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Abstract

We postulate that the orientation of the soft supersymmetry breaking terms in 
avor space
is not �xed by physics at the Planck scale; it is a dynamical variable of the low energy theory
which depends on �elds that have no potential. These �elds can be thought of as either moduli
or as the Nambu-Goldstone bosons of the spontaneously broken 
avor symmetry which is non-

linearly realized by the soft terms. We show that the soft terms align with the quark and
lepton masses, just as spins align with an external magnetic �eld. As a result, the soft terms
conserve individual lepton numbers and do not cause large 
avor or CP violations. The vacuum
adjusts so as to allow large sparticle splittings to naturally coexist with 
avor conservation.
Consequently, the resulting phenomenology is di�erent from that of minimal supersymmetric

theories. We also propose theories in which the shape of the soft terms in 
avor space is a
dynamical variable of the low energy theory. This dynamically leads to partial degeneracy

among sparticles and further supression of 
avor violations. We compute the masses and

couplings of the nearly massless moduli/goldstones and �nd that, at distances as large as �
30 m, they mediate potentially measurable long range forces and violations of the equivalence
principle. The ideas of this paper suggest a connection between the space of moduli and the

spontaneously broken 
avor group.
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1 Universal versus Disoriented Soft Terms

The soft supersymmetry-breaking terms [1, 2] are important for at least two reasons. First,

they are the key ingredient which made the construction of realistic supersymmetric theories

possible [1]. Second, they are experimentally measurable quantities since they determine the

masses of sparticles. In early works, motivated by the need to avoid large 
avor violations, it

was postulated that soft terms satisfy universality [1]. Universality states that the squarks and

sleptons of the three families are all degenerate in mass at some scale �MGUT .

Universality has a geometric interpretation which is useful to appreciate. To do this, consider

the limit in which all but the gauge couplings of the supersymmetric standard model are set to

zero. The resulting theory possesses a U(3)5 global symmetry which is called 
avor symmetry.

The 3 stands for the number of families and the 5 for the number of SU(3) � SU(2) � U(1)

members in a family, which will be labelled by A = Q; �U; �D;L; �E. The 
avor symmetry is
simply a manifestation of the fact that gauge forces do not distinguish particles with identical
gauge quantum numbers. Universality states that the �ve 3�3 sparticle squared mass matrices
~m2
A are 
avor singlets, i.e. proportional to the identity. They are spheres in 
avor space and

they realize the 
avor symmetry in the Wigner mode. In this paper we wish to suggest an

alternative mechanism to universality for avoiding large 
avor violations.

Let � be a high-energy scale at which supersymmetry breaking occurs and the soft terms
are determined. � can be of the order of the Planck massMPL { as in supergravity { or smaller,

equal to the mass of the messengers that communicate supersymmetry breaking to the ordinary
particles. Our fundamental hypothesis is that physics at the scale � �xes the eigenvalues of the
soft terms ~m2

A but leaves their direction in 
avor U(3)5 space undetermined. In other words, the
potential energy V of the sector which determines the soft terms at the scale � is 
avor U(3)5

invariant. V does not depend on the U(3)5 angles which are 
at directions of the potential

and which will be called here \moduli". The moduli determine the direction in which the soft
terms point in 
avor space. They can be thought of as the Goldstone bosons of the 
avor group
which is spontaneously broken by the soft terms ~m2

A themselves. Therefore, the simplest way
to state our hypothesis is: the soft terms realize the 
avor symmetry in the Goldstone mode.

In contrast, universality states that the soft terms realize the 
avor symmetry in the Wigner

mode.

Our next assumption is that at energies below � we have the minimal supersymmetric
particle content1. We will show that the orientation of the soft terms is determined by the

low-energy dynamics { in particular the 
avor-breaking fermion masses { in a calculable way.

A simple analogy is to think of the soft terms ~m2
A as a spin ~s in space and U(3)A as

ordinary rotational invariance. The magnitude of ~s is determined by some unspeci�ed \high-
energy" dynamics to be non-zero. This forces rotational invariance to break spontaneously.

~s can point in any direction until we turn on an external magnetic �eld ~B which explicitly

breaks the rotational invariance and forces ~s to align parallel to ~B. Notice that alignment
(or anti-alignment) is preferred and the maximal subgroup possible, SO(2), is preserved. This

1In Sect. 8 we will also discuss the case of supersymmetric GUTs.
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completes the analogy between ~s and the soft terms on one hand and between ~B and the fermion

masses on the other. Perfect alignment would mean that the maximal subgroup consisting of

the product of all vectorial U(1) quantum numbers is preserved and consequently there is no


avor violation. In the quark sector since the Kobayashi-Maskawa matrix K 6= 1 this is not

possible, but the dynamics will adjust as to reduce 
avor violations.

Finally, the same dynamical mechanism works for the triscalar soft A-terms. If their ori-

entation is not determined by high-energy physics, they too will align parallel to the fermion

masses and avoid causing large 
avor violations.

2 Alignment

Consider the supersymmetric SU(3) � SU(2) � U(1) theory with minimal particle content,
whose gauge interactions possess an U(3)5 global 
avor symmetry. As in the standard model,
the Yukawa couplings break the symmetry. In addition, 
avor symmetry is violated here
also by the soft supersymmetry-breaking terms which in general lead to phenomenologically
unacceptable contributions to 
avor-changing neutral current (FCNC) processes. This can be

easily understood by inspecting the up and down squark and the charged slepton mass matrices.

