�1
,

Nf�
2
3
Nc

Nf�1
)

~QNc

~i
1 ( 1, Nf � 1, 0, �Nf ,

Nf�
2
3
Nc

Nf�1
)

X̂a
b ((Nc � 1)2 � 1) ( 1, 1, 0, 0, 2

3
)

Za Nc � 1 ( 1, 1, 1
Nc�1

, �
Nc(Nf�1)

Nc�1
, 2

3
)

~Za Nc � 1 ( 1, 1, � 1
Nc�1

,
Nc(Nf�1)

Nc�1
, 2

3
)

A 1 ( 1, 1, 0, 0, 2
3

)

W� ((Nc � 1)2 � 1) ( 1, 1, 0, 0, 1 ).

The R charge pertains to the lowest component of each super�eld, and the superpotential

is given by (5.2).
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5.2. The mesonic at direction in the \magnetic" theory

In the \magnetic" theory of ~Nf = 0 [14] the classical superpotential is of the form

Wmag =M i
~i
qiY ~q

~i +N i
~i
qi~q

~i +Tr (Y 3): (5:4)

For this superpotential it is obvious that any meson VEV, with zero VEVs for the other

�elds, is a at direction. As in Seiberg's \magnetic" theory [9], this superpotential (at

least for Nf > Nc) is subject to quantum corrections. These are necessary in order to

match the \electric" theory, in which a meson cannot get a VEV of rank higher than

Nc. Possible terms in the full quantum superpotential which include meson operators are

for instance det(M) or MqY n~q, raised to appropriate powers so as to have the correct R

charge. However, it seems that any meson VEV of small rank, with zero VEVs for all other

�elds, must be a solution of the equations of motion for the most general superpotential

which one can write. For instance, the equation of motion of the possible term in the

superpotential of the form det(M)1=(Nf�
2
3
Nc) vanishes whenever the rank of M is less

than 2
3
Nc. Thus, it seems (though again we have no rigorous proof of this) that also in

the \magnetic" theory there is a at direction, for which M is non{zero of small rank (in

particular of rank 1 as we want) while all other operators vanish.

The e�ect of going far along this at direction is less clear than in the \electric"

theory. In Seiberg's \magnetic" theory [9], a VEV toM was equivalent to a mass term for

one of the dual quarks. Thus, going along this at direction we integrated out the quark

that became massive. However, here M is the coe�cient of qY ~q, so it is not clear what is

the meaning of taking one component of M to be very large. The problem arises because

the relevant term in the superpotential is non{renormalizable. We want to take M
Nf

Nf
to

be very large, and, therefore, the high{energy action which leads to the generation of this

non{renormalizable term becomes important. We will proceed by choosing a particular

high{energy renormalizable action which leads to (5.4) upon integrating out the massive

�elds. The choice is not unique, but our choice seems to be the simplest possible one.

We shall later be able to check that the resulting low{energy theory is indeed dual to the

theory we found along this at direction in the \electric" theory.

To de�ne the high{energy theory we introduce new massive super�elds Ŵ
~i
a, W

a
~i
, ~̂W

b

i

and ~W i
b , where i and

~i are avor indices of the SU(Nf ) avor groups and a and b are color

indices of SU(2Nf �Nc). We then write the superpotential

WUV =M i
~i
qai Ŵ

~i
a + Y b

a ~q
~i
bW

a
~i
+MW Ŵ

~i
aW

a
~i
+M i

~i
~q
~i
b
~̂W
b

i + Y b
a q

a
i
~W i
b +MW

~̂W
b

i
~W i
b : (5:5)
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This superpotential does not break any of the symmetries of the theory (upon giving the

W �elds appropriate charges). Upon integrating out the massive W �elds it leads to

the term M i
~i
qai Y

b
a ~q

~i
b in the low{energy superpotential. Now, in this high{energy theory,

a non{zero M
Nf

Nf
is still a at direction of the theory, and we can analyze what happens

when we take it to be large (of the same order of magnitude as MW ). We �nd that the

�eld proportional to MWWNf
+M

Nf

Nf
qNf

gets a mass instead of WNf
, as does the �eld

proportional to MW
~WNf +M

Nf

Nf
~qNf , while the orthogonal combinations remain massless.

We will denote these massless �elds by za and ~za, and up to a normalization constant they

are given by

za = �M
Nf

Nf
W a

Nf
+MW qaNf

~za = �M
Nf

Nf

~W
Nf

a +MW ~q
Nf

a :
(5:6)

We can now integrate out all the massive �elds (using the full superpotential which in-

cludes also the other terms in (5.4)), and �nd the superpotential for the massless �elds.

This superpotential includes terms like (5.4) but involving only the �rst Nf � 1 avors. In

addition to this there are various terms involving the �elds of the Nf 'th avor. The renor-

malizable terms are proportional to zaY b
a ~zb, N

Nf

~i
~q
~i
az

a, N i
Nf
qai ~za and N

Nf

Nf
za~za, and there

are additional non{renormalizable terms, involving also the �elds M i
Nf

and M
Nf

~i
. Similar

results may be found from other high{energy superpotentials which give the same low{

energy superpotential. The di�erences are generally only in irrelevant non{renormalizable

terms. M
Nf

Nf
is also massless and labels the at direction, as does one of the components

of QNf and ~QNf
in the \electric" theory.

