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Abstract

The problem of de�ning e�ective sorting strategies for the ran-
dom errors of a magnetic lattice is analyzed. The �nal goal is to
de�ne a way of sorting the magnets in order to maximize the dy-
namic aperture. The proposed method is made up of three steps.
Firstly, one de�nes quality factors based on the perturbative tools of
nonlinear maps and normal forms. Secondly, the best quality factor
for the model considered is chosen through tracking analysis. Thirdly,
among some permutations of the magnets one chooses that one whose
quality factor is better. The e�ectiveness a posteriori of the sorting
strategy is checked through tracking. An application to sort the sex-
tupolar errors of a lattice made only of LHC-like cells is given.
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1 INTRODUCTION

One of the main issues in the construction of large hadron colliders like the CERN
LHC [1] is the e�ect of the nonlinearities due to the unavoidable multipolar errors
in the superconducting magnets. These sources of nonlinearities can be split into
two parts: a systematic one, which is the same for all the magnets, and a random
one, which depends on the magnet. The multipolar errors considerably reduce
the stability domain around the closed orbit where one can safely operate with
the beam.

In order to correct the e�ect of the random multipoles, one can consider the
sorting approach, i.e. the de�nition of a rule for ordering the magnets according
to the value of their random errors so that the stability domain is maximized [2].
The main problem is that, even for a small set of magnets, the number of the
allowed permutations is huge: therefore quality factors (QF) based on analytical
or numerical tools seem to be more appropriate than a direct computation of
the dynamic aperture to evaluate the ordering rules [3]. A completely di�erent
approach is based on the de�nition a priori of intuitive sorting rules based on
local compensation or symmetry considerations, and the evaluation of their ef-
fectiveness through tracking; these methods have been used for the analysis of
the LHC lattice [4], [5], [6].

In this paper we propose a sorting strategy based on a mixed approach, where
both analytical and numerical methods are used in order to devise the best or-
dering rule. The analytical tools are given by the discrete formalism of nonlinear
transfer maps and perturbative theory for symplectic mappings (normal forms
[7]), rather than with classical perturbative theory for 
ows, in order to be able
to compute automatically the series up to high orders [8].

We have de�ned three quality factors: the norm of the nonlinear part of the
map, the norm of the amplitude-dependent tuneshift, computed through non-
resonant normal forms, and the resonance strength evaluated through resonant
normal forms. All these quality factors have been used in literature for the anal-
ysis of the nonlinearities: the norm of the map [9] in order to evaluate the e�ect
of the multipolar errors for di�erent magnetic lattices; the tuneshift minimiza-
tion [10] to compute the best values of the gradients of the corrector elements
used to compensate the systematic errors in the LHC; the resonance strength
minimization [3] to propose a sorting strategy for the HERA.

We believe that the selection of the best quality factor is strongly dependent
on the model, and therefore it cannot be made a priori: for this reason, we
numerically evaluated through tracking which QF shows the best correlation
with the dynamic aperture for the considered model. Then, for a given number
of permutations of the magnets, we selected the best ordering according to the
QF. Permutations can be chosen either randomly or using some intuitive criteria
based on local compensation or symmetry rules. Finally, the e�ectiveness of
the ordering is checked through tracking. The ordering strategy is performed
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over an high number of di�erent realizations of the random errors: 100 seeds are
considered for testing each rule to have a su�cient statistics. Our approach is
not restricted to treat only one type of errors (for instance, only sextupoles), but
can be applied to sort all the nonlinear contributions to the random errors at the
same time.

In order to test the method, we considered a simpli�ed cell lattice with only
sextupolar errors; the results show a big gain in the short term dynamic aperture,
which is consistent with the literature. The obtained gain is very good also
compared to other known methods [4] [5]. The approach outlined in this paper
is a promising �rst step towards the veri�cation of the e�ectiveness of a sorting
strategy for the LHC.

The plan of the report is the following: in section 2 we review the formalism of
nonlinear maps of magnetic lattices and the theory of normal forms. In section 3
we de�ne the quality factors which will be used to sort the magnets. The sorting
strategy is described in section 4; the results relative to an LHC cell lattice are
given in section 5, where also an accurate analysis of the global dynamics of one
of the analyzed seeds is given.