M2
u =

0
B@
my

umu + ~m2
Q +DuL Ay

u +
�

tan�
my

u

Au +
�?

tan�
mu mum

y
u + ~m2

�U +DuR

1
CA

M2
d =

0
B@Km

y
dmdK

y + ~m2
Q +DdL A

y
d + � tan �Kmy

d

Ad + �? tan �mdK
y mdm

y
d + ~m2

�D +DdR

1
CA

M2
e =

0
B@m

y
eme + ~m2

L +DeL Ay
e + � tan �my

e

Ae + �? tan �me mem
y
e + ~m2

�E +DeR

1
CA : (1)

In Eq. (1), tan � is the ratio of the two Higgs vacuum expectation values and D = (T3 �
Q sin2 �W )M2

Z cos
2 � for a sparticle with third component of isospin T3 and electric charge Q.

With a super�eld rotation, we choose a basis where the fermion mass matrices mu;md and me

are diagonal, real and positive and where K is the ordinary Kobayashi-Maskawa matrix and

�, the supersymmetric Higgs mass parameter, is real and positive. If the soft supersymmetry-
breaking masses ~m2 and the trilinear terms A are general matrices in 
avor space, squarks and

quarks are completely misaligned, allowing for large gluino-mediated contributions to FCNC
processes.

Our hypothesis is that the ~m2
A are general Hermitian matrices whose eigenvalues are �xed

by Planckian physics, but whose orientation is a dynamical variable determined by physics

below �2. The soft supersymmetry-breaking masses ~m2
A are thus promoted to �elds:

~m2
A ! �A � Uy

A
��AUA A = Q; �U; �D;L; �E: (2)

2The possibility that the top-quark Yukawa coupling depends on a 
at direction was considered in ref. [3].
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��A are diagonal matrices with real, positive eigenvalues ordered according to increasing magni-

tude and UA are 3�3 unitary matrices. Similarly, we promote the trilinear terms to dynamical

variables:

Aa ! �a � V y
a
��a

�Va a = u; d; e; (3)

where Va and �Va are unitary 3�3 matrices and ��a are diagonal matrices with real and positive

eigenvalues ordered in terms of increasing magnitude.

Our fundamental hypothesis can now be restated: ��A and �a are �xed by physics at some

very high scale � { say � � MPL, for concreteness { whereas UA; Va and �Va are determined

only by low energy physics, namely the energetics of the supersymmetric SU(3)�SU(2)�U(1)
theory.

The classical ground state energy of the system does not depend on Ua; Va or �Va since all the

sparticles have vanishing vanishing expectation values (VEVs). The �rst quantum corrections
can be computed by adding the zero point energies 1

2
�h!k of all the oscillators in the system.

The result is the one-loop e�ective potential:

V1�loop =
X
k

1

2
�h!k =

1

32�2
�2StrM2 +

1

64�2
StrM4 log

M2

�2
: (4)

� is an ultraviolet cut-o� beyond which the theory changes and is not well approximated by
the supersymmetric SU(3) � SU(2) � U(1) with minimal particle content. More precisely, �
is the scale in which the soft supersymmetry-breaking masses shut o�. In theories where the
supersymmetry breaking is communicated to the visible sector by messengers lighter thanMPL,
� would be the mass of these messengers [4]. In the case where the messenger is supergravity,

� � MPL [5]. Our conclusions do not depend on the value of �, as long as it is much larger
than the heaviest sparticle mass.

Let us �rst consider the simple case A = � = 0. To determine the relative orientation of

sparticle and particle masses, we should minimize the e�ective potential V1�loop of Eq. (4) with
respect to UA. The only terms in V1�loop which depend on UA are:

V1�loop(U) =
1

64�2

X
a=u;d;e

TrM4
a log

M2
a

�2
; (5)

whereMu;Md;Me are the 6� 6 matrices of Eq. (1). Equation (5) decomposes into a sum of

�ve pieces, one for each A. For instance, for A = L, the dependence on UL is given by

V1�loop(UL) =
1

64�2
Tr

�
my

eme + U
y
L
��LUL +DeL

�2
log

 
my

eme + U
y
L
��LUL +DeL

�2

!
; (6)

and similar expressions hold for the other sparticle species. Because � is a very large number,

the logarithm in Eq. (6) is negative and it is therefore evident that V (UL) is minimized as �L

orients itself parallel to my
eme, which means UL = 1. Similarly the other slepton and squark

mass matrices choose to align themselves along the corresponding fermion masses.
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This can be formally shown as follows. For any given A, let us write

UA = exp(i
X
�

����A) ; (7)

where ��=2 are the generators of the 
avor group broken by ��A, in short the six generators of

SU(3)=U(1)2. Thus ��A can be thought of as the Goldstone bosons of the 
avor U(3) group that

has been spontaneously broken by the ��A VEV. In reality, the �� are pseudo-Goldstone bosons,

because quark and lepton masses explicitly break 
avor invariance. Dropping for simplicity the

index A, the leading ��-dependent part of V1�loop extracted from Eq. (5) is

V1�loop(�) =
1

32�2

X
i>j

X
�

�����ij�����2 (��i � ��j)(m
2
i �m2

j)

(��i � ��j +m2
i �m2

j)
(Fi � Fj) +O(�3) ; (8)

Fi = �(��i +m2
i +D)

"
1

2
+ log

��i +m2
i +D

�2

#
: (9)

We are working in a basis where both � and m2 are diagonal and the index i refer to their i-th
diagonal element.

The absence in Eq. (8) of linear terms in �� shows that U = 1 is an extremum of the energy.
For � larger than the heaviest sparticle mass, it actually corresponds to a minimum. This is
apparent from Eq. (8), since the diagonal elements of �� are ordered in terms of increasing

magnitude as are the fermion mass eigenvalues mi.

The result UL = U �E = 1 has the important consequence that the e; �; � lepton numbers are
separately conserved. Since slepton and lepton mass matrices are parallel, they both preserve

the same U(1)3 symmetry and individual lepton number violating processes like �! e
 do not
occur in this theory.

