
Po
st

Sc
ri

pt
〉  p

ro
ce

ss
ed

 b
y 

th
e 

SL
A

C
/D

E
SY

 L
ib

ra
ri

es
 o

n 
 6

 A
pr

 1
99

5.
H

E
P-

T
H

-9
50

40
34

CERN-TH/95-43 - UCLA 95/TEP/7

NUB{3118 { IC/95/34

CPTH{RR352.0395

hep-th/9504034

Perturbative Prepotential and Monodromies

in N=2 Heterotic Superstring?

I. Antoniadis a, S. Ferrarab, E. Gavac;d, K.S. Naraind and T.R. Taylor e

aCentre de Physique Th�eorique, Ecole Polytechnique,y F-91128 Palaiseau, France

bTheory Division, CERN, 1211 Geneva 23, Switzerland

cInstituto Nazionale di Fisica Nucleare, sez. di Trieste, Italy

dInternational Centre for Theoretical Physics, I-34100 Trieste, Italy

eDepartment of Physics, Northeastern University, Boston, MA 02115, U.S.A.

Abstract

We discuss the prepotential describing the e�ective �eld theory of N=2 heterotic

superstring models. At the one loop-level the prepotential develops logarithmic sin-

gularities due to the appearance of charged massless states at particular surfaces in

the moduli space of vector multiplets. These singularities modify the classical duality

symmetry group which now becomes a representation of the fundamental group of

the moduli space minus the singular surfaces. For the simplest two-moduli case, this

fundamental group turns out to be a certain braid group and we determine the result-

ing full duality transformations of the prepotential, which are exact in perturbation

theory.
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1. Introduction

A N=2 supersymmetric gauge theory [1] is completely de�ned by its prepotential { an

analytic function of vector super�elds. This analytic structure is very restrictive and can

be used to obtain interesting information about perturbative as well as non-perturbative

behaviour of the theory [2]. Recently, Seiberg and Witten [3] constructed a complete

solution of the SU(2) model, and their analysis has been extended to larger gauge groups

in refs.[4]. The central point of these studies is the prepotential describing the massless

moduli �elds whose vacuum expectation values break the gauge group down to an abelian

subgroup. It is a very interesting question whether some similarmethods could be employed

to analyse the moduli space of superstring theories.

N=2 supersymmetric, (4,4) [5] orbifold compacti�cations of heterotic superstring the-

ory provide some simplest examples of string moduli spaces analogous to the globally

supersymmetric spaces considered in refs.[3, 4]. A special feature of these models is the

existence of U(1) 
 U(1) gauge group associated with an untwisted orbifold plane. Such

a plane is parametrized by two complex moduli, T and U , of (1,1) and (1,2) type, re-

spectively. The tree-level duality group which leaves the mass spectrum and interactions

invariant is O(2; 2;Z) [6], which is isomorphic to the product of SL(2; Z)T and SL(2; Z)U

together with the Z2 exchange of T and U . The U(1) 
 U(1) gauge group becomes en-

hanced to SU(2)
U(1) along the T = U line, and further enhanced to SO(4) or to SU(3)

at T = U = i and T = U = �(=e2�i=3), respectively [7]. In this work, we �rst analyse

the perturbative dependence of the prepotential on this type of moduli, and determine its

monodromy properties. Because of the N=2 non-renormalization theorems this amounts

to computing the one-loop contributions to the prepotential, as all higher loop corrections

vanish. At the one-loop level the prepotential develops logarithmic singularity due to the

appearance of the additional massless states at the enhanced symmetry subspaces. As a
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result, we show that the duality group is modi�ed to a representation of the fundamental

group of the 4-dimensional space obtained by taking the product of the fundamental do-

mains of the T and U moduli and removing the diagonal locus. One of the consequences

of this modi�cation is that at the quantum level the SL(2; Z)T and SL(2; Z)U duality

transformations do not commute and also that the T , U exchange becomes an element of

in�nite order. The monodromies associated with moving a point around the singular locus

generate a normal abelian subgroup of the full monodromy group depending on 9 integer

parameters. In addition, there is the usual dilaton shift which commutes with the above

duality group.

In N=2 heterotic superstrings in four dimensions, the T;U moduli together with the

dilaton-axion S modulus belong to vector multiplets, so their e�ective �eld theory is de-

scribed by a N=2 supergravity theory [8] coupled to these three vector multiplets. At a

generic point of the moduli space and in the absence of charged massless matter (hyper-

multiplet) states, the e�ective �eld theory which is obtained by integrating out all massive

string states is local. Its underlying geometric structure is \special geometry" [9], the same

structure that appears in the discussion of the moduli sector of superstrings compacti�ed

on Calabi-Yau threefolds. The symplectic structure based on Sp(2r) for rigid Yang-Mills

theories with gauge group G broken to U(1)r (r being the rank of G) is here extended to

Sp(2r + 4), due to the presence of the additional S-vector multiplet and the graviphoton.

For a generic (4,4) compacti�cation of the heterotic superstring on T2 �K3, we expect 17

moduli (r = 17) and a symplectic structure Sp(38;Z). For a general (4,0) compacti�cation

one can also obtain other values of r up to a maximum of 22. The classical moduli space

of vector multiplets in these theories is

SU(1; 1)

U(1)

�����
dilaton

� O(2; r)

O(2) �O(r)

,
�

where � = O(2; r;Z). At a generic point of this moduli space the gauge group is U(1)r+2
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and there are no massless charged hypermultiplets. As in the O(2; 2) case there are again

complex co-dimension 1 surfaces where either one of the U(1)'s is enhanced to SU(2)

and/or some charged matter hypermultiplets appear. The one-loop prepotential develops

logarithmic singularities near these surfaces. We study the modi�cations of the duality

group due to these singularities.

This paper is organized as follows. In section 2, we derive the perturbative prepotential

in N=2 orbifold compacti�cations of the heterotic superstring and study its dependence

on the T;U moduli associated with the untwisted plane. In section 3, we determine the

quantum monodromies of the one-loop prepotential. These monodromies are further ex-

ploited in section 4, by introducing the usual N=2 supergravity basis for the �elds where

all transformations act linearly. We thus �nd that the duality group O(2; 2;Z) is extended

to a bigger group which is contained in Sp(8; Z) symplectic transformations and depends

on 15 integer parameters. In section 5, we generalize these results to the full vector moduli

space (r = 17) for arbitrary N=2 (4,4) compacti�cations. In section 6, we discuss general-

izations to (4,0) compacti�cations. We also give an explicit orbifold example of two moduli

T;U of the untwisted 2-torus T 2, where the orbifold group acts as shifts on the T 2. In

this case one encounters singularities associated with the appearance of charged massless

hypermultiplets, as well. Finally, section 7 contains concluding remarks.

2. String computation of the one-loop prepotential

The simplest way to determine the one-loop correction to the prepotential is to recon-

struct it from the K�ahler metric of moduli �elds. Indeed, the K�ahler potential of a N=2

locally supersymmetric theory can be written as

K = � ln(iY ) ; Y = 2F � 2 �F �PZ(Z � �Z)(FZ + �FZ) ; (2.1)
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where F is the analytic prepotential, FZ � @ZF , and the summation extends over all chiral

(N=2 vector) super�elds Z [8]. The part of the prepotential that depends on the moduli

of the untwisted plane can be written as

F = STU + f(T;U) ; (2.2)

where the �rst term proportional to the dilaton, is the tree-level contribution, and the one-

loop correction is contained in a dilaton-independent function f(T;U). In our conventions

S is de�ned such that hSi = �
�
+ i8�

g2
where g is the string coupling constant and � the usual

�-angle. Thus the one loop moduli metric is

K
(1)

Z �Z
=

2i

S � �S
G

(1)

Z �Z
(2.3)

with

G
(1)

T �T
=

i

2(T � �T )2
(@T � 2

T � �T
)(@U � 2

U � �U
)f + c.c. (2.4)

and similar expressions for other components. Our �rst goal is to extract the function

f(T;U) from the moduli metric obtained in ref.[10] by means of a direct superstring com-

putation.