2 NONLINEAR MAPS AND NORMAL FORMS

In this section we recall some de�nitions and notations which will be used in the
followings. We consider the betatronic oscillations of a single particle in a circular
accelerator; we denote by x̂ = (x̂; p̂x; ŷ; p̂y) the Courant-Snyder coordinates and
by z = (z1; z

�

1; z2; z
�

2) the complex coordinates which diagonalize the linear part
of the motion, where z1 = x̂+ ip̂x, z2 = ŷ + ip̂y, and the � indicates the complex
conjugation. The motion of a single particle is represented by the one-turn map
F, which propagates the position z of a particle at a given section of the machine
to the position z0 at the same section after one turn [7]:

z01 = F1(z) = ei!1z1 +
X
n�2

X
j1+j2+j3+j4=n

F1;j1;j2;j3;j4 z
j1

1 z
�j2

1 z
j3

2 z
�j4

2

z02 = F2(z) = ei!2z2 +
X
n�2

X
j1+j2+j3+j4=n

F2;j1;j2;j3;j4 z
j1

1 z
�j2

1 z
j3

2 z
�j4

2 : (1)

Here !1 and !2 are the linear tunes, and Fi;j1;j2;j3;j4 are complex coe�cients.
Using the perturbative approach [7] [11] [12] [13], one conjugates the one-turn

map F to its normal formU, which is invariant under a symmetry transformation,
and can be written as the Lie series of an interpolating Hamiltonian h. We will
express h in polar coordinates �1; �2; �1; �2, where � are the phases and � are
the amplitudes in the space of the normal coordinates where h is de�ned [13].
According to the symmetry transformation, one can de�ne di�erent types of
normal forms which provide asymptotic series [14] for some nonlinear indicators
of motion: the dependence of the frequency on the amplitude (nonresonant case),
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the geometrical and dynamical parameters of the resonances (single resonance),
and the position and the stability of the �xed points (double resonance). We
restrict ourselves to sketching the �rst two types of normal forms, which will be
used in the de�nition of the quality factors. A more detailed description of the
normal form theory is given in Refs. [7] and [13].

Nonresonant case: the normal form is an amplitude-dependent rotation, and
the interpolating Hamiltonian is a function of the amplitudes �1, �2

h(�1; �2) = !1�1 + !2�2 +
X

k1+k2�2

hk1;k2 �
k1

1 �
k2

2 ; (2)

which are also the nonlinear invariants. The derivatives of h with respect to
�1 and �2 provide an analytical expression of the tune in its dependence on the
amplitude [10].

Single resonance: if the linear tunes are close to a single resonance [q; p], i.e.
one has

q!1 + p!2 = 2�l + � q 2 N p; l 2 Z (3)

with �� 1, it is useful to build a single-resonance normal form which retains in
the Hamiltonian h both the detuning terms, such as in the previous case, and
the terms relative to the resonance [13]. In this case the Hamiltonian has the
property of being well-de�ned also for � = 0 (exact resonance), and of keeping the
topology of the resonance. The Hamiltonian has a more complicated polynomial
structure: it depends on the amplitudes �1; �2 and on one linear combination of
angles q�1 + p�2

h(�1; �2; �1; �2) =
X

k1;k2�0

X
l�0

hk1;k2;l (�1)
k1+lq=2(�2)

k2+lp=2 cos(l(q�1 + p�2) + 'k1;k2;l
):

(4)

The nonlinear invariants are h and p�1 � q�2. One can distinguish between the
coe�cients hk1;k2;0, which produce amplitude-dependent tuneshift, and the other
terms hk1;k2;l with l � 1, which do excite the resonance.

3 DEFINITION OF QUALITY FACTORS

In this section we de�ne some indicators of nonlinearity, of increasing complexity,
based on the analytical tools of one-turn maps and normal forms; these indicators
will be used in the next sections as quality factors (QF) for the analysis of the
random errors.

3.1 Q1: Norm of the map

The simplest indicator of nonlinearity one can de�ne is the norm of the nonlinear
part of the map: in this case the QF does not take into account compensation
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e�ects between di�erent terms and di�erent orders which, in principle, can be
very relevant. A possible de�nition of the norm of the nonlinear part of the map
is

Q1(A;N) =
NX
n=2

An
X

j1+j2+j3+j4=n

X
i=1;2

jFi;j1;j2;j3;j4j; (5)

where the coe�cients Fi;j1;j2;j3;j4 have been de�ned in Eq. 1. It must be pointed
out that since the one-turn map in a generic case is composed by di�erent orders,
one has to introduce an amplitude A to weight the various contributions: low
values of A lead to a smaller contribution from the high orders, and viceversa.
Since one is mainly interested in the behaviour close to the dynamic aperture,
we suggest to �x A to the estimated value of the dynamic aperture.