The situation is more involved in the squark sector since �Q couples in V1�loop to both mu

and md, which cannot be simultaneously diagonal. However, as it will be clearer in the next
section, while � �D and � �U align respectively with m2

d and m2
u, �Q predominantly aligns with

m2
u, allowing for some gluino-mediated contributions to FCNC processes. It is also interesting

to notice that the squark soft masses �� becomes larger the higher the generation. This is

in contrast to the minimal supersymmetric model where all squarks soft mass parameters are

equal at MGUT and, by the e�ect of the renormalization group equations, become smaller the
higher the generation.

3 General Alignment

Consider now the general case where � and the trilinear terms A are not zero and the sparticle

masses are given by the general matrices of Eq. (1). We can write the relevant terms in the

e�ective potential as

V =
1

64�2
StrM4

"
log

 
M2

m2
s

!
� �

#
; (10)
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where m2
s is the scale of soft supersymmetry breaking in the low energy theory, and � =

log �2=m2
s.

We will use the approximation of neglecting the �rst term in the right-hand side of Eq. (10)

with respect to � . This is justi�ed if � � ms and if � � O(mms). The requirement �� ms

is certainly satis�ed in most realistic theories and insures that log(m2
s=�

2) is a number much

larger than log(M2=m2
s). The assumption � � O(Mms), as opposed to � � O(m2

s), is also

plausible, since as the Yukawa couplings are turned o�, the trilinear terms should also disappear

from the theory. This assumption is necessary to insure that the U; V and �V -dependent terms

in Str M4 log(M2=m2
s) are always proportional to the Yukawa couplings. If this did not hold,

they could compete with U; V and �V -dependent terms in Str M4 log(m2
s=�

2) which, although

enhanced by the large logarithm, are indeed proportional to the Yukawa couplings.

The large � approximation is justi�ed provided we work near ms. Therefore, all of our
parameters that enter into V1�loop and into the minimization equations should be interpreted as
running parameters evaluated at ms. With this approximation, the one-loop e�ective potential

for U; V and �V decomposes into the simple form:

64�2V1�loop = 2�
X
A

Tr U
y
A
��AUAm

2
A � 2�

X
a

h
Tr V y

a
��a

�Va�a + h.c.
i

(11)

m2
A =

8>>><
>>>:
m2

u +Km2
dK

y A = Q

m2
u A = �U

m2
d A = �D

m2
e A = L; �E

�a =

8><
>:

1
tan�

mu � a = u

tan� K md � a = d

tan� me � a = e :

In the super�eld basis we are working in, the minimum of the energy is achieved for

hUAi = 1 A = �U; �D;L; �E hUQi = S

hVii = h�Vii = 1 i = u; e

hVdi = 1 h�Vdi = Ky ; (12)

where S is such that S(m2
u +Km2

dK
y)Sy is diagonal. This is easily proven, as in the previous

section, �rst by writing

U = hUiexp(i
X
�

����) V = hV iexp(i
X
�

����) �V = h�V iexp(i
X
�

�����) ; (13)

where �� are the Gell-Mann matrices and where we have dropped the indices a and A. Next

by expanding V1�loop in �; � and �� around the vacuum, we write:

64�2V
(�)
1�loop = 2�

X
�

��
2
X
i>j

j��ij j2(��i � ��j)(m
2
i �m2

j ) +O(�3) (14)

64�2V �;��
1�loop = 4�

2
4X

�

�(+)
2

�

X
i>j

j��ij j2( ��i � ��j)(�i � �j)+

X
�

�(�)
2

�

X
i>j

j��ij j2( ��i + ��j)(�i + �j) +

2
X
i

������
X
�

�
(�)
� �

�
ii

������
2

��imi

3
75+O(�3) (15)
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�(�) � �(+) � �(�)

2
; (16)

where the sum over � spans the broken SU(3)=U(1)2 generators, while the sum over � spans

only the diagonal generators of U(3).

Equations (14) and (15) show that the �rst derivative of V1�loop vanishes and the second

derivative is positive if � > 0. The alignment is such that �A is parallel to m2
A with eigenvalues

ordered as in m2
A. Also �a and �a are parallel and the respective eigenvalues have the same

phases and are ordered in the same way.

4 Flavor Violating Processes

The �rst consequence of the results of the previous section is that all three lepton numbers are
individually conserved. This follows from the complete alignment of the lepton masses and the

slepton soft terms: UL = UE = Ve = �Ve = 1. Such a total alignment is obviously not possible in
the quark sector, since the up and down quarks themselves do not have parallel mass matrices.
The quark 
avor violations are best discussed by going, via a super�eld rotation, to the quark
mass eigenbasis where both up and down masses are diagonal and the squark masses have the
form:

M2
u =

0
B@
m2

u + Sy��QS +DuL
��u +

�
tan�

mu

��u +
�

tan�
mu m2

u +
�� �U +DuR

1
CA

M2
d =

0
B@m

2
d +KySy��QSK +DdL

��d + � tan �md

��d + � tan �md m2
d +

�� �D +DdR

1
CA (17)

All 
avor violation is contained in S and K. The o�-diagonal elements of S are much smaller
than those of the Kobayashi-Maskawa matrix:

S23 ' Kcb

m2
b

m2
t

� 2� 10�5

S13 ' Kub

m2
b

m2
t

� 2� 10�6

S12 ' jKusK
?
csm

2
s +KubK

?
cbm

2
bj

m2
c

� 5 � 10�3 ; (18)

and therefore they do not signi�cantly a�ect FCNC processes, although they may contribute

to CP-violating processes. Then, in the approximation S = 1, all new 
avor violations occur

in the DL sector, as can be seen from the squark mass matrices in Eq. (17).