In ref.[10], the G
(1)

T �T
component of the metric has been written as

G
(1)

T �T
= I G(0)

T �T
; (2.5)

where G
(0)

T �T
= �(T � �T )�2 is the tree-level metric,1 and the world-sheet integral

I =
Z
d2�

� 2
2

�F (�� ) @�� (�2
X
pL;pR

e�i� jpLj
2

e��i�� jpRj
2

) (2.6)

extends over the fundamental domain of the modular parameter � � �1 + i�2. In eq.(2.6),

�F (�� ) = F (� ), where F (� ) is a moduli-independent meromorphic form of weight �2 with

1
A Z ! iZ rescaling on the chiral �elds of ref.[10] is necessary to recover the chiral �elds as de�ned

here.
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a simple pole at in�nity due to the tachyon of the bosonic sector. This in fact �xes F

completely up to a multiplicative constant:

F (� ) = � 1

�

j(� )[j(� )� j(i)]

j� (� )
(2.7)

where j is the meromorphic function with a simple pole with residue 1 at in�nity and a

third order zero at � = �. The summation inside the integral extends over the left- and

right-moving momenta in the untwisted orbifold plane. These momenta are parametrized

as

pL =
1p

2 ImT ImU
(m1 +m2

�U + n1 �T + n2 �T �U ) (2.8)

pR =
1p

2 ImT ImU
(m1 +m2

�U + n1T + n2T �U) (2.9)

with integer m1, m2, n1 and n2.

In ref.[10] it has been shown that the integral I satis�es the di�erential equation

[@T@ �T +
2

(T � �T )2
]I = � 4

(T � �T )2

Z
d2� �F (�� ) @�(@

2
�� +

i

�2
@�� )(�2

X
pL;pR

e�i� jpLj
2

e��i�� jpRj
2

) :

(2.10)

The r.h.s. being a total derivative with respect to � vanishes away from the enhanced

symmetric points T = U (modulo SL(2; Z)). However, as it has been pointed out by

Kaplunovsky [11], the surface term gives rise to a �-function due to singularities associated

with the additional massless particles at T = U . They correspond to lattice momenta (2.8),

(2.9) with m1 = n2 = 0 and m2 = �n1 = �1, so that pL = 0 and pR = �ip2. These are
the two additional gauge multiplets which enhace the gauge symmetry to SU(2) � U(1).

Expanding pL, pR around T = U for these states, it is easy to show that the surface term

becomes proportional to:

lim
�2!1

�2e
�
��2 jT�U j

2

2ImTImU � �(2)(T � U) :
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Note that there are two special points on the T = U plane (modulo SL(2; Z)) where the

gauge symmetry is further enhanced: T = U = i giving rise to SO(4) and T = U = � to

SU(3), � being the cubic root of unity. We will comment on these special points later. To

solve eq.(2.10) we will stay away from the singular region and we will take into account

the singularity structure by suitable boundary conditions. We therefore have the following

equations:

[@T@ �T +
2

(T � �T )2
]I = [@U@ �U +

2

(U � �U )2
]I = 0 : (2.11)

The general solution of eqs.(2.11) is

I =
1

2i
(@T � 2

T � �T
)[(@U � 2

U � �U
)f(T;U) + (@ �U +

2

U � �U
) ~f(T; �U)] + c:c: ; (2.12)

where f and ~f depend only on the indicated variables. The above equation is not in the

form (2.4) dictated by N=2 supersymmetry due to the presence of ~f but we will now show

that the latter vanishes. Taking appropriate derivatives of eq.(2.12) one �nds the following

identity:

D �U@ �UDT@TI =
1

2i
@3T@

3
�U
~f ; (2.13)

where the covariant derivativeDT = @T +
2

T� �T
. Now we can evaluate the l.h.s. of the above

equation by using the explicit string expression (2.6) for I with the forms (2.8) and (2.9)

for the lattice momenta. The result is:

@3T@
3
�U
~f = � 16�2

(T � �T )2(U � �U)2

Z
d2�

� 2
2

�F (�� ) @��(�
2
2 @�(�

2
2 @�(�2

X
pL;pR

�p4Re
�i� jpLj

2

e��i�� jpRj
2

)))

(2.14)

One can show that the r.h.s. is a total derivative in � and vanishes away from the enhanced

symmetric points. As a result, the general solution for ~f is a quadratic polynomial in T and

�U . However such a polynomial can be reabsorbed in the function f(T;U), as can be seen

from the expression (2.12) for I. Therefore without loss of generality we can set ~f = 0.

This result is compatible with N=2 supersymmetry, as seen from eqs.(2.5) and (2.4) and
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the function f appearing in (2.12) can be identi�ed with the one loop correction to the

prepotential (2.2).

Our next task is to determine f . Equation (2.12) has no simple holomorphic structure,

therefore it is not suitable for exploiting the holomorphy property of the prepotential.

However, a simpler equation can be obtained by taking appropriate derivatives as in the

case of ~f above. It can be shown that

� i(U � �U)2DT@T@ �UI = @3Tf : (2.15)

A straightforward calculation utilizing eqs.(2.8) and (2.9) yields

fTTT = 8�2
U � �U

(T � �T )2

Z
d2�

� 2
2

�F (�� ) @�� [�
2
2 @� (�

2
2

X
pL;pR

pL�p
3
R e

�i� jpLj
2

e��i�� jpRj
2

)] : (2.16)

The r.h.s. can be further simpli�ed by integrating by parts. The boundary term is vanishing

away from the enhanced symmetry points and the result is:

fTTT = 4�2
U � �U

(T � �T )2

Z
d2� �F (�� )

X
pL;pR

pL�p
3
R e

�i� jpLj
2

e��i�� jpRj
2

: (2.17)

The r.h.s. of the above equation is indeed an analytic function of T and U , as can be

veri�ed by taking derivatives with respect to �T or �U . The resulting expressions are total

derivatives in � and vanish upon integration.

We now employ the SL(2; Z)T 
 SL(2; Z)U spacetime duality symmetry in order to

further determine the r.h.s. of (2.17). Under SL(2; Z)T transformations,

T ! aT + b

cT + d
; (2.18)

the lattice momenta (2.8), (2.9) transform as (pL; �pR) ! ((cT + d)=(c �T + d))1=2(pL; �pR)

modulo relabeling of the integers mi; ni. Similarly under SL(2; Z)U transformations, they

transform as (pL; pR)! ((cU+d)=(c �U+d))1=2(pL; pR). Using these properties one can verify

that the r.h.s. of eq.(2.17) behaves like a meromorphicmodular function of weight 4 in T and
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�2 in U . Furthermore, the only sigularity in the T;U plane (including in�nities) is a simple

pole at T = U (modulo SL(2; Z)U ). Indeed, by expanding pL and pR around T = U for the

additional massless states, one �nds that the r.h.s. behaves like
R
d�2( �T � �U)e

�
��2 jT�U j

2

2ImTImU �
1=(T � U). Following the standard theorems of modular forms, we �nd

fTTT =
j(U) [j(U)� j(i)]

jU (U) [j(U)� j(T )]
h(T ) ; (2.19)

where j is de�ned below eq.(2.7) and h(T ) is a meromorphic modular function of weight

4, with at most a �rst order pole at in�nity. Inspection of the integral (2.17) shows that

fTTT ! 0 as T ! i1 which implies that h(T ) must be holomorphic everywhere. This

therefore �xes fTTT uniquely to:2

fTTT = �2i

�

jT (T )

j(T )� j(U)

(
j(U)

j(T )

)(
jT (T )

jU(U)

)(
j(U)� j(i)

j(T )� j(i)

)
� 2W (T;U): (2.20)

The function fUUU is obtained from eq.(2.20) by replacing T $ U . A tedious calculation

shows that the result is consistent with the integrability condition

@3UfTTT = @3TfUUU ; (2.21)

which is necessary for the existence of the prepotential f(T;U).