The use of the norm of the map as quality factor was suggested us by some
previous works [9], where this indicator was successfully used to make both a
qualitative and a quantitative comparison of the dynamics of two large machines
such as the HERA and the LHC.

3.2 Q2: Norm of the tuneshift

A more complex indicator of nonlinearity is the tuneshift, i.e. the part of the tune
which depends on the amplitudes. We have shown in the previous section that
nonresonant normal forms provide perturbative series for the tuneshifts. Using
these expressions, one can build a QF: let us de�ne the sum of the squares of the
tuneshifts as

t2M(�1; �2) �
1

2

2
4
 

MX
i=1

[�x(�1; �2)]i

!2

+

 
MX
i=1

[�y(�1; �2)]i

!2
3
5 ; (6)

where [:]i denote homogeneous polynomials of order i, which are given by the
derivatives of the Hamiltonian:

[�x(�1; �2)]i =
@

@�1
[h(�1; �2)]i+1

[�y(�1; �2)]i =
@

@�2
[h(�1; �2)]i+1; (7)

then, we de�ne the quality factor Q2 as sum of the squares of the tuneshifts
averaged over the sum of the square of the invariants �21 + �22 = A2:

Q2(A;M) �

s
2

�

Z
�=2

0

t2M(A cos�;A sin�) d�: (8)

Q2 is the average tuneshift at the amplitude A; it depends on the truncation
order M . It is easy to verify that, starting from a map truncated at order N ,
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one can build a nonresonant normal form at most of order N , which provides a
perturbative series for the tuneshift truncated at order M = (N � 1)=2.

The correlation between dynamic aperture and tuneshift is a well-known
feature of the e�ect of the systematic multipolar errors in the LHC. A correc-
tion scheme of the multipolar errors based on an analytical minimization of the
tuneshift was found to be very e�ective [10], [15]. Indeed, it is well known (see
for instance Ref. [7], chapter 6) that a complete correction of the tuneshift is not
desirable, since no detuning makes all the resonances unstable.

3.3 Q3: Norm of the resonances

We have shown in the previous section that the theory of normal forms allows
one to conjugate the one-turn map to the Lie series of an Hamiltonian which
retains the terms relative to the tuneshift and to a single resonance (see Eq. 4).
Therefore, one can build a QF that is related to the strength of a single resonance
[p; q] by taking the norm of the resonant part of the interpolating Hamiltonian:

Q3([p; q]; A;L) =
X
l�1

X
2k1+2k2+l(p+q)�L

jhk1;k2;ljA
2k1+2k2+l(p+q); (9)

where also in this case A is an amplitude which has the same physical meaning as
in the de�nition of Q1 and Q2, and L is the truncation order of the Hamiltonian
which must satisfy L � (p+ q) to have nonzero contributions. If the normal form
U is truncated at order N , its interpolating Hamiltonian has a truncation order
of L = N + 1.

The de�nition of this quality factor was suggested by Ref. [3], where the
strengths of single-resonances, computed through classical perturbative theory
for hamiltonian 
ows at second order in the gradients, were used as QF in order
to propose a sorting procedure for the magnets of HERA.

4 THE SORTING METHOD

We now describe the sorting procedure which will be applied to a model of LHC
in the next section; the method is based on four steps.

� De�nition of quality factors. Di�erent quality factors are de�ned, that can
be computed in a very short CPU time, even for a complex lattice.

� Evaluation of the best quality factor. The short-term dynamic aperture is
evaluated and correlated with the QF. Note that from a theoretical point
of view, there is no indication of the best QF. Therefore, the choice of the
optimal QF can be made only numerically, i.e. analyzing a high number of
random machines with di�erent seeds, computing their dynamic aperture
and their quality factors, and selecting the QF with the best correlation.
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� Evaluation of the best ordering. Having selected the QF, one has a fast
method to distinguish between good and bad sequences of magnets; there-
fore, for each seed which generates a sequence of random errors, one can
consider a large set of permutations of the magnets, and check for each
permutation the e�ect on the QF. Clearly, if the number of the random
magnets which have to be ordered is greater than 10, it is possible to check
only a small subset among all the existing permutations: indeed, one can
either choose permutations randomly, or using some intuitive criteria based
for instance on local compensation or on the symmetries of the lattice.