The most stringent constraint comes from the contribution of squark-gluino loops to the
real part of the K0 � �K0 mixing:�

�mK

mK

�
~g

=
f2KBK

54

�2s
M2

~g

Re(X) (19)
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X �
X
i;j

KisK
?
idKjsK

?
jd f

 
~m2
Qi

M2
~g

;
~m2
Qj

M2
~g

!
(20)

f(x; y) � 1

x� y

"
(11x + 4)x

(x� 1)2
log x� 15

x� 1
� (x! y)

#
; (21)

where fK = 165 MeV is the kaon decay constant, BK parametrizes the hadronic matrix element,

and M~g is the gluino mass. Assuming M2
~g = ~m2

Q and keeping the leading contribution in the

squark mass splitting, one �nds

Re(X) =
sin2 �c

6
D2

21 ; (22)

where �c is the Cabibbo angle and

Dij �
~m2
Qi
� ~m2

Qj

~m2
Qi

: (23)

If we require that the gluino contribution in Eq. (19) does not exceed the experimental value
of �mK=mK, we obtain the constraint:

D21 < 0:1
~mQ

300 GeV
: (24)

The squark-gluino contribution to the imaginary part of K0 � �K0 mixing is given by:

(j�j)~g =
mK

�mK

f2KBK

108
p
2

�2s
M2

~g

Im(X) (25)

With the same approximation used before, we obtain

Im(X) =
1

3
jKusjjKubjjKcbj sin � D32D21 ; (26)

where � is the CP-violating phase in the Kobayashi{Maskawa matrix. This does not exceed
the experimental value for j�j if

q
D21D31 <

~mQ

300 GeV
: (27)

There is no signi�cant constraint coming from B0 � �B0 mixing and, in the limit S = 1,

there is no new gluino-mediated contribution to D0 � �D0 mixing.

The constraints from FCNC on our model are much milder than those on a general super-

symmetric SU(3)�SU(2)�U(1) theory with minimal particle content and non-universal frozen
soft-terms [6]. The reason is that in our theory, just as in the standard model, 
avor violations

are proportional to the Kobayashi-Maskawa angles; however, they are also suppressed by the

large sparticle masses. Therefore, our contributions to rare processes can compete with the
standard model contributions only if the latter have light quark suppressions, as in �mK=mK

where (�mK=mK)SM � GFm
2
c.

7



It is noteworthy that we do not obtain any constraints from either � ! e
 or �. These

provide by far the strongest constraints on general supersymmetricmodels. In our case, �! e


vanishes whereas � is small because it is proportional to the Jarlskog invariant J of the standard

model and is further suppressed by sparticle masses. The only signi�cant constraint we have is

from �mK Eq. (24). It can be accounted for in several ways. One is by invoking heavy gluinos,

which cause the squark masses to approach one another in the infrared. Furthermore, in Sect.

7, we will show how the dynamics of the moduli can adjust to render the squarks of the two

heavy generations degenerate.

5 Long Range Forces

5.1 Masses of Moduli

Our basic hypothesis so far has been that the matrices U; V and �V depend on �elds that are
undetermined by the theory at � � MPL and whose VEVs are determined by the low-energy
dynamics that we computed. We did not need to identify what these �elds were. In this section
we would like to do so. We begin by rewriting:

Vu = V 0
uUQ Vd = V 0

dUQ Ve = V 0
eUL ;

�Vu = �V 0
uU �U

�Vd = �V 0
dU �D

�Ve = �V 0
eU �E :

(28)

Let �0 and ��0 be the angles corresponding to V 0 and �V . The matrices UA are the same as those
of Eq. (7) and their angles are ��A. In the limit of vanishing Yukawa couplings, translations in
��A ! ��A + ���A can be compensated by unitary rotations of the quark and lepton super�elds.
Thus the �A correspond to Goldstone bosons of the spontaneously broken U(3)A 
avor group.
Our postulate is that they are physical particles; we will now compute their masses and cou-

plings. We will do so in the limit where we ignore the A-terms and set A = � = 0 for simplicity;
this does not a�ect any of the essential properties of the �A. The Yukawa couplings explicitly
break the 
avor U(3)A group, and give to each �A a mass proportional to the corresponding

coe�cient in Eq. (14).

To obtain physical masses we need to de�ne canonical �elds. Dimensional analysis and the
hypothesis that 
avor symmetry is broken spontaneously at a scale F suggest that the �eld �0

de�ned by

� =
m2

s

F
�0 (29)

is canonically normalized. F can be identi�ed with MPL or possibly with some lighter scale
connected with 
avor breakdown. We want to stress however that our choice of �0 being the

canonical �eld is arbitrary and di�erent choices can lead to di�erent masses and couplings for

the physical particles. The properly normalized kinetic term is:

1

2
Tr @��

0
A@��

0
A =

 
F

m2
s

!2X
�

@��
�
A@

���A
X
i>j

j��ij j2(��Ai � ��Aj )
2 : (30)
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From this and Eq. (14) we can read the physical squared masses of the �A
3:

m2
��
A
=

�

32�2
m4

s

F 2

P
i>j j��ijj2(m2

i �m2
j )P

i>j j��ijj2(��Ai � ��Aj )
: (31)

From Eq. (31), we see that �4A; �
5
A; �

6
A; �

7
A get masses proportional to the third generation

fermion mass of species A, while �1A; �
2
A get masses proportional only to the second generation

fermion mass of species A. A convenient expression is:

m��
A
' 6� 10�8 eV

�
ms

300 GeV

� 
mA

f�

1 GeV

!vuut m2
s

�m2
s

 
MR

PL

F

!
: (32)

Here,MR
PL = (8�)�1=2MPL are the reduced Planck mass, and �m2

s=m
2
s is the relevant sparticle

mass splittings. mA
f�

denotes the third (second) generation fermion mass of species A if � =

4; 5; 6; 7 (� = 1; 2). The Compton wavelengths of the � particles are

���
A
' 3 m

�
300 GeV

ms

� 
1 GeV

mA
f�

!vuut�m2
s

m2
s

 
F

MR
PL

!
: (33)

Thus the � can mediate forces between two objects separated by a macroscopic distance and

lead to deviations from the equivalence principle.