In order to �nd a solution f for the above di�erential equations, it is convenient to

introduce the following closed meromorphic one-form !:

!(T;U ;T 0; U 0) = dT 0Q(U;U 0)(T�T 0)2W (T 0; U 0)+dU 0Q(T; T 0)(U�U 0)2W (U 0; T 0); (2.22)

where Q(x; x0) is the second order di�erential operator de�ned as:

Q(x; x0) =
1

2
(x� x0)2@2x0 + (x� x0)@x0 + 1: (2.23)

2
This result was also known to V. Kaplunovsky [11], as recently reported by B. de Wit, V. Kaplunovsky,

J. Louis and D. L�ust in hep-th/9504006.
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Using the property @x0Q(x; x
0) = 1

2
(x � x0)2@3x0 and the integrability condition (2.21), one

can indeed prove that ! is closed, namely: d0! = 0, where d0 � dU 0@U 0 + dT 0@T 0. For non-

singular (T;U), one can show that the following line integral of ! satis�es the di�erential

equations for f(T;U), therefore de�ning the latter up to a quadratic polynomial in T and

U :

f(T;U) =
Z (T;U)

(T 0;U0)
!(T;U ;T 0; U 0); (2.24)

where (T 0; U0) is an arbitrary base point (outside the singular locus of !), di�erent choices

of the base point modifying f(T;U) by a quadratic polynomial, as is evident from the fact

that ! is quadratic in T;U . The path of integration in (2.24) is chosen such that it does

not cross any singularity. Note that the complement of the singular locus is connected and

therefore such a path always exists, however this complement is not simply connected, and

as a result the above line integral depends on the homology class of the integration path.

Di�erent choices of homology classes of paths will alter f by quadratic polynomials in T;U .

This ambiguity is related to the non-trivial quantum monodromies which will be discussed

in the next section.

The other important point concerns the transformation properties of f(T;U) under the

action of PSL(2; Z) on T and U . From the equation de�ning !, it follows that under

T ! Tg � aT+b
cT+d

we have:

!(Tg; U ;T
0
g; U

0) = (cT + d)�2!(T;U ;T 0; U 0): (2.25)

Using this property in (2.24) one can derive the following equation:

f(Tg; U) = (cT + d)�2[f(T;U) +
Z (T 0;U0)

(T 0

g�1
;U0)

!(T;U ;T 0; U 0)]: (2.26)

The homology class of path de�ning the second term of the r.h.s. of this equation is de-

termined by those de�ning f(T;U) and f(Tg; U). We will be more precise on this point

in the next section, however we note here that equation (2.26) implies that f transforms
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with weight �2 in T up to a quadratic polynomial in T;U coming from the second term in

the r.h.s. of (2.26). The same transformation properties hold for the U variable. Similarly

under T;U exchange one can show that:

f(U; T ) = f(T;U) +
Z (T 0;U0)

(U0;T 0)
!(T;U ;T 0; U 0); (2.27)

implying again that f picks an additive quadratic polynomial.

When U is one of the �xed points of the modular group SL(2; Z)U (e.g. the order 2

�xed point U = i or the order 3 �xed point U = �), fTTT vanishes. Let us consider the

behaviour of fTTT at generic U away from these �xed points. As mentioned above, eq.(2.20)

is singular as T approaches Ug =
aU+b
cU+d

where g is an SL(2; Z) element:

fTTT !�2i

�

1

T � Ug

(cU + d)2 : (2.28)

Note that if Ug is one of the �xed points then one must sum over the residues around the

poles 1=(T � Ugg0) where g
0 is an element of the little group of Ug. It is easy to verify that

the resulting sum vanishes consistent with the fact that fTTT is zero at these points. Upon

integration, the limit (2.28) becomes

f(T;U)!� i

�
[(cU + d)T � (aU + b)]2 ln(T � Ug) ; (2.29)

giving rise to a branch cut starting at T = Ug. When Ug is not one of the �xed points, it

follows from eq.(2.4) that

G
(1)

T �T
! 1

�
ln jT � Ugj2G(0)

T �T
: (2.30)

When Ug is one of the �xed points then the summation over the little group of Ug introduces

a multiplicative factor 2 or 3 for the �xed points of order 2 or 3, corresponding to the

enhanced symmetries SO(4) or SU(3) respectively.

The singular behaviour (2.30) of the modulus (and its N=2 superpartners) wave func-

tion renormalization factor can be understood within the framework of e�ective �eld theory.
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It is due to infrared divergences which arise in the presence of massless particles carrying

non-zero charges with respect to the U(1) gauge group associated with the N=2 vector

multiplet of T . The �eld-theoretical result is

G
(1)

T �T
! 1

2�

X
a

e2a lnm
2
aG

(0)

T �T
; (2.31)

where ea and ma / jT � Ugj are the charges and masses, respectively, of N=2 vector

multiplets that become massless in the T ! Ug limit. These multiplets do indeed carry

non-zero charges, and it is not di�cult to show that eq.(2.31) agrees with eq.(2.30). The

multiplicative factors of 2 and 3 at the �xed points of order 2 and 3 respectively arise due

to the presence of additional charged massless states corresponding to the gauge groups

SO(4) and SU(3). Indeed, the ratio 1:2:3 corresponds the the ratio of 1/2 of the SU(2)

�-function to the �-functions of SO(4) and SU(3). The factor 1/2 is due to the fact that

the �eld which has well-de�ned quantum numbers under SU(2) is not T itself but the

combination (T � U).

3. Monodromies of the one-loop prepotential

Now we turn to the question of the monodromy group that acts on f . At the clas-

sical level there is the usual action of the modular group acting on T and U upper half

planes, namely PSL(2; Z)T 
PSL(2; Z)U . The PSL(2; Z)T subgroup of the PSL(2; Z)T 

PSL(2; Z)U modular symmetry group is generated by the transformations

g1 : T !�1=T g2 : T ! �1=(T + 1) : (3.1)

The PSL(2; Z)U subgroup is generated by

g01 : U !�1=U g02 : U ! �1=(U + 1) : (3.2)
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These generators obey the SL(2; Z) relations

(g1)
2 = (g01)

2 = (g2)
3 = (g02)

3 = 1 ; (3.3)

and the relations implied by the fact that the two PSL(2; Z)'s commute. There is also an

exchange symmetry generator, namely:

� : T $ U; (3.4)

which satis�es �2 = 1. Moreover � relates the two PSL(2; Z)'s via g01 = �g1� and

g02 = �g2�. We expect that these relations do not hold in the quantum case, due to

the singularities of the prepotential. For instance, since �2 corresponds to moving a point

around T = U singularity, it will not be equal to the identity. In order to understand the

monodromy properties in the quantum case we have to �nd the new relations among the

generators. To do that it is convenient to think of the above relations as relations among

the generators of the fundamental group of the underlying moduli space. The classical

monodromy group is then obtained by imposing the relation �2 = 1, while in the quantum

case this relation is modi�ed by the presence of a logarithmic branch cut.