� Tracking check. When the best sequence of magnets is selected using the
above-described procedure, one has to check its e�ectiveness through track-
ing. In order to have results that are statistically signi�cant, this test has
to be repeated for many di�erent seeds.

5 APPLICATIONS TO AN LHC CELL LATTICE

5.1 The model

We have considered a simpli�ed LHC cell lattice; each cell has 6 dipoles and a
phase advance of 90o. Previous studies [4], [6] have shown that local compensation
and symmetry rules become very e�ective over a sequence of cells which covers
two periods of betatronic oscillations. Therefore, we analysed a lattice made up
of 8 cells of the LHC, plus a phase shifter in order to set the linear tunes of the
model to �x = 2:28 and �y = 2:31 without changing the phase advance of the cell.
Since we are analyzing only a fraction of the machine, the absolute values of the
dynamic aperture cannot be directly compared to the full lattice results: only the
relative values (i.e. the gain obtained by the sorting procedure) are signi�cant.

We considered a model with only sextupolar errors, which is very sensitive
to a sorting strategy. It is customary to de�ne the normal sextupolar integrated
gradient as

K2 � `
1

B0�0

@2By

@x2
; (10)

where ` is the length of the magnetic element, B0 is the constant bending �eld
and �0 is the radius of curvature. In our model the systematic part of K2 (i.e. its
mean value) has been set to zero, since in the real machine it can be compensated
with the standard corrector magnets. The standard deviation of the random part
of K2 has been �xed to

�K2
= 8:5872 � 10�3m�2: (11)

The distribution is assumed to be gaussian truncated at three �K2
.
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5.2 QF correlation

We have computed the correlation between the dynamic aperture and the QF's
for 100 seeds of random machines. The dynamic aperture was computed over
1000 turns; it is expressed in meters normalized at �max = 169m.

In Fig. 1a we show the distribution in the dynamic aperture of the 100
random machines without ordering the magnets. One �nds a wide distribution of
the dynamic aperture according to the di�erent seeds; this gives a �rst indication
on the validity of a sorting strategy. The correlation with the QF based on the
norm of the map Q1, on the tuneshift Q2, and on the strength of the resonance
[3; 0] is given respectively in Figs. 1b, 1c and 1d. We have pointed out in the
section 3 that in order to weight the di�erent perturbative orders which contribute
to the QFs (see Eqs. 5, 8, 9) one has to insert an average value of the dynamic
aperture, which can be evaluated only through tracking; in our case we �xed this
amplitude to the average of the distribution of the unsorted machines (i.e. 0.2
m). The norm of the map was evaluated up to order N = 6; the norm of the
resonances was computed using the interpolating Hamiltonian truncated at order
L = 7, and the tuneshift norm was evaluated using the �rst two tuneshift orders
M = 2.

The analysis of the data shows that the norm of the map Q1 has a poor
correlation with the dynamic aperture. This result is not in contradiction with
Ref. [9]: even though the norm of the di�erent orders of the map can be useful
to compare di�erent machines, it proves to be not enough precise to select good
and bad seeds of the same machine. The best QF for the considered model is the
tuneshift norm Q2; also resonance [3; 0], which is the �rst resonance excited by
sextupoles, shows a rather good correlation. All the correlations with resonances
up to order 7 were evaluated: two of them (e.g. resonance [2,-1] and [7,0]) are
shown in Fig. 2. A theoretical explanation of these results seems very hard, and
would need a very careful analysis of the interaction between the nonlinearities
in the lattice and resonances, tuneshifts, and dynamic aperture. We believe that
this is still an open problem: for this reason we have proposed to select the best
QF using the correlation with the results of tracking simulations.

5.3 Sorting, tracking check, and comparison with local compensation

Using the results of the previous analysis, we have implemented two sorting strate-
gies: the �rst one (SORT1) based on the tuneshift norm Q2, and the second one
(SORT2) on the strength of the resonance [3; 0]. Moreover, we also implemented
a rule based on the principle of local compensation (SORT0) which was de�ned
through a very careful numerical analysis of the LHC cell lattice, as described in
references [4] and [5]. We implemented SORT0 to cross check our method with
the most e�ective sorting rule known for the same model.

