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Abstract

We reanalyse the problem of fermion masses in supersymmetric SO(10) grand

uni�ed models. In the minimal model, both low energy Higgs doublets belong
to the same 10 representation of SO(10) implying the uni�cation not only of the
gauge but also of the third generation Yukawa couplings. These models predict
large values of tan � � 50. In this paper we study the e�ects of departing from
the minimal conditions in order to see if we can �nd models with a reduced value
of tan�. In order to maintain predictability, however, we try to do this with the

addition of only one new parameter. We still assume that the fermionmasses arise
from interactions of the spinor representations with a single 10 representation,
but this 10 now only contains a part of the two light Higgs doublets. This
enables us to introduce one new parameter ! = �b=�t. For values of ! � 1 we
can in principle reduce the value of tan �. In fact, ! is an overall factor which

multiplies the down quark and charged lepton Yukawa matrices. Thus the theory
is still highly constrained. We show that the �rst generation quark masses and

the CP-violation parameter �K are su�cient to yield strong constraints on the

phenomenologically allowed models. In the end, we �nd that large values of tan �
are still preferred.
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1 Introduction

The Standard Model describes with a great degree of precision the observed elementary

particle interactions. It provides, however, no answer to the fundamental questions about

the origin of the gauge group SU(3)c � SU(2)L � U(1)Y , the structure of fermion masses

and mixing angles and their quantum numbers. Grand Uni�ed Theories (GUTs) have the

power to �ll the gap between theory and experiment [1]. Indeed, within this framework the

low energy group proceeds from the spontaneous breakdown of a single compact group. The

simplest and most attractive grand uni�ed theories are based on the unitary group SU(5)

or the orthogonal group SO(10). Remarkably, all low energy fermion quantum numbers

�nd a natural explanation within these theories. For instance, the �fteen Weyl fermions in

a Standard Model family, with their correct quantum numbers under the standard model

gauge group, are contained in a 10 and a 5 representation of SU(5). Most notably, they are

contained in a single spinor representation of SO(10), the extra state having the quantum
numbers of a right handed neutrino and leading therefore to the possibility of including
neutrino masses in a natural way.

If the grand uni�ed group breaks at very high energies to the standard model gauge
group, an essential requirement is that the theory should be supersymmetric [2]. Not only
does supersymmetry stabilize the hierarchy between the grand uni�ed scale and the weak
scale, but also the predictions coming from gauge coupling uni�cation within supersymmetric
theories are in remarkably good agreement with the precise measurements of the weak mixing

angle performed at LEP [3]-[5]. Moreover, supersymmetry provides the natural framework
for the construction of a theory of quantum gravity, and hence for the uni�cation of all forces
observed in nature. Supersymmetric grand uni�ed theories provide also a simple theoretical
framework for the understanding of fermion masses. The condition of bottom{tau Yukawa
coupling uni�cation implies, for instance, a large value of the top quark Yukawa coupling at

the grand uni�cation scale [6],[7], the low energy value of the top quark mass being governed,
in general, by the infrared �xed point structure of the theory [8]-[10]. Hence, supersymmetric
GUTs provide an understanding of the large value of the top quark mass [4],[5],[11],[12].
Moreover, in the minimal SO(10) model, the three Yukawa couplings of the third generation
unify at the grand uni�cation scale. This yields predictions not only for the top quark mass,

but also for the ratio of Higgs vacuum expectation values, tan�, which becomes naturally
large [16]. Large values of tan � are also associated with large corrections to the bottom mass

[13],[14], which depend on the supersymmetric spectrum and which should be computed in
a consistent way in order to obtain phenomenologically correct predictions for the top quark

mass [15].

2 Minimal SO(10) models

The hierarchy between the third and the �rst and second generation quark masses, as well

as the inter{generation mixing angles, may be explained by assuming that only the third

generation quarks couple to the 10 of Higgs by renormalizable interactions, while the other

mass terms are induced through higher order operators. A systematic search for this class of
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models within the framework of mimimalSO(10) was done in Ref. [17], under the assumption

that the model includes only three spinor representations, containing the three low energy

families, a few extra heavy spinor representations, the 10 Higgs multiplet and some 450s ,

necessary for the correct breakdown of the gauge symmetry and for the generation of the

fermion mass operators. All higher order operators are of the form

Oij = 16i
Mk

G 45k+1 � � � 45m

M l
P 45m�lX

10
Mn

G 45n+1 � � � 45p

M
q
P 45p�qX

16j ; (1)

where the 45 vevs in the numerator can be in any of the 4 directions, X;Y;B� L;T3R
(discussed below) and the 45 in the denominator can only be in the X direction which

breaks SO(10) down to the subgroup SU(5) � U(1)X . This occurs at a scale M10 which is

assumed to lie between the GUT scale MG � 1016GeV and the Planck scale MP .