At the classical level the underlying space is the product of two PSL(2; Z) fundamental

domains with an identi�cation given by �. Topologically each of these two fundamental

domains can be thought of as a two-sphere S (S0) with 3 distinguished points x1 (x
0
1), x2

(x02) and x3 (x03), which can be taken to be the images of i, � and 1 by the j-function.

Associated with these three points we have generators gi (g
0
i) of the fundamental group of

orders 2, 3 and 1 respectively, subject to the conditions g3g2g1 = 1 and g03g
0
2g
0
1 = 1. The

total space is then the product of the two spheres S and S 0 minus fxig � S0 and S � fx0ig,

i = 1; 2; 3, and the fundamental group of the resulting 4-dimensional space is the product of

the fundamental groups of the two punctured spheres. Including �, we have the additional

relations g0i = �gi� and �2 = 1.
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In the quantum case however, since we have singularities at T = U , we must remove

the diagonal in the product of the two punctured spheres and this modi�es the structure

of the fundamental group. In general, when one takes a product of two (or more) identical

Riemann surfaces and removes the diagonal, the fundamental group of the resulting space

is called braid group and has been studied extensively [12]. One can adapt the results of

ref.[12] to the present case, and obtain the following relations:

g3g2g1 = �2; (g1)
2 = (g2)

3 = 1

g0i = ��1gi�

g1�
�1g2� = ��1g2�g1

�gi�
�1gi = gi�

�1gi�: (3.5)

The full fundamental group is indeed generated by three elements �, g1, g2 subject to

the above relations. Notice that if one sets �2 = 1 one gets back the classical relations

for the two commuting PSL(2; Z)'s. However, as mentioned earlier, in the quantum case

�2 6= 1 and the two PSL(2; Z)'s do not commute anymore. In fact, �2 corresponds to

moving a point around the singularity at T = U and therefore transforms the prepotential

f non-trivially:

Z1 � �2 : f(T;U)! f(T;U) + 2(T � U)2 (3.6)

Note that the additive piece above is uniquely �xed by the fact that it must be at most

quadratic in T as well as U and by the behaviour of f near T = U governed by the

logarithmic term in eq.(2.29).

Actually one can explicitly check the non commutativity of T and U duality transfor-

mations using the integral representation for f given in (2.24). For instance one �nds for
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the commutator g1g
0
1(g1)

�1(g01)
�1:

g1g
0
1(g1)

�1(g01)
�1 : f(T;U)! f(T;U) + 2(T � U)2 � 2(1 + TU)2 (3.7)

Notice also that we could rede�ne g3 in the �rst equation of (3.5) by ~g3 = ��2g3, and

then ~g3g2g1 = 1, which is the usual SL(2; Z) relation. We can do the same for g0i, showing

that the quantum monodromy group contains the two SL(2; Z)'s as subgroups. However,

as seen from (3.5) the two SL(2; Z)'s now do not commute.

Having the generators and relations of the fundamental group, we will now determine

the monodromy transformations of the prepotential f . We can assume the following trans-

formation properties of f under the generators g1, g2 and �:

g1 : T ! �1=T ; f ! T�2 (f + P (T;U) ) ;

g2 : T ! �1=(T + 1) ; f ! (T + 1)�2 (f +R(T;U) ) ;

� : T $ U ; f ! f +K(T;U) ; (3.8)

As explained in the previous section the functions P , R and K are polynomials quadratic

in T and U . Note that this property is consistent with the requirement that the quantity

I which gives the physical metric (2.5) remains invariant under all three transformations.

In fact, using eq.(2.12), one �nds that these functions must satisfy

Imf(@T � 2

T � �T
)(@U � 2

U � �U
)Qg = 0 ; Q � P;R;K

It is then straightforward to show that the most general solution to this equation is a

general quadratic polynomial in both T;U with real coe�cients.

The functions P;R;K must be compatible with the relations (3.5) and also with (3.6).

The latter implies that:

K(T;U) +K(U; T ) = 2(T � U)2: (3.9)
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The general solution for K(T;U) then is:

K(T;U) = (T � U)2 + (T � U)(xUT + y(T + U) + z); (3.10)

where x, y and z are complex numbers. The relation (g1)
2 = 1 implies that P must be of

the form �(T 2�1)+�T where � and � are quadratic polynomials in U . Similarly from the

relation (g2)
3 = 1 one �nds that R = AT 2+2(A+C)T +C, with A and C quadratic in U .

Using the freedom to add to f a quadratic polynomial in T and U (involving 9 parameters)

we can set for example 9 parameters entering in �, � and A+C to zero. Using the last two

relations of (3.5), we can then show that all the remaining parameters get �xed, resulting

into the following expressions for the 3 polynomials:

P = 0

R = 2(T 2 � 1) (3.11)

K = (T � U)2 + (T � U)(�2UT + T + U + 2):

Notice that the coe�cients of the polynomials are real, and as a result one can check, using

(2.4), that the K�ahler metric transforms covariantly.

The full monodromy group G contains a normal abelian subgroup H, which is generated

by elements Zg obtained by conjugating Z1 by an element g which can be any word in the

gi's, g
0
i's and their inverses. More explicitly, if g acts on the T;U space as T ! T and

U ! aU+b
cU+d

, then Zg acts as:

Zg : (T;U)! (T;U) ; f(T;U)! f(T;U) + 2((cU + d)T � (aU + b))2 (3.12)

In other words Zg corresponds to moving a point around the singularity T = Ug, where

the prepotential behaves as shown in (2.29). Notice that the fact that H is abelian does

not follow from the general group structure of (3.5), but from the speci�c logarithmic
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singularity (2.29), which implies that H acts on f by shifts as in (3.12). A general element

of H is obtained by a sequence of such transformations and shifts f by:

f ! f + 2
X
i

Ni((ciU + di)T � (aiU + bi))
2 � f +

2X
n;m=0

cnmT
nUm Ni 2 Z (3.13)

with ai; bi; ci; di corresponding to some SL(2; Z) elements for each i. Since the polynomial

entering in (3.13) has 9 independent parameters cnm, it follows that H is isomorphic to

Z9. The set of all conjugations of H by elements generated by gi's and g
0
i's de�nes a group

of (outer) automorphisms of H which is isomorphic to PSL(2; Z) � PSL(2; Z), under

which cnm transform as (3; 3) representation (in this notation the two PSL(2; Z)'s act on

the index n;m respectively). Moreover, the conjugation by � de�nes an automorphism

which interchanges the indices n and m in cnm. Thus the set of all conjugations of H

is isomorphic to O(2; 2;Z), under which the cnm's transform as a second rank traceless

symmetric tensor. Finally, the quotient group G=H is isomorphic to O(2; 2;Z), therefore

G is a group involving 15 integer parameters. On the other hand, G is not a semidirect

product of O(2; 2;Z) and H, since O(2; 2;Z) is not a subgroup of G, as it follows from

the quantum relations (3.5). Of course for physical on-shell quantities the group H acts

trivially and therefore one recovers the usual action of O(2; 2;Z).

4. Linear basis for the monodromies and quantization

So far we have discussed the monodromies of f , which turned out to be consistent

with the covariance of the K�ahler metric. However, in order for the K�ahler potential to

transform by a K�ahler transformation, the transformations of f must be supplemented by

suitable transformations of the dilaton �eld S. From the form of the K�ahler potential (2.1)

and (2.2) one deduces that S must transform as:

g1 : S ! S +
fU

T
(4.1)
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g2 : S ! S +
fU

T + 1
(4.2)

� : S ! S � 1

2
KTU (4.3)

One can verify that the above transformations satisfy all the group constraints discussed

earlier. The above equations therefore de�ne the action of the monodromy group G on S.

In addition to this, there is also the usual axionic shift which leaves T , U , and f invariant,

D : S ! S + � ; (4.4)

where � is a real number. The full perturbative group of monodromies is the direct product

of G with the abelian translation group (4.4).