In the absence of Yukawa couplings the � are exactly massless Goldstone bosons; thus they
are coupled derivatively and mediate short-range forces with potentials / 1=F 2r3. Once the

Yukawas are turned on, they can mediate 1=r2 forces that mimic gravity at distances shorter
than their Compton wavelengths. Their CP properties are essential in determining the nature
of the forces4. The �� that correspond to imaginary ��, namely �2; �5 and �7, are CP-even
scalars and they can mediate 1=r2 forces. The rest are CP-odd pseudoscalars; they couple to
spin and do not mediate long-range forces in ordinary non-magnetized matter. Note that the

\scalar" generators �2; �5 and �7 are all o�-diagonal. This means that the couplings of �2; �5
and �7 to interaction eigenstates are o�-diagonal. Diagonal couplings to ordinary matter will
arise because of the mismatch between mass and interaction eigenstates. Diagonal 1=r2 forces

mediated by the exchange of �2;5;7 will have to involve some o�-diagonal entry of the Kobayashi-
Maskawa matrixK. Since for leptons the mixing angles vanish, there are no diagonal long-range
forces coupled to lepton number.

We will work in the basis de�ned after Eq. (1), which is particularly convenient because it
approximately corresponds to the mass eigenbasis for all squarks5. The coupling of the properly

normalized � to squarks � is given by

L��� =
ip
2

m2
s

F

X
�;i;j

��ij (
��i � ��j)qP

r>s j��rsj2(��r � ��s)2
�?i�j�

� : (34)

3The non-linear Goldstone parametrization used here makes sense only if the explicit symmetry breaking

(m2

i �m
2

j ) is not larger than the spontaneous breaking (��i�
��j). This is why Eq. (31) apparently blows up as

��i �
��j ! 0.

4In the following, we neglect small e�ects coming from CP violation.
5This is true unless the splittings of the squarks soft masses are smaller than the corresponding quark mass

splittings, a case too close to universality to be considered here.
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From this we see explicitly that imaginary generators lead to scalar couplings and real generators

to pseudoscalar couplings. Let us focus on �Q for de�nitness. Its interaction with squarks, Eq.

(34), can be converted into a diagonal coupling to ordinary matter exploiting the Kobayashi-

Maskawa angles which rotate the down quarks from the basis we are working in to their mass

eigenbasis. This can be done via one-loop diagrams mediated either by gluinos (for the coupling

to down quarks) or by charginos (for both up and down quarks). It is reasonable to expect that

strong interactions make the gluino exchange dominant over the chargino, although this may

depend on the various parameters. The gluino-exchange produces a scalar e�ective coupling

between ��Q and a pair of down quarks dk, with identical 
avor index k, given by:

L� �dd = i

p
2�s

9�

m2
s

M2
~g

mdk

F
�dkdk�

�
Q

P
i>j(��i � ��j) Im(��ijKjkK

?
ik) f

�
��i
M2

~g

;
��j
M2

~g

�
qP

r>s j��rsj2(��r � ��s)2
; (35)

where

f(x; y) =
3

2(x� y)

"
1

x� 1
+
x(x� 2)

(x� 1)2
log x� (x! y)

#
(36)

is normalized so that f(1; 1) = 1. It is apparent from Eq. (35) that if CP is conserved, or
in other words if K is real, only imaginary �� can generate scalar couplings. Equation (35)
is proportional to the down quark mass, because only md allows 
avor transitions. Both light
and heavy quarks contribute to the �Q coupling to nuclei. Again, depending on the di�erent

squark mass splittings and on the � �eld under consideration, either contribution can be the
most important. Heavy quarks contribute to the � coupling to nucleons via the gluon anomaly,
with the result [7]:

L�� �NN =
mN

MPL

G����Q � N N ; (37)

where mN and  N are respectively the mass and wavefunction of the nucleon N , and G��
measures the strength of the � coupling relative to gravity:

G�� = i
2
p
2�s

243�

m2
s

M2
~g

MPL

F

P
i>j(��i � ��j) Im(��ijKjkK

?
ik) f

�
��i
M2

~g

;
��j
M2

~g

�
qP

r>s j��rsj2(��r � ��s)2
: (38)

Since we are dealing with heavy quarks, the index � can be equal to 5 or 7. The largest of the
two couplings can be estimated to be:

G�7 '
2
p
2

243�
�sKcb

MPL

F
' 10�4

MR
PL

F
: (39)

Similarly, we can estimate the direct coupling of �Q with the light down quark from Eq.
(35). We �nd that this coupling for � = 2 is � 10�5 MPL=F . Since the coupling is to down

quarks only, the �2-neutron coupling is twice as large as the �2-proton coupling. This leads to

violations of the equivalence principle whose magnitude depends on F . If F �MGUT � 2�1016
GeV, the �2 coupling is 5 � 10�3 times smaller than gravity and the Compton wavelength of
�2 is of the order of 30 cm.
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The experimental upper limits on G2
� are about 10

�4 at distances of 3 m and about 10�5 at

distances of 30 m [8]. This means that the moduli forces could be detected in future experiments

if F is not much larger than the GUT scale, which is still a possibility.

The numerical estimates for the coupling strength and Compton wavelength of the � have

large uncertainties associated with the overall scale F as well as the supersymmetry-breaking

massm2
s and sparticle splittings �m

2
s. Nevertheless, we hope that these estimates will motivate

renewed e�orts for searches of new long-range forces and violations of the equivalence principle

at distances from � 100 m to few cm. It would be fascinating if one of the �rst indications for

supersymmetry comes from the discovery of such forces. It is also interesting to notice that,

because of the diverse moduli mass spectrum and the variety of their couplings, we could have

a complicated pattern of di�erent deviations from gravity at di�erent length scales.