The adjoint 45's may be labelled according to the direction of their vacuum expectation
values. There are four special directions [17]. The X direction, necessary for the breakdown

of SO(10) to SU(5)�U(1)X at the scale M10. The 45X in the denominator can arise when
integrating out heavy 16 and 16 states with mass from the 45X vev. Of course, this only
makes sense if M10 > MG. Other directions are the Y and B �L, which break SU(5) to the
Standard Model gauge group. The presence of the latter is required for a natural solution of
the doublet{triplet splitting problem in this theory [18]. Finally, there is another, linearly
dependent direction, T3R, which, as we shall explain below, may be useful to achieve low

values of tan � within this model.
Taking into account the experimental constraints on the lowest generation fermion masses

and the Cabibbo-Kobayashi-Maskawa (CKM) mixing angles, the authors of Ref. [17] iden-
ti�ed nine potentially acceptable models, in which the up and down quark and lepton mass
matrices are of the form,

�a =

0
B@

0 z
0

aC 0

zaC yaEe
i� x

0

aB

0 xaB A

1
CA ; (2)

where za, z
0

a, xa, x
0

a and ya are Clebsch factors, while A, B, C, E and � are arbitrary
parameters, which respect the hierarchy A � B;E � C and must be adjusted in order

to obtain predictions in agreement with the present data. The Higgs sector provides an

additional free paramater, which is the ratio of vacuum expectation values, tan �. Using
the presently best known low energy parameters me, m�, m� , mc, mb and jVcdj as input,
the values of Mt, tan �, jVcbj, jVubj, mu, md, ms and the CP-odd Jarlskog invariant J [19]
are predicted (we shall denote physical and running masses by capital and small letters,

respectively). This leads, hence, to eight low energy predictions, which should be compared
with the present experimental values.

There are several properties, which are shared by all these models. First of all, they

maintain the Georgi{Jarlskog relation [20] of the ya Clebsch factors: jyej : jydj : jyuj � 3 :

1 : 0. This relation of Clebsch factors appears in a natural way, for example, through the

operator

O22 = 162
45X

M
10

45B�L

45X
162; (3)
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and it is important in order to derive correct predictions for the �rst two generations of

quark masses. In fact,

ms

md

'

 
yd

ye

!2
m�

me

����� zez
0

e

zdz
0

d

����� : (4)

Hence, as long as the equality zez
0

e = zdz
0

d holds, the ratio of lepton and quark masses is in

good quantitative agreement with the observed experimental values.

Another important property of these models is the uni�cation of the three Yukawa cou-

plings of the third generation and, in particular, the uni�cation of the bottom and top Yukawa

couplings, which requires large values of tan �. Such large values of tan� are associated with

three e�ects:

1. potentially large corrections to the down quark mass matrix (these radiative corrections

are discussed in detail in the appendix);

2. with some �ne-tuning of GUT scale soft SUSY breaking parameters in order to obtain
radiative electroweak symmetry breaking at the weak scale. The range of parameters
which satisfy the second constraint (when universal scalar masses are imposed at MG),

in fact, requires the corrections to down quark masses to be large, and

3. the proton decay rate resulting from dimension 5 baryon violating interactions is en-

hanced.

It has recently been shown that the �rst two consequences of large tan � are ameliorated
when the constraint of universal scalar masses is removed[26]. The corrections to the down

quark masses can be small and the amount of �ne-tuning is greatly reduced. The problem
of an enhanced proton decay rate is una�ected. On the other hand, these strong constraints
become weaker for smaller values of tan�. It becomes an important question whether the
prediction for large tan� can be altered without destroying the predictability of the theory.

3 Trying to reduce tan� in minimal SO(10) models

Lower values of tan� can easily be achieved by assuming that only one 10 of Higgs couples to

fermions, but this 10 contains only a piece of the two Higgs doublets, the other components

coming, for instance, from an additional 10. The overall e�ect is to multiply the down and
lepton mass matrices by a factor !, which is the ratio of the relative components of the two
Higgs doublets in the 10 which couples to fermions. The minimal model would hence be

obtained for ! = 1.

Such a situation can come about as follows: Consider the superpotential

W = 10 45B�L10
0

+
h
M110

0

+ (M2 + 45X) 10
i
10

00

(5)

whereM1 andM2 are of orderMGUT ; 10, 10
0

and 10
00

are decouplets and only 10 participates

in the fermion mass operators.