In order to better understand the group stucture and discuss quantization of the pa-

rameters due to non-perturbative e�ects, it is convenient to introduce a �eld basis where

all monodromies act linearly. To this end we use the formalism of the standard N=2

supergravity [8] where the physical scalar �elds ZI of vector multiplets are expressed as

ZI = XI=X0, in terms of the constrained �elds XI and X0. This is a way to include

the extra U(1) gauge boson associated with the graviphoton which has no physical scalar

counterpart. In our case we have

S =
Xs

X0
T =

X2

X0
U =

X3

X0
(4.5)

and the prepotential (2.2) is the following homogeneous polynomial of degree 2:

F =
XsX2X3

X0
+ (X0)2f(

X2

X0
;
X3

X0
) (4.6)

The K�ahler potential K is

K = � log i( �X
I
FI �XI �F I) ; (4.7)
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where FI is the derivative of F with respect to XI and I = 0; s; 2; 3. This has a gener-

alization in basis where FI is not the derivative of a function F [13]. Then, the kinetic

matrix for vector �elds NIJ is a 4� 4 symmetric matrix completely determined by XI and

FI through the formulae (4.7) and

FI = NIJX
J ; DI

�F J = NJLDI
�X
L

where DI = @I +KI . For the case in which FI = @IF , it reduces to the known expression

of ref. [8].

It is clear that symplectic transformations acting on (XI ; FI) leave the K�ahler potential

invariant. Since the monodromy group leaves K invariant, we expect it to be a subgroup

of the symplectic group Sp(8). In the following we will identify this subgroup. A general

symplectic transformation is

0
@XI

FI

1
A!

0
@ a b

c d

1
A
0
@XI

FI

1
A (4.8)

where a, b, c, d are 4�4 matrices and satisfy the de�ning relations of the symplectic group,

namely

atc � cta = 0 ; btd� dtb = 0 ; atd� ctb = 1: (4.9)

Under this transformation, however, the vector kinetic term ImF I
��N IJFJ�� transforms as:

N ! (c+ dN)(a+ bN)�1: (4.10)

If b 6= 0 then from the above equation it follows that the gauge coupling gets inverted and

therefore in a suitable basis the perturbative transformations must have b = 0. When

b = 0 the symplectic contraints (4.9) imply that dt = a�1 and c = at
�1
~c with ~c an

arbitrary symmetric matrix. Furthermore, from eq.(4.10) we see that the vector kinetic

term changes by ~cIJ ImF IFJ which, being a total derivative, is irrelevant at the perturbative
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level. However at the non-perturbative level, due to the presence of monopoles, the matrix

~c must have integer entries.

In the absence of the one-loop correction f , one can verify that the PSL(2; Z)T trans-

formation T ! aT+b
cT+d

transform XI and FI as:

X0 ! cX2 + dX0 F0 ! aF0 � bF2

Xs ! cF3 + dXs Fs ! aFs + bX3

X2 ! aX2 + bX0 F2 ! �cF0 + dF2

X3 ! cFs + dX3 F3 ! aF3 + bXs

(4.11)

and similarly PSL(2; Z)U transformation is given by interchanging X2 with X3 and F2

with F3 in the above equation. Note that these transformations act linearly and are in

fact symplectic. However, in this basis the matrix b 6= 0 as XI 's get transformed to F I 's.

It is therefore convenient to make a symplectic change of the basis into (XI ; FI) where

I = 0; 1; 2; 3 with X1 = Fs and F1 = �Xs. In the new basis the tree-level O(2; 2;Z) trans-

formations are block diagonal, i.e. b = c = 0 and d = at
�1
. For PSL(2; Z)T transformations

a is given by

a =

0
BBBBBBBB@

d 0 c 0

0 a 0 b

b 0 a 0

0 c 0 d

1
CCCCCCCCA

(4.12)

while for PSL(2; Z)U , a is obtained by interchanging the last two columns and rows. Finally

T;U interchange corresponds to

a =

0
@ 1 0

0 �1

1
A �1 =

0
@ 0 1

1 0

1
A (4.13)

These matrices a are O(2; 2;Z) matrices which preserve the metric M

M =

0
@ �1 0

0 ��1

1
A (4.14)
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As explained in the last section, when one includes the one loop correction to the

prepotential f , the O(2; 2;Z) group is replaced by the monodromy group G generated by

the three elements g1, g2 and �. The action of these elements on f and S is given by

equations (3.8), (3.11) and (4.3). In the new symplectic basis introduced above, these

transformations act linearly with the upper o�-diagonal block b = 0, that is they are of the

form: 0
@ a 0

at
�1
~c at

�1

1
A (4.15)

The matrices a, ~c for the three generators are as follows:

g1 : a =

0
BBBBBBBB@

0 0 1 0

0 0 0 �1

�1 0 0 0

0 1 0 0

1
CCCCCCCCA

~c = 0

g2 : a =

0
BBBBBBBB@

1 0 1 0

0 0 0 �1
�1 0 0 0

0 1 0 1

1
CCCCCCCCA

~c =

0
BBBBBBBB@

�4 0 0 0

0 0 0 0

0 0 4 0

0 0 0 0

1
CCCCCCCCA

(4.16)

� : a =

0
BBBBBBBB@

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

1
CCCCCCCCA

~c =

0
BBBBBBBB@

0 �1 2 �2

�1 0 �2 2

2 �2 4 �1

�2 2 �1 0

1
CCCCCCCCA

Note that the matrices ~c are symmetric and satisfy TrM~c = 0, where M is the metric

(4.14).

The abelian group H introduced in (3.13) is generated by symplectic matrices (4.15)

with a = 1, and ~c:

~c =
X
i

2Nig
t
i

0
@ �1 0

0 �1 � 2

1
A gi (4.17)



{21{

where gi can be chosen for instance as PSL(2; Z)T matrices of the form (4.12). Since

gi preserve the metric M it is clear that the symmetric matrices (4.17) are traceless with

respect toM . Therefore, by suitable choices of gi's and Ni's one can generate all symmetric

4� 4 matrices which are traceless with respect to M , and therefore depending on 9 integer

parameters. They form the 9-dimensional representation of O(2; 2;Z) corresponding to the

second rank symmetric traceless tensors, as explained in the last section.

The full perturbative monodromy group contains also the axionic shift D (4.4) which

in the above symplectic basis corresponds to

D :

0
@ 1 0

��M 1

1
A ; (4.18)

which commutes with the above matrices of G, as expected. The parameter � should also

be quantized at the non-perturbative level. In this way one generates all possible symmetric

4� 4 lower o�-diagonal matrices depending on 10 integer parameters, the trace part being

generated by M in (4.18). The full monodromy group is generated by the 4 generators g1,

g2, � and D.

5. Generalization to arbitrary (4; 4) compacti�cations

The heterotic string compacti�ed on T 2 �K3 with spin connection identi�ed with the

gauge connection gives rise to N=2 supersymmetry having, besides the U(1)2 associated

with the dilaton and the graviphoton, a rank 17 gauge group E7 �E8 � U(1)2.3 There are

also 20 massless hypermultiplets in the 56 representation of E7. In the previous sections we

discussed the dependence of the prepotential on the U(1)2 vector multiplets corresponding

to the moduli of the 2-torus T 2. However, the complete moduli space also includes the

3
For special points in the hypermultiplet moduli space, as for example orbifold point of K3, there could

be extra massless vector multiplets increasing the rank of the gauge group. We will discuss such situations

in the next section.
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2 � 15 Wilson lines which enlarge the lattice deformations to O(2; 17). At a generic point

of this moduli space the gauge group is broken to U(1)17 and all charged hypermultiplets

become massive. Complex co-dimension 1 singularities in the moduli space correspond

either to the appearance of two extra massless vector multiplets which enlarge one of the

U(1) factors to SU(2), or to massless hypermultiplets. These are the analogues of the T = U

singularities discussed in the previous sections. There are of course higher co-dimensional

surfaces analogous to T = U = i or �, which correspond to larger gauge groups and/or

more massless hypermultiplets; they are not relevant in the following discussions.