Finally, if A 6= 0 and V 0, �V 0 are dynamical then �0 and ��0 are new moduli. They get their
mass predominantly from the quadratic soft terms �y ~m2� and not the Yukawa couplings. Their
Compton wavelengths are:

��0;�� ' 8��hc
F

m2
s

' 0:1 m
�
300 GeV

ms

�2 F

MR
PL

: (40)

The couplings of the � are similar to those of the �, so we will not discuss them in detail.

6 Moduli as Goldstone Bosons of the Spontaneously Bro-

ken Flavor Group

The alert reader has already noticed that the unitary matrices UA are non-linear representations
of the 
avor group U(3)A. In other words, the soft masses spontaneously break U(3)A and �A
are the Goldstone bosons. The subsequent de�nitions

~m2
A = Uy

a
��AUA and �A =

m2
s

F
�0
A (41)

suggest that we think of �0
A as a �eld which transforms as a (1+8)A and acquires a VEV�0 at the

scale F � MPL which spontaneously breaks U(3)A. The high-energy (� F ) dynamics V (�0
A)

that caused �0
A to get its VEV was postulated to be U(3)A invariant. Thus the orientation of

the �0
A VEV in U(3)A space is not determined by high-energy dynamics. �0

A can point in any
U(3)A direction, until we turn on the quark and lepton masses which align �0

A as computed in

Sect. 2.

For the triscalar A-terms there are three possibilities. Because they break both supersym-

metry and chirality, they resemble the soft masses ~m2
A in one sense and the Yukawa couplings

in another.

One possibility is that V and �V are fully dynamical just like the U . In particular, we can
de�ne �elds �0

a =
F
m2
s
�a (a = u; d; e) which get VEV � O(F ) and break the 
avor symmetry

11



spontaneously. �0
u transforms as a (3; �3) representation of U(3)Q�U(3) �U ; similarly for �0

d and

�0
e. Again, some high-energy dynamics �x the magnitude of �0 6= 0 but does not specify its

direction. This means in particular that the high-energy potential V decomposes into a sum

V = V (�0)+V (�0) which does not lock the orientations of �0 and �0 together. As before, once

we turn on the quark and lepton masses, �0 aligns with them as computed in Sect. 3.

The second possibility is that the A-terms act like Yukawas. They are \frozen" { by some

unknown high-energy dynamics { and have speci�c values at low energies. This situation is

identical to that of the minimal supersymmetric model. One simply has to hope that the high-

energy dynamics aligns the A-term with the Yukawas. The A-terms now themselves break the


avor U(3)5 symmetry and thus contribute to the mass of the �A. If they are proportional to

fermion masses, their contributions are small and they do not a�ect the alignment of the �0.

Finally, there is a third possibility in which the A-terms are neither totally free to rotate
nor frozen in 
avor space, but they are \thawed". They are coupled to the �0 direction in the
way indicated in Eq. (28), where V 0 and �V 0 are now frozen but the UA are not. In this case,

again, one has to hope that the frozen combination V 0y ���V 0 lines up with the Yukawas. In this
\thawed" scenario the A-terms do not break the U(3)5 symmetry realized by the �0.

We end with a cosmological caveat. The potential energy that we computed for the mod-

uli/Goldstones, see Eq. (11), explicitly demonstrates that the energy di�erence between the
minimum and a non-aligned con�guration is � m4

W . The minimum can be reached, by the
emission of Goldstone particles, even at arbitrarily small energy or temperature and presum-
ably is reached, given enough time. The amount of time depends on how rapidly the moduli
lose energy as well as on cosmo-historical questions. Because the moduli couple very weakly
with strength F�1 � M�1

PL, they do not e�ciently lose energy. As a result, they do not reach

their minima in simple cosmologies [9], unless they happen to accidentally start out near their
vacuum. Recently, there have been a revival of suggestions [10] on how to solve the problem and
to allow the moduli to cosmologically relax to their ground state. Such a mechanism is clearly
necessary to ensure 
avor alignment. Even more, it is necessary to ensure that the Universe is
not overclosed by coherent oscillations of the moduli.

7 Plastic Soft Terms

In previous sections we have conjectured that physics above � leaves the orientation of the
soft terms undetermined, but �xes their eigenvalues. In this section we wish to relax the latter

hypothesis. We envisage that the supersymmetry-breaking dynamics at � provide the low-
energy theory with a constraint which �xes the overall scale ms but does not necessarily freeze

all three eigenvalues. Some functions of the eigenvalues can correspond to 
at directions which
remain undetermined until we turn on the low-energy dynamics. Of course, our postulate

that the supersymmetry-breaking mechanism respects the 
avor symmetry requires that the

constraints that �x ms have to be 
avor singlets.

Let us consider �rst the case of vanishing left-right mixings in the squark and slepton mass

12



matrices and focus on the �elds �. Suppose that the dynamics at the scale � �xes the two

lowest-dimension 
avor-singlet operators:

Tr� = T ; Tr�2 = T2 ; (42)

where T 2 and T2 are numbers of order m4
s and the �rst constraint ensures the absence of

�eld-dependent quadratic divergences.

These are two constraints on three eigenvalues, thus one combination of eigenvalues remains

a 
at direction whose VEV will be determined by low-energy physics in a calculable way. It

is easy to identify the 
at direction. The above constraints are not just SU(3) invariant, but

are SO(8) invariant, and they force the spontaneous breakdown SO(8) ! SO(7), giving rise

to seven Goldstone bosons. Six of them are a consequence of the breaking SU(3)! U(1)2 and

can be identi�ed with the �elds �. The seventh is the new 
at direction � which allows the
eigenvalues of � to slide along a valley which preserves the above constraints. Notice that �
acquires mass already from the soft term, which preserves SU(3) but violates SO(8), as opposed

to the � �elds which get mass only from Yukawa interactions.