As in the \electric" theory, we �nd that the remaining global symmetry is of the form

SU(Nf �1)�SU(Nf�1)�U(1)B̂�U(1)Z�U(1)R̂. The U(1)Z symmetry here is the sum

of two U(1) factors from the (broken) SU(Nf ) avor groups. The quantum numbers of

the remaining massless �elds under the (unbroken) SU(2Nf �Nc) color group and under

the avor group can easily be seen to be (where we choose the normalization of the new

U(1)Z to agree with its normalization in the \electric" theory) :
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qai 2Nf �Nc ( Nf � 1, 1, 1
2Nf�Nc

, �1, 1� 1
3

4Nf�2Nc�1

Nf�1
)

~q
~i
a 2Nf �Nc ( 1, Nf � 1, � 1

2Nf�Nc
, 1, 1� 1

3

4Nf�2Nc�1

Nf�1
)

Y ((2Nf �Nc)
2 � 1) ( 1, 1, 0, 0, 2

3
)

M i
~i

1 ( Nf � 1, Nf � 1, 0, 0, 2
Nf�

2
3
Nc

Nf�1
)

N i
~i

1 ( Nf � 1, Nf � 1, 0, 0, 2
3
+ 2

Nf�
2
3
Nc

Nf�1
)

M
Nf

~i
1 ( 1, Nf � 1, 0, �Nf ,

Nf�
2
3
Nc

Nf�1
)

N
Nf

~i
1 ( 1, Nf � 1, 0, �Nf ,

2
3
+

Nf�
2
3
Nc

Nf�1
)

M i
Nf

1 ( Nf � 1, 1, 0, Nf ,
Nf�

2
3
Nc

Nf�1
)

N i
Nf

1 ( Nf � 1, 1, 0, Nf ,
2
3
+

Nf�
2
3
Nc

Nf�1
)

N
Nf

Nf
1 ( 1, 1, 0, 0, 2

3
)

za 2Nf �Nc ( 1, 1, 1
2Nf�Nc

, Nf � 1, 2
3

)

~za 2Nf �Nc ( 1, 1, � 1
2Nf�Nc

, �(Nf � 1), 2
3

)

W� ((2Nf �Nc)
2 � 1) ( 1, 1, 0, 0, 1 ).

5.3. Comparison of the resulting theories

Now that we have found the resulting theories along the mesonic at direction, we can

compare them to see that they are indeed dual. First, we notice that all singlets appearing

in the \electric" theory have partners in the \magnetic" theory with the same quantum

numbers, and, therefore, we can identify them. Next, we note that without the singlets,

the \electric" theory is exactly the \electric" theory of section 2 with Nf�1 regular avors,

~Nf = 1 and Nc � 1 colors. The \magnetic" theory is exactly the \magnetic" theory of

section 2 with Nf � 1 regular avors, ~Nf = 1 and 2Nf �Nc = 2(Nf � 1) + 1 � (Nc � 1)

colors. Thus, these theories are dual under the new duality. By giving a mass to all the

\electric" singlets we can ow directly to the new dual theories described in section 2. In

fact, by taking a meson VEV of rank k (with k equal non{zero eigenvalues) we can ow

in this way to theories which are dual under the new duality with Nf � k regular quark

avors, ~Nf = k and Nc � k colors. Starting from a theory with general Nf , ~Nf and Nc

we would �nd that Nf and Nc decrease by k while ~Nf increases by k, with no change in

the \magnetic" gauge group, in a way consistent with the duality. All the new duality

theories may be obtained in this way from the ~Nf = 0 theory, and this is in fact how we

�rst discovered them.

27



6. Summary and conclusions

In this paper we described a new duality transformation of N = 1 supersymmetric

non{abelian gauge theories, and performed several non{trivial checks for its consistency.

These include mass perturbations and the investigation of the theories along several at

directions.

To further analyze these theories one should understand the quantum corrections to

their superpotential. This is necessary for the identi�cation of all at directions of the

two theories. We recall that in some of the cases investigated in this work, and certainly

in other cases as well, the quantum corrections are important. The quantum corrections

may be similar in form to the quantum superpotential recently computed in [15]. It may

also be interesting to generalize the new duality symmetry to other gauge groups, such as

SO(N).

By ows along at directions or mass perturbations we can connect our dual theories

with those of Seiberg [9] and Kutasov [14]. Thus, it seems clear that the (as yet not well

understood) mechanism behind the duality symmetry is the same for all of these cases.

These include all cases which are known so far of N = 1 SU(N) gauge theories which

exhibit duality. Understanding this mechanism in one of the cases will, therefore, enable

us to understand all of them. In particular, the case of Nf = 0 and ~Nf = 2Nc seems to

be related to the duality of N = 2 theories with Nf = 2Nc [3-5]. From this theory we

can ow to all other theories with Nf = 0, but not to theories with Nf > 0. The relation

between the new duality and the N = 2 duality is under current investigation. Such a

relation would also relate the N = 2 duality to the dualities of Seiberg [9] and Kutasov

[14].

Another interesting generalization of our results is to duality symmetries between

other N = 1 gauge theories, in particular theories with other matter representations. We

have noticed that the 't-Hooft anomaly matching conditions associated with the original

SU(Nc) \electric" theory of SQCD are also satis�ed by a class of \magnetic" theories,

generalizing the solution found in [9]. The \magnetic" theories are SU( ~Nc) gauge theories

with ~Nc = kNf�Nc, with k underlying mesons having U(1)R charges di�ering by multiples

of 2 starting with 2�2Nc

Nf
(for the scalar meson), and with the same dual quarks and gluinos.

Moreover, we have found, for these cases, a complete identi�cation between the gauge{

invariant operators in the \electric" and \magnetic" theories. It would be interesting to

�nd out whether one can \elevate" these cases to a full duality symmetry. We hope to

28



return to the various possible generalizations in future work. Clearly, the phenomenon of

N = 1 duality is quite general. Hopefully, the investigation of these generalizations will

shed light on the underlying mechanism behind the duality symmetry.
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