At the classical level, the duality group is O(2; 17;Z) which leaves the mass spec-

trum and the interactions invariant. This is a subgroup of the symplectic transformations

Sp(38;Z) mentioned in the introduction. As in the last section, one can choose a �eld basis

in which these transformations are linear and block diagonal at the tree level. For conve-

nience we will choose here a basis [13] such that O(2; 17;Z) leaves invariant the diagonal

metric � = diag(�1;�1; 1; 1; : : : ; 1):

XI = (X0;X1;X�) ; XIXJ�IJ = 0

(5.1)
FI = S�IJX

J

where � = 2; : : : ; 18 and S is the dilaton. The 17 physical coordinates y� of the O(2; 17)=

(O(2) �O(17)) manifold are given in terms of X's by X�=X0 = 2y�=(1 + y2�). X
I and FI

satisfy the constraints: FI�
IJFJ = FIX

I = 0. Note that in this basis the prepotential does

not exist, i.e. FI is not I-th derivative of a function. This is exactly as in the case of O(2; 2)

in the new basis introduced in section 4, where the role of Xs and Fs was interchanged

to diagonalize the O(2; 2;Z) transformations. If one wishes, one could go back to a basis

where a prepotential exists. The tree-level K�ahler potential is given by

K(0) = � log i(XI �FI � �X
I
FI) = � log i( �S � S)� logXI�IJ �X

J (5.2)
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and the O(2; 17) transformations in the symplectic basis (5.1) take the form:

0
@XI

FI

1
A!

0
@ a 0

0 at
�1

1
A
0
@XI

FI

1
A ; (5.3)

where a is a O(2; 17) matrix which preserves the metric �.

The BPS mass formula [13] is

m = eK=2jn(e)I XI � nI(m)FI j ; (5.4)

which is invariant under K�ahler transformations. Here n(e) and n(m) are the electric and

magnetic charge vectors. The elementary string states have n(m) = 0 and n(e) lie in a lattice

�(e) which for instance can be choosen to be the product of an even self-dual lattice �(2;2)

corresponding to the two-torus with the weight lattices of E7�E8. For convenience we will

choose for �(2;2) the SO(4) � SO(4) weight lattice with the conjugacy classes of the two

factors being identi�ed.4 The conjugacy class of the scalar in E7 corresponds to the vector

multiplets while the one of 56 corresponds to hypermultiplets. In fact, for n(m) = 0, the

mass (5.4) is just the left moving momentum of the two-torus jpLj, i.e. they correspond to

the ground state of left-moving sector with momentum pL. Massless states are the ones with

m = 0 and n
(e)
I �IJn

(e)
J = 2 for vector multiplets and =3=2 for hypermultiplets. Thus the

point y� = 0 corresponds to the gauge group E7�E8�SO(4) with massless hypermultiplets

in 56 representation of E7 whose multiplicity is governed by the cohomology of K3 and is

20. On the other hand it is clear from the constraints for massless states that at generic

values of y�'s, there are no charged massless states and therefore the gauge group is U(1)17.

The symmetry group O(2; 17;Z) is the automorphism group of �(e).

The complex co-dimension 1 surface of singularity corresponding to the enhancement

of one of the U(1)'s to SU(2) (i.e. when two charged vector multiplets become massless)

4
Here we normalise roots to have length

p
2.
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is de�ned by the equation

n
(e)
I XI = 0 (5.5)

for a particular choice of n(e) vector obeying n
(e)
I �IJn

(e)
J = 2. Di�erent choices of such charge

vectors de�ne di�erent surfaces of singularity and they are related to di�erent U(1)'s being

enhanced to SU(2). For di�erent vectors n(e)'s that are related by O(2; 17;Z) transforma-

tion, the corresponding surfaces are also O(2; 17;Z) transforms of each other. Similarly,

the singular surfaces associated with the appearance of massless hypermultiplets are given

by eq.(5.5) with n
(e)
I �IJn

(e)
J = 3=2. The appearance of these massless states gives rise to

logarithmic singularities in the prepotential as in the O(2; 2) case discussed previously. In

the following we will identify the coe�cient of these logarithmic singularities as they enter

in the monodromy matrices.

Let us denote by fI the one-loop corrections to FI of eq.(5.1). The one-loop correction

to the K�ahler potential is

K(1) = � 1

S � �S

(XI �fI � �X
I
fI)

XK�KL
�X
L

: (5.6)

Consider now the behaviour of K(1) near a singular surface n
(e)
I XI = 0. The direction

orthogonal to the surface, and subject to the constraint XIXJ�IJ = 0, is �XI = �IJn
(e)
J �,

where � is an in�sitesimal parameter. We are interested in the component of the metric

along this direction, since it is this component which has a logarithmic singularity near the

surface. Expanding the K�ahler potential (5.2) and (5.6) in powers of � and �� and extracting

the coe�cient of ���, one �nds:

G
(1)
��� =

i

2
G

(0)
��� [

1

n(e)
2n

(e)
I �IJ (��fJ � ��� �fJ) +

XI �fI � �X
I
fI

XK�KL
�X
L
]

G
(0)
��� = � n(e)

2

XI�IJ �X
J

(5.7)

where n(e)
2 � n

(e)
I �IJn

(e)
J . Note that the tree-level metric G(0) does not mix the � direction
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with the directions tangential to the singular surface since the linear terms in the expansion

of K(0) vanish on the surface. The linear terms in the expansion of K(1) are proportional

to

�

XK�KL
�X
L
[n

(e)
I �IJ �fJ � �X

I
��fI � c:c:] (5.8)

We know that the one-loop metric near the singular surface has a logarithmic singularity

of the form G
(1)
��� =G

(0)
��� = c

�
log jn

(e)

I
XI

X0 j2 with c = n(e)
2
= 2 for vector multiplets, and c =

�10n(e)2 = �15 for hypermultiplets. The appearance of n(e)
2
can be understood from the

fact that these are the square of the charges of the states that become massless with respect

to the U(1) de�ned by the �-direction. The particular values 2 and 15 are associated with

charges �1 for the SU(2) adjoint representation, and �p3=2 for the 20 hypermultiplets.

As mentioned before, the multiplicity 10 is related to the cohomology of K3, and O(2; 17)

deformations do not alter this value. As for the mixed components of the one-loop metric

involving � and a direction tangential to the surface, there is no logarithmic singularity

since the sum over the charges vanishes. These requirements together with eqs.(5.7) and

(5.8) imply that the singular part of fI near the surface is:

fI = �2iN

�
n
(e)
I n

(e)
J XJ log

n
(e)
L XL

X0
(5.9)

where N = 1 or �10 for the case of vector multiplets or hypermultiplets, respectively.