The �rst term in W implements the Dimopoulos-Wilczek mechanism [18] and yields 4

light doublets: 2, �2, 2
0

and �2
0

; the color triplets get a mass of orderMGUT . The second term
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gives a mass to a linear combination of 2 and 2
0

(by pairing it with �2
00

) and a di�erent linear

combination of �2 and �2
0

(by pairing it with 2
00

). Explicitly, the light states are given by

2L =
M1 2 � (M2 + v) 2

0q
M2

1 + (M2 + v)
2

(6)

and

�2L =
M1

�2� (M2 � v) �2
0q

M2
1 + (M2 � v)

2
; (7)

where < 45X >= v�X, with X = + (�) when it acts on the 5 (�5) of a 10 representation,

respectively. Since 2 couples to the up quarks and �2 couples to the down quarks, in this

example we have

ht = �
M1q

M2
1 + (M2 + v)2

;

hb = �
M1q

M2
1 + (M2 � v)

2
; (8)

and

! =

q
M2

1 + (M2 + v)2q
M2

1 + (M2 � v)2
: (9)

Notice that, in this simple example, M1 (or M2 � v) cannot be too small, or else a pair of

light triplets 3 and �3 would appear in the spectrum, a�ecting the prediction for sin2 �W .
Hence, ! cannot become too small in this case.

From now on, we shall discuss the consequences of the departure from the minimal con-
ditions, taking values of ! lower than one. Values of ! lower than one decreases the bottom
to top Yukawa coupling ratio but still requires bottom{tau Yukawa coupling uni�cation.

3.1 SO(10) models with moderate values of tan � | The second

and third generations

We have introduced the parameter ! � 1 in an attempt to lower tan �. In this section

we discuss the results for the second and third generations with the additional parameter

!. In general, taking into account variations of ! and reasonable assumptions on radiative
corrections to down quark masses, we �nd that, in order to avoid a very heavy top quark,

with mass larger then 190 GeV, the value of tan � should be either larger than 20 or very
close to 1.

As a general feature, in order to obtain uni�cation of the bottom and tau Yukawa cou-
plings, the third generation Yukawa couplings must partially compensate the strong gauge

coupling renormalization group e�ects. For ! = 1, this is partially achieved by large values
of the bottom Yukawa coupling. Indeed, the relation between the bottom quark and tau

masses is given by
mb

m�

=G exp(�It � 3Ib + 3I� ); (10)
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where G includes the ! independent, gauge coupling dependent factors, Ia =
R
(ha=4�)

2dt

with ha the corresponding Yukawa coupling and t = ln(Q=MZ). In the following, we shall

always assume that the right handed neutrinos acquire large Majorana masses of orderMGUT

and hence decouple from the renormalization group equations. Although there is a partial

cancellation of the bottom and tau Yukawa coupling contributions at scales close to the

uni�cation scale, due to the factor 3 and the relation Ib > I� , the bottom contribution

becomes important for ! = 1. For values of ! < 1, for which only the bottom and �

Yukawa couplings unify, the top Yukawa coupling must increase in order to compensate

for the smaller contribution of the bottom Yukawa coupling. For smaller values: ! < 0:5,

associated with moderate or small values of tan �, and in the absence of supersymmetric

threshold corrections, the top quark Yukawa coupling must acquire large values at the grand

uni�cation scale, being driven towards its infrared �xed point value at low energies. The

convergence of the top quark mass to its �xed point value is naturally weaker for ! ' 1.
For tan � � 5, the �xed point value of the pole top quark mass reads Mt ' 190{210

GeV, which is somewhat large in comparison to the current experimentally preferred value
Mt ' 180 � 12 GeV [27]. The convergence to the �xed point for moderate values of ! may

be softened by the presence of large bottom mass corrections, which become particularly
relevant for values of tan � > 10. For values of tan � � 5, the bottom mass corrections are
generically small, but the infrared �xed point value of the top quark mass,Mt ' sin �� 200
GeV, is lowered by the sin� factor (see Fig. 1). Indeed, values of tan � <

� 3 are required, for
the �xed point solution to be in the range of phenomenologically preferred values. As we
shall discuss below, these small values of tan� demand very small values of !.