Having �xed the number of the magnets to be sorted to 48, the number of
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possible permutations is huge (approximately 1061). Since a complete check of all
the permutations is not feasible, we decided to rearrange the magnets according to
two di�erent rules: in the �rst case (labelled by SORT11 and SORT21) we simply
made P random permutations, with P ranging from 1 to 500. In the second case
(labelled by SORT12 and SORT22) we grouped the 48 dipoles in 24 pairs such
that in each pair the sum of the sextupoles errors is minimized, producing a
`�rst-order local compensation'; then, we considered P random permutations of
the 24 pairs, with P ranging from 1 to 500.

In Fig. 3a we show the distribution in the dynamic aperture for 100 di�erent
seeds of the LHC cell lattice ordered with the local compensation rule SORT0;
in agreement with the literature [4], [6], one �nds an impressive improvement
in the dynamic aperture (about a factor 2.7). The results relative to the rule
SORT11, with an increasing number of permutations, are also shown in Fig. 3
(Fig. 3b: P = 20, Fig. 3c: P = 100, Fig. 3d: P = 500). The gain in the dynamic
aperture is signi�cant, even if it is worse than SORT0 (about a factor 1.9 with
respect to the unsorted model). If the number of permutations is increased, one
obtains better machines, as expected. Indeed, there is a saturation e�ect in the
dependence on P ; we believe that this feature is due to the fact that the QF has
a correlation pattern which is always better for bad machines than for good ones
(see Figs. 1 and 2). This means that the QF easily recognizes bad machines, but
it is not very e�cient in selecting good machines: this could justify the saturation
e�ect.

In Fig. 4 we show the distribution in the dynamic aperture for 100 di�erent
seeds of the model ordered with the rule SORT12, where the random permuta-
tions are carried out on pairs of approximately self-compensating errors. Also in
these cases we show the dependence on the number of permutations (Fig. 4a:
P = 1, Fig. 4b: P = 20, Fig. 4c: P = 100, Fig. 4d: P = 500). The sorting rule
is more e�ective than SORT0 (the gain with respect to the unsorted machine in
the average dynamic aperture is about a factor 3.1), especially if one considers
the e�ect on bad machines, whose dynamic aperture is increased by a factor two.
Also in this case there is a saturation e�ect in the dependence on P : it must
be pointed out that even if the ordering with P = 100 has an average dynamic
aperture which is slightly higher than the case P = 500, this last ordering is more
e�ective since the rms of the distribution is 30% smaller. A simple pairing of the
magnets without QF minimization provides a gain of a factor 1.4 (case SORT12,
P = 1). In Fig. 5 we show the distribution of the dynamic aperture for the rule
SORT22 (Fig. 5a: P = 20, Fig. 5b: P = 100); the gain in the dynamic aperture
is signi�cant, even if it is lower than the gain obtained with rule SORT12. From
the above analysis it turns out that for the considered model the most e�ective
strategy is the tuneshift minimization over pair permutations, which leads to very
good gains in the average dynamic aperture.
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5.4 E�ect of the sorting procedure on global dynamics

Finally, a check of the e�ect of the sorting procedure was carried out through a
very accurate analysis of the dynamics both in phase space and in frequency space,
according to the numerical techniques of frequency analysis originally developed
for celestial mechanics [16]. A stability diagram and its related tune footprint
gives a description of the stability domain in phase space and in frequency space.
This second diagram is very relevant since it provides the tune distribution, and
therefore it allows one to understand which are the most dangerous resonances
and their e�ect on the stability of motion.

In order to build these diagrams, we consider all the particles with the follow-
ing initial conditions

x̂ = r cos� p̂x = 0

ŷ = r sin� p̂y = 0 (12)

we make a �ne scan over r and � (100 steps in each variable respectively), with r 2
[0; R] and � 2 [0; �=2]. For each initial condition we track over 1000 turns, and for
the stable conditions we plot the corresponding point in the (x̂; ŷ) diagram and the
related nonlinear frequencies in the tune diagram computed as the average phase
advance. For the sake of brevity, we only show two couples of these diagrams: one
couple for a random machine with average dynamic aperture (Fig. 6a and Fig.
7), and another couple for the same machine after the sorting carried out using
rule SORT12 (Fig. 6b and Fig. 8). The polar scanning in the initial conditions
(see Eq. 12) is carried out with an external cycle over �, and an internal one over
r: each time an orbit is lost before the considered number of iterates, r is taken as
the �rst lost particle and the tracking is continued with the successive value of �.
In this way, `holes' in the dynamic aperture give rise to the spikes which can be
observed in Fig. 6: in fact, this algorithm can lead to underestimate the stability
domain, but has the advantage of avoiding the inclusion of islands unconnected
to the stability boundary for the dynamic aperture evaluation.
The analysis of the Figs. 6, 7 and 8 leads to the following observations.