The presence of logarithms in fI modi�es the classical monodromies just as in the

O(2; 2;Z) case. The analogue of the T $ U exchange corresponds now to the Weyl

reections Wn(e) de�ned by the vectors n(e)'s satisfying n(e)
2
= 2 (i.e. for the vector multi-

plets). Wn(e) is an automorphism of the charge lattice and, at the classical level, it satis�es

(Wn(e))
2 = 1. However at the quantum level this relation is no longer true due to the

logarithmic singularities in f , as in the O(2; 2) case. Indeed, (Wn(e))
2 � Zn(e) corresponds

to moving a point around the singular surface n
(e)
I XI = 0. Consider a vector n(e) ly-

ing in the �-directions. From equation (5.9) it is easy to see that (Wn(e))
2 shifts FI as
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FI ! FI + 4n
(e)
I n

(e)
J XJ . This results in the following symplectic transformation:

Zn(e) =

0
@ 1 0

~cv 1

1
A ~cv = 4n(e)n(e)

t
(5.10)

It follows that Wn(e) must be of the form:

Wn(e) =

0
@ a 0

at
�1
~c at

�1

1
A (5.11)

where a is the element of O(2; 17;Z) corresponding to the above Weyl reection and ~c is a

symmetric matrix satisfying the condition at
�1
~ca+ ~c = �4n(e)n(e)t.

In the case of n(e)
2
= 3=2 corresponding to 56 of E7 (i.e. for hypermultiplets) the

reection is not a symmetry of the lattice. However there is still a non-trivial monodromy

Zn(e) associated with moving a point around such singular surfaces:

Zn(e) =

0
@ 1 0

~ch 1

1
A ; ~ch = 40n(e)n(e)

t
(5.12)

where the coe�cient 40 appears due to the multiplicity 20 of the hypermultiplets that

become massless.

Similarly to the O(2; 2) case discussed in sections 3 and 4, the fact that (Wn(e))
2 is not

equal to the identity implies that the classical group O(2; 17;Z) is replaced by a quan-

tum monodromy group G. The latter is de�ned by the fundamental group of the space

obtained after removing the singular surfaces from the fundamental domain of O(2; 17;Z)

in O(2; 17)=O(2) � O(17). Note that the number of singular surfaces in the fundamen-

tal domain is given by the number of distinct O(2; n;Z) orbits among the lattice vectors

satisfying (n(e))2 = 2 or 3=2 and is �nite. The fundamental group is �nitely presented,

and when Zn(e) are set equal to identity, this group reduces to O(2; 17;Z). The subgroup

generated by Zn(e)'s de�nes a normal abelian subgroup H of G. In the symplectic basis an



{27{

arbitrary element of H is given by

0
@ 1 0

~c 1

1
A ~c =

X
i

Nig
t
i~c
vgi +

X
j

Mjg
t
j~c

hgj (5.13)

where gi are O(2; 17;Z) elements. In this way, we generate a general symmetric matrix ~c

depending on 19� 20=2 integer parameters. It is decomposed into a sum of two irreducible

representations of O(2; 17): a traceless symmetric tensor and a singlet corresponding to the

trace. Note that the latter can be identi�ed with the quantized dilaton shift having the

form: 0
@ 1 0

� 1

1
A (5.14)

Of course at the perturbative level, on top of this transformation one can add an arbitrary

dilaton shift with � replaced by ��. The quotient group G=H is isomorphic to O(2; 17;Z).

A representative element in a class of G=H is given in the symplectic basis as:

0
@ a 0

at
�1
~c at

�1

1
A (5.15)

where a is the corresponding O(2; 17;Z) matrix and ~c is some symmetric matrix, whose

precise form is determined by the relations satis�ed by the generators of G as was done

in the case of O(2; 2) in sections 3 and 4. For example, as stated above for the Weyl

reections Wn(e), ~c is constrained by the group relation (Wn(e))
2 = Zn(e). Unfortunately

at present we do not know the complete set of group relations de�ning the fundamental

group and therefore we are unable to construct the ~c's for various generators explicitly.

For consistency at the non-perturbative level the entries of ~c must be quantized such that

~c�(m) � �(e), where �(m) is the magnetic charge lattice which, as we shall discuss in the

next section, is the lattice dual to �(e) with respect to the metric �. One can see that

the ~c's appearing in H subgroup (5.13) satisfy this condition. Although we are unable to

determine G completely, we can however say that it is some �nite index subgroup of the

group of matrices of the form (5.15) with a 2 O(2; 17;Z) and ~c an arbitrary symmetric
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matrix satisfying the quantization condition.

6. (4; 0) models

So far we have discussed generic (4; 4) models leading to rank r = 17 gauge group.

However in the moduli space of hypermultiplets, there are special points where additional

vector multiplets become massless leading to an increase in the rank. For example at

the Z2 orbifold point one gets an extra SU(2) factor increasing the rank to 18, while for

special radii one can even get rank 22 gauge groups. At these special points the moduli

space of vectors is usually increased to O(2; r)=(O(2) �O(r)) and the classical symmetry

group is O(2; r;Z). The above analysis can again be repeated. We �rst introduce the

symplectic basis (XI ; FI) with I = 0; 1; : : : r+1 and XI�IJX
J = 0 on which the O(2; r;Z)

transformations act linearly by block diagonal symplectic matrices. The mass spectum is

again given as in eq.(5.4) with the charge vectors n(e) living in a lattice �(2;r). We assume

for simplicity that the sublattice �v associated with the charges of vector multiplets is even

and integral, which is the case for orbifolds. For orbifolds, it is also true that the full lattice

�(2;r) is the dual of �v, the non-trivial conjugacy classes C of �(2;r) with respect to �v being

associated with hypermultiplets. In the full string theory, each of these classes is coupled

to a block of the internal conformal �eld theory which describes the remaining (22 � r)

right movers. The data from the latter which is relevant here, is the multiplicitymC of the

number of operators in the Neveu-Schwarz sector carrying conformal dimension (1=2;�C)

with �C � 1 in the block coupled to the conjugacy class C. Of course, world-sheet modular

invariance implies that �C+
1
2
n(e)

2
is an integer for n(e) belonging to the class C. Obviously

mC and �C do not change under O(2; r) deformations. This is similar to the multiplicity

20 of the 56's of E7 in the (4; 4) models. The classical symmetry group which should

preserve the spectrum is O(2; r; Z) which preserves the lattice �v. At a generic point in the
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moduli space O(2; r)=(O(2) � O(r)), the gauge group is U(1)r and there are no massless

hypermultiplets.

At the one loop level the prepotential again develops logarithmic singularities near

complex co-dimension 1 surfaces where extra massless particles appear. The ones associated

with the enhancement of gauge symmetry to U(1)r�1 � SU(2) are given by the surfaces

n(e) � X = 0 for n(e) 2 �v and n(e)
2
= 2; the ones associated with the appearance of

extra massless hypermultiplets correspond to n(e) � X = 0 with n(e) belonging to a non-

trivial class C in �(2;r) with n(e)
2
+ 2�C = 2. As in the (4,4) case, one can show that the

singular part of fI 's near such a surface is given by eq.(5.9), with N being 1 for vector

multiplets and �mC for hypermultiplets associated with the conjugacy class C. As before

the presence of logarithmic singularity gives rise to non-trivial monodromies. The Weyl

reections associated with n(e) 2 �v satisfying n(e)
2
= 2 are again represented by the

matrices Wn(e) of eq.(5.11). SimilarlyW 2
n(e)

� Zn(e) is given by (5.10). For hypermultiplets

the reections are not automorphisms of the lattice. However moving a point around

such surfaces one gets monodromies that are given by the matrices Zn(e) of eq.(5.12) with

~ch = 4mCn
(e)n(e)

t
for n(e) in the conjugacy class C. The normal abelian subgroup H

consists of elements of the type (5.13) with ~c =
P

iNig
t
i~c
vgi +

P
j Mjg

t
j~c

hgj , where gi are

O(2; r;Z) elements. In this way, we generate a general symmetric matrix ~c depending

on (r + 2)(r + 3)=2 integer parameters. It is decomposed into a sum of two irreducible

representations of O(2; r): a traceless symmetric tensor and a singlet corresponding to the

trace. The latter is identi�ed with quantized axionic shift as before. The quotient G=H is

isomorphic to O(2; r; Z) and a general element of G is again of the form given in eq.(5.15)

where ~c is to be determined from the precise form of the relations de�ning the fundamental

group.