The �eld � satisfying Eq. (42) can be expressed as

� = TUy
�
1

3
� x(cos ��8 + sin ��3)

�
U ; (43)

where �3;8 are the two diagonal Gell-Mann matrices, U denotes an SU(3)=U(1)2 rotation, and

x �
s
3T2 � T 2

6T 2
; 0 � x � 1p

3
: (44)

Our assumption is that the six parameters contained in U and the angle � are dynamical
variables, related to 
at directions of the moduli �elds. The soft term� is not only \disoriented"
in 
avor space, but is also \plastic", since the pattern of eigenvalues can be deformed.

The e�ective potential for � can be approximated as

64�2V1�loop = Tr(� +m2)2 log
� +m2

�2
' Tr�2 log �� 2�Tr�m2 ; (45)

where we have kept only the contribution from the fermion mass term m2 leading in � �
log �2=m2

s. The minimization with respect to the SU(3)=U(1)2 angles is analogous to the case

of the disoriented soft terms and aligns � parallel to m2 with eigenvalues ordered as in m2. The
�-dependent part of V1�loop is more easily identi�ed in Eq. (45) by means of a series expansion

in x:

64�2V1�loop =
2p
3
x3T 2 cos �(4 cos2 � � 3) +O(x5)

� 4p
3
�xT

�
cos �(m2

3 �m2
1) +

1

2
(
p
3 sin � � cos �)(m2

2 �m2
1)
�
: (46)
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This expansion is reasonable, since xmust be somewhat smaller than 1p
3
or the lightest sfermion

becomes too light. In the limit m2
3 = m2

2 = m2
1, there are three equivalent vacua:

h�i = � h�i = ��
3
; (47)

which correspond to a spontaneous breakdown of 
avor as SU(3)! SU(2)�U(1). Notice that
the two heaviest sfermions transform as a doublet under the remaining SU(2).

After we turn on the Yukawa of the heaviest fermion, the vacuum for � becomes:

hcos �i =
(
1 if � > 1
1
2

p
1 + 3� if � < 1

(48)

� =
2�m2

3

9x2T
: (49)

If the third generation fermion is heavy enough (� > 1), the vacuum has an SU(2) invariance,
where now the two lightest squarks transform as a doublet. For moderate fermion masses
(� < 1), 
avor is spontaneously broken as SU(3)! U(1)2. The critical value of m3 determining
which 
avor subgroup is left invariant is given by, including all orders in x:

m2
3 =

T

�

" 
2
p
3x+ 1

3

!
log

 
1 + 2

p
3x

1�
p
3x

!
�
p
3x

#
=

9

2

T

�
x2 +O(x4) ; (50)

which corresponds to � = 1 at leading order in x. For reasonable values of ms, we expect
that the top ful�lls the requirement � > 1. This is welcome because the remaining SU(2)

implies that the masses of the two light squark doublets �Q1
and �Q2

are approximately equal,
providing the desired suppression of the real part of K0 � �K0 mixing. Neither the bottom
quark nor the tau lepton are heavy enough to expect a large value of �. This means that,
unless x is very small, ~� and ~� are nearly degenerate in mass, while ~e is considerably lighter;
similarly m~bR

' m~sR > mdR. This is clearly in contrast with the minimal supersymmetric

model prediction of near degeneracy between the �rst and second generation of each species of

squarks and sleptons.

Since the Yukawa couplings of the second generation are much smaller than the correspond-

ing ones for the third, their e�ect is just a small perturbation on the � vacuum of Eq. (48).

However, this is an important perturbation as it �xes the sign of sin �, which is undetermined

in the limit m2 = m1 = 0 at all orders in x, and breaks the residual SU(2) of the case � > 1:

hsin �i =

8>>>><
>>>>:

p
3
2

m2

2
�m2

1

m2

3
�m2

1

�
��1 if � > 1

1
2

�
3
p
3
m2

2
�m2

1

m2

3
�m2

1

�1=3
if � = 1

p
3
2

p
1� � +

p
3
8

�

1��(
p
1 + 3� +

p
1 � �)m2

2
�m2

1

m2

3
�m2

1

if � < 1

(51)

The mass splitting between the �rst two squark generation is given by

�m2

m2
� �2 � �1

�2

' 6xhsin �i : (52)
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The contribution to �mK is safely suppressed. If the top-quark mass is such that � > 1,

the splitting between the soft masses of the �rst two generations of left-handed down squarks

satis�es D21 � m2
c=m

2
t , which has to be compared with Eq. (24).

We now want to extend our considerations to the case of �. The lowest-dimensional 
avor-

singlet constraint which involves � is:

Tr��y = D: (53)

In a manner consistent with the hypothesis � � O(mms) stated in Sect. 3, we de�ne

D = d Tr m2 ; (54)

with d � O(m2
s). With approximations analogous to those used to derive Eq. (45), we can

write the e�ective potential for � as

64�2V1�loop ' TrM4 lnM2 � 2�� Tr(� +�y)m (55)

M2 =

 
�L �y

� �R

!
;

where for simplicity we take tan � = 1. As shown in Sect. 3, the minimization of the 
avor

rotation angles brings �L;R and � to the diagonal form. Working in the limit � � �L;R,
justifed by Eq. (54), the �rst term in the right-hand side of Eq. (55) becomes

TrM4 lnM2 = 2Tr

 
�L log �L � �R log �R

�L � �R

!
�2 +O(�4)

= 2Tr log ��2 +O(�4) if �L ' �R = � : (56)

The minimization of V1�loop with respect to � under the constraint of Eq. (53), gives, at leading
order in � :

�i '
p
dmi ; (57)

where the index i = 1; 2; 3 spans the diagonal elements of the corresponding matrix. We recover

therefore the minimal supersymmetric model result that the trilinear terms are proportional to

the corresponding Yukawa couplings.