� The shape of the stability domain in the plane (x̂; ŷ) is quite irregular, and
it is radically modi�ed by the sorting procedure (i.e. the ordering of the
magnets does not simply rescales the stability boundary, but changes its
shape, as expected).

� Tune footprint diagrams show that the ordering procedure not only mini-
mizes the tuneshift, but also changes the low order tuneshift coe�cients so
that di�erent zones of the frequency space are occupied by the random and
sorted machine.

� In the case analyzed, the unsorted machine has very strong second order
tuneshifts which lead to the folding of the tune footprint; conversely, the

10



sorted machine has tuneshifts which are dominated by the �rst order. Com-
putations carried out over other seeds show that this feature depends on the
seed.

� In the sorted machine the e�ect of resonances is stronger and more clearly
visible: this happens because, having minimized the tuneshift, the islands
become larger. Notwithstanding this e�ect, the stability domain of the
sorted machine is three times bigger than the unsorted one. The island
width is clearly shown in the tune footprint as an high density of initial
conditions on resonance lines, and an empty region around them (see for
instance resonances [1;�4] and [7; 0] in Fig. 8). On the other hand, some
resonances seem to be not excited (i.e. resonances [2;�5] and [6; 1] in the
same Figure): we checked that these resonances have zero or very low QF
with no correlation with the dynamic aperture.

� Finally, one can observe that resonance [3; 0] is very far from the tune foot-
print: nevertheless, this resonance shows the best correlation with the dy-
namic aperture. An explanation of this feature needs deeper investigations.

We conclude this section by pointing out the considerable amount of phenomeno-
logical information which is given by the stability diagram and the related tune
footprint: we believe that this numerical tool should be better exploited in order
to have a clearer picture of the dynamics. Unfortunately, the computation of such
diagrams requires a large amount of CPU time. For this reason, the de�nition
and the investigation of numerical tools which allow one to compute nonlinear
frequencies with good accuracy and low number of turns would be highly desir-
able.

6 CONCLUSIONS

We have de�ned a sorting strategy which has the fundamental property of being
very 
exible: we believe that this feature is very important, since it seems clear
from the numerous papers on the subject that sorting strategies are strongly
dependent on the model. The proposed approach is based on a mixed technique
which exploits both tracking simulations for determining the best quality factors,
and analytical techniques to evaluate in a fast way the best permutations of the
magnets. This technique can be integrated by other intuitive criteria used for
determining the set of permutations, based on the symmetry of the lattice. We
have successfully applied the outlined strategy to an LHC cell lattice, �nding
gains which are very good also compared to other known methods.

In order to check the e�ectiveness of the sorting strategy for the LHC, one
should make a deeper investigation of more realistic lattices, where one has to take
into account also the presence of various multipolar components, the necessity of
having a compensation which is valid also for di�erent settings of the machine,
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and the limited precision of the measurements of the random components of the
magnets. The approach outlined in this paper has proved to be a useful tool for
the analysis of these problems.
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Figure 1: Distribution of the dynamic apertures for the random machine, 100
seeds (a). Correlation of the quality factors Q1 (b), Q2 (c), Q3[3; 0] (d) with the
dynamic aperture for the random machine, 100 seeds.
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Figure 2: Correlation of the quality factors Q3[2;�1] (a), Q3[7; 0] (b), with the
dynamic aperture for the random machine, 100 seeds.
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Figure 3: Distribution of the dynamic apertures for the SORT0 machine, 100
seeds (a). Distribution of the dynamic apertures for the SORT11 machine, 100
seeds P = 20 (b), P = 100 (c), P = 500 (d).
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Figure 4: Distribution of the dynamic apertures for the SORT12 machine, 100
seeds P = 1 (a), P = 20 (b), P = 100 (c), P = 500 (d).
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Figure 5: Distribution of the dynamic apertures for the SORT22 machine, 100
seeds P = 20 (a), P = 100 (b).

Figure 6: Stability diagrams for one of the seeds with average unsorted dynamic
aperture: before sorting (a) and after sorting with rule SORT12 (b).
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Figure 7: Tune footprint and resonance lines up to order 7 of the unsorted machine
whose stability diagram is shown in Fig. 6a.
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Figure 8: Tune footprint and resonance lines up to order 7 of the SORT21 machine
whose stability diagram is shown in Fig. 6b.
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