Now let us discuss the consistency of the monodromy group when non-perturbative

e�ects are taken into account. This means that the monodromy preserves the complete
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mass spectrum of BPS states involving electric as well as magnetic charges. The mon-

odromy group G acts as symplectic transformation of electric and magnetic charge vectors

(n(e); n(m)). Dirac quantization condition for magnetic charges implies that magnetic charge

vectors must be in the dual lattice of electric charge vectors �(2;r). This means that mag-

netic charges in fact lie in �v. A general element of the perturbative monodromy group we

have discussed so far consists of matrices whose upper o�-diagonal block is zero. Morever

the diagonal blocks are made up of O(2; r; Z) matrices which by de�nition preserve �v and

therefore the electric and magnetic charge lattices separately. The non-trivial question is

whether the lower o�-diagonal block ~c which mixes the magnetic charge lattice with the

electric charge one, is consistent. In other words we must have ~cn(m) 2 �(2;r). Since ~c

appearing in H is made up of matrices of the form 2n(e)n(e)
t
this condition is obviously

satis�ed. ~c appearing in a general element of G must also satisfy this condition. Thus

we see that again G is a �nite index subgroup of the group of matrices of the form (5.15)

with a 2 O(2; r;Z) and ~c an arbitrary symmetric matrix satisfying the quantization con-

dition. The non-perturbative consistency also implies the quantization of the dilaton shift:

S ! S + integer.

To illustrate the above let us consider Z2 orbifold and restrict to a subspace of two

moduli which generalize the O(2; 2) case discussed in sections 2, 3 and 4. More precisely,

we start with a model de�ned from the usual toroidal compacti�cation T 2 � T 4 of the

E8 � E8 heterotic theory by a Z2 twist on the T 4 together with a Z2 shift � acting on

the �(2;2) momentum lattice corresponding to T 2. In order to satisfy the level matching

condition �2 must be 1/2. Note that this is in contrast with the usual orbifold constructions

where the shift is embedded in one of the E8 factors breaking it to E7 � SU(2). Now the

gauge group is E8 � E8 � U(1)2 at a generic point in the moduli space of T 2. In terms

of the integers ni;mi that de�ne the momenta (2.8), (2.9), the e�ect of this shift is the

following. In the untwisted sector, vector multiplets are associated with m2 + n1 even
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integers, while hypermultiplets correspond to m2 + n1 odd. In the twisted sector m2 and

n1 are shifted by 1/2 and these states are hypermultiplets. With respect to the lattice �v

corresponding to m2 + n1 even, the charge lattice has now four classes. Besides the trivial

class C0, the non-trivial ones are C1 associated with m2; n1 2 Z and m2 + n1 odd, and C2

and C3 associated with m2; n1 2 Z + 1=2 and m2 + n1 even and odd, respectively. The

data from the remaining conformal �eld theory (mC;�C) discussed above is (1,0) for C1,

(32,3/4) for C2 and (8,1/4) for C3. Furthermore the tree-level symmetry group ~O(2; 2;Z)

is a subgoup of O(2; 2;Z) de�ned in section 4, which leaves these classes invariant. More

precisely, its even part is the subgroup of SL(2; Z)T � SL(2; Z)U obtained by identifying

the cosets of the two factors with respect to the �(2) subgroup of SL(2; Z); its odd part is

obtained by including the T $ U exchange.

Repeating the analysis of section 2, one can show that the third derivative of the one-

loop prepotential fTTT is given as a sum of contributions from the four classes, each of

them being expressed by the r.h.s. of eq.(2.17):

fTTT = 4�2
U � �U

(T � �T )2

X
C`

Z
d2� �F`(�� )

X
pL;pR2C`

pL�p
3
R e

�i� jpLj
2

e��i�� jpRj
2

: (6.1)

At �2 ! 1, 2i�2 �F` behaves as �q�1 for ` = 0, �1�q�1 for ` = 1, �32�q�1=4 for ` = 2 and

�8�q�3=4 for ` = 3, where q = e2i�� . One can verify from eq.(6.1) that in each class there is

a simple pole singularity associated with the appearance of massless sates. The condition

pL = 0 gives the linesm1+m2U+n1T+n2TU = 0 while the massless condition for the right

movers gives m1n2 �m2n1 = 1; 1; 1=4; 3=4 for the four classes C0; C1; C2; C3, respectively.

For C0 there are four distinct singular lines (modulo the automorphism group) T = U ,

T = U +1, T = �1=U and T = U=(U +1), where the gauge group becomes SU(2)�U(1).

For the other classes there is one representative singular line each which we can choose to

be T = �1=(U + 1) for C1, T = U for C2 and T = 3U for C3, where we have two massless

hypermultiplets. Note that the singular line of class C2 coincides with one of the lines for
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C0 implying that the two massless hypermultiplets come in one SU(2) doublet.

To each of the above singular lines there is an associated non-trivial monodromy. For

the T = U singularity, where besides the SU(2) gauge symmetry also 32 massless SU(2)

doublet hypermultiplets appear, we have the following monodromy for f :

T around U : f ! f � 62(T � U)2; (6.2)

where the coe�cient �62 is due to the contribution +2 of the vectors and �64 of the

hypermultiplets. For the other 3 SU(2) lines the monodromies are:

T around (U + 1) : f ! f + 2(T � U � 1)2

T around � 1

U
: f ! f + 2(1 + TU)2

T around
U

U + 1
: f ! f + 2(TU + T � U)2: (6.3)

Finally, for the remaining two hypermultiplet lines we have:

T around 3U : f ! f � 16(T � 3U)2

T around � 1

U + 1
: f ! f � 2(TU + T + 1)2: (6.4)

Here, we have used the particular values for the multiplicities of the various classes to get

the multiplicative coe�cients.

7. Concluding remarks

In this paper we studied the perturbative monodromies of the prepotential in N=2

heterotic string models in four dimensions. At the tree-level the duality group is a direct

product of Z corresponding to the dilaton shift with O(2; r;Z) given by the automorphisms

of the charge lattice, where r is the rank of the gauge group. In some symplectic basis, the
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duality group acts in a block diagonal form. At the one-loop level, due to the presence of

singularities associated with the appearance of massless states at complex co-dimension 1

surfaces in the moduli space of vector multiplets, its fundamental group gets modi�ed. The

resulting quantum monodromies associated with closed curves around the singular surfaces

which acted as identity at the tree-level, now get modi�ed by a lower o� diagonal symmetric

matrix which depends on (r+2)(r+3)=2 integer parameters. They de�ne a normal abelian

subgroup H of the monodromy group G. The quotient group G=H is isomorphic to the

duality group O(2; r;Z).

In order to �nd the quantum duality group G, it is necessary to �nd the fundamental

group of the quantum moduli space. We have solved completely this problem in the r = 2

case, where the fundamental group is known to be related to the braid group, but for r � 3

(and for the two-moduli case of section 6) we do not have a complete solution.

In view of the recent work of Seiberg and Witten in the rigid theory, one can ask the

question whether at the non-perturbative level the monodromy group is further modi�ed.

On general grounds we know that a non-perturbative generator will be an element of

Sp(2r + 4; Z), with a non-vanishing b entry (see eq.(4.8)).5 The relation of monodromies

to braid groups may be helpful in identifying the non-perturbative monodromy group and

in studying the dynamics of N=2 superstrings.
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In the N=4 theory such a generator is the Z2 (S !�1=S) generator of PSL(2; Z)S .
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