8 Minimal Uni�cation

Until now we have been working under the hypothesis that below the scale �, where the
supersymmetry breakdown occurs, we have the minimal supersymmetric SU(3)�SU(2)�U(1)
particle content. We now consider the possibility that the theory below � is some minimal

supersymmetric GUT.

In minimal supersymmetric GUTs the gauge symmetry is increased to SU(5) or SO(10)

and the number of chiral multiplets decreases. This means that the 
avor group is no longer
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U(3)5, but it is smaller: U(3)�5 � U(3)10 in the case of SU(5), and just U(3)16 for SO(10).

If we also assume that the soft terms are as minimal as possible, namely singlets under the

GUT group, then we have a very constrained system with a small 
avor group and a small

number of parameters in the soft terms. Are there enough moduli/Goldstones available to align

su�ciently and avoid problems with 
avor violations ?

For simplicity, let us discuss the minimal SO(10) model in which the Yukawa coupling

superpotential between the ordinary fermions in the 16 representation and the Higgs �elds Hu;d

is

WY = 16�u16Hu + 16K�dK
T16Hd : (58)

For simplicity, we will ignore the A trilinear terms and write the soft supersymmetry-breaking

Lagrangian as:

LSoft =
m2

s

F
16yUy��U16 : (59)

The crucial di�erence between this minimal-GUT case, with gauge-singlet �, and the pre-
vious SU(3) � SU(2) � U(1) analysis is apparent from Eq. (59). Now there is just one U
available, instead of 5, to do all the alignments necessary to reduce 
avor violations. To see
how U chooses to orient we can work at the scale ms, where the large � approximation is
valid. It is clear that U will align � parallel to mu, since mu gives the largest contribution

to the energy. Neglecting the small o�-diagonal e�ects caused by the running from MGUT to
ms, this implies that all sparticle mass matrices will be parallel to mu whereas the down-quark
and charged-lepton mass matrices will be misaligned from mu by angles of the order of the
Kobayashi-Maskawa angles.

Thus, unless sleptons are highly degenerate in mass, �L;R ! eR;L
 transitions are propor-
tional to a mixing angle Ke� = Kus ' sin �c and occur at an unacceptable rate. In SU(5)
only the right-handed sleptons are misaligned from the lepton mass matrix, and the ampli-

tude for �L ! eR + 
 is again proportional to the Cabibbo angle sin �c '
q
d=s. Of course,

minimal SO(10) and SU(5) theories have a problem: they predict md = me and this is the

reason why they give �! e
 proportional to
q
d=s. However even if we extend the theory �a la

Georgi{Jarlskog, the �! e
 amplitude is still problematic, being proportional to
q
e=�.

The reason for this failure is that in minimal supersymmetric GUTs with minimal GUT-

invariant soft terms, the few available soft terms just align with mu, leaving some mismatch
between down quarks and squarks and more importantly between leptons and sleptons. This

causes di�culties with individual lepton violating processes, which were not originally present
in supersymmetric GUTs with universality at MGUT .

The problem could be cured in more complicated GUTs with a larger 
avor structure,

necessary perhaps to explain the fermion mass pattern, which would allow for more freedom in
the low-energy alignment of the soft-breaking masses.

A strong degeneracy between the �rst two generations of sleptons and down squarks sup-

presses the most dangerous processes and could therefore represent an alternative solution. In
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the previous section we have shown that this occurs in the plastic soft-term scenario if the corre-

sponding Yukawa coupling of the third generation is strong enough. In the SU(3)�SU(2)�U(1)
theory, this is not the case for sleptons. However, in the SO(10) example, the slepton mass

alignment feels the strong top-quark Yukawa coupling and the degeneracy between the �rst

two generations is predicted. The dynamics of the plastic soft terms cures the disease in the

dynamics of the disoriented soft terms: in GUTs the large up-type quark Yukawa couplings

force the sleptons to misalign, but insure that the �rst two generations are almost degenerate

in mass. This is completely analogous to the suppression of K0{ �K0 which we have discussed

in the previous section.

9 Conclusions

We proposed \disorientation" as an alternative to universality for suppressing 
avor violation
in supersymmetric theories. Universal soft terms realize the 
avor symmetry in the Wigner

mode. Disoriented soft terms realize it in the Nambu-Goldstone mode; this allows large sparticle
splittings and has the appeal that the absence of 
avor violations is a consequence of a dynamical
calculation.

The Goldstone particles can be thought of as either the consequence of a spontaneously
broken 
avor symmetry or perhaps could be identi�ed with some of the 
at directions (moduli)
that frequently occur in supersymmetric or superstring theories. In the latter case there would
be an important connection between the space of the moduli and the 
avor group.

Why did our mechanism work? Promoting some of the parameters of the low-energy theory
to �elds allowed us to exploit nature's preference for states of maximal possible symmetry. This
is the reason why: the spin aligns with an external magnetic �eld, preserving SO(2); sleptons
align with leptons, preserving individual lepton number conservation U(1)3; squarks align {as

much as possible{ with the quarks, preserving an approximate U(1)3; the 7th goldstone boson
of the plastic scenario chooses to relax at its special value where the symmetry is enhanced to
SU(2) � U(1) and pairs of sparticles are degenerate. Nature's frequent preference for states

of higher symmetry fully accounts for our mechanism for the suppression of 
avor violation.
More importantly, it leads us to novel phenomena: long range forces, new supersymmetric

phenomenology and the peaceful coexistence of split sparticles and 
avor conservation.
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