Figure 1 shows the dependence of the pole top quark mass on tan � (and also on !)
for three di�erent values of �3(MZ) and di�erent values of the coe�cient Kc parametrizing
the bottom mass corrections, �mb = �mbKc tan �. Values of Kc � 0:005 lead to signi�cant
corrections to the predicted top quark mass values and, as was shown in Ref [15], may
appear in the presence of universal soft supersymmetry breaking mass parameters at the

grand uni�cation scale. We concentrate on positive values of Kc, since for negative and
large Kc either the top quark mass is above its experimentally preferred values or a Landau
pole in the top quark Yukawa coupling appears at scales below MGUT . In Figure 1 we have
chosen a representative value of mb(mb) = 4:15 GeV. Larger (lower) values of mb within the

experimentally allowed range mb = 4:25� 0:25 GeV, would lead to somewhat lower (larger)

values of Mt [5], without changing the general properties of the solutions.
It is interesting to note that, for large values of Kc and low values of �3(MZ), the top

quark mass predictions in model 6 di�er from the ones obtained in model 9 for the same
values of !. This reects the e�ect of the mixing between the second and third generations

on the predictions for the third generation masses. It is easy to prove that, although this

e�ect is generically small, the � mass in model 9 receives a signi�cant correction due to the
mixing, which for values of �3(MZ) = 0:115 and Kc = 0:006 becomes of order 15%. Due to
the condition of bottom-tau Yukawa uni�cation, large tau mass corrections also imply large

variations in the top quark mass predictions.

To summarize, we observe that depending on the size of the one loop supersymmetric

corrections to the down quark masses, successful top quark mass predictions may be obtained
for the minimalmodels with ! = 1, but also for moderate and small values of tan � (associated
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with moderate or very small values of !). It is hence important to know if the same is true

for the �rst two generations of quark masses and mixing angles. Since the relation between

the down quark and lepton masses is only weakly dependent on !, we should mantain the

Georgi-Jarlskog relation even for values of ! di�erent from one. Moreover, the values of Vcb
can also be successfully accomodated for lower values of !. This can be easily seen writing

its dependence in terms of the top and charm quark masses,

jVcbj ' �

s
mc

�cmt

exp

�
Ib � It

2

�
(11)

where � = jxd � xuj=
q
jxux

0

uj, and �a are the ! independent, renormalization group factors

relating the running masses at the scaleMZ with the on{shell ones (for the u, d and s quarks,

the scale of de�nition of the running masses is taken to be 1 GeV). For �3(MZ) ' 0:12,

for which the value of �c ' 2:2, it follows that the phenomenolgically preferred values of
jVcbj = 0:040 � 0:005, require values of � < 1 [25]. The di�erent values of � are the basis
for the classi�cation of models performed in Ref. [17], where the best �t to the data was
achieved by two models: model 6, with xu = x0u = -4, xd = x0d = -2/3 and xe = x0e = 6, and
model 9 with xu = x0u = 1, xd = 1/9, xe = 9 and x0d = x0e = 1. These models have � = 5=6
and 8=9, respectively and both lead to somewhat large values of Vcb. Model 4, with � = 2=3,

leads to a better prediction for Vcb, but yields insu�cient CP-violation.
For lower values of !, the dependence of Eq. (11) on Ib and It is such, that the values

of Vcb tend to decrease. Moreover, in the absence of down quark mass matrix corrections,
for tan � � 4, the value of Vcb decreases due to larger top quark mass values, which, as
we discussed before, may become too large in comparison with the experimentaly preferred

ones. As shown in Fig. 1, lower values of the top quark mass may be obtained through
large bottom mass corrections. Lowering the top quark mass enhances the value of Vcb, but
the total e�ect of the down quark mass corrections on Vcb cannot be determined a priori;
it depends on the relative size of the gluino corrections, which a�ect the value of Vcb due
to their e�ect on the predicted top quark mass value, and the chargino corrections, which

modify not only the top quark mass value through the bottom mass corrections, but they
have also a direct e�ect on the CKM matrix elements [21] (see Appendix).

Fig. 2 shows the predictions for Vcb for models 6 and 9, as a function of tan �, for

three di�erent bottom mass corrections and three di�erent values of �3(MZ), under the
assumption that (�mb=mb)

~g = �3(�mb=mb)
ch (which is reasonable in view of the running

of the soft breaking parameters and the structure of the bottom mass corrections when the
squark mass matrices are approximately three by three block diagonal [15]). We see that,

independently of the bottom mass corrections, the predictions for Vcb may be signi�cantly
improved for moderate values of !. Indeed, apart from the solutions with tan � very close

to one, ! = 1 leads to the largest values of Vcb for each �xed �mb correction. Observe as
well that for values of tan � � 2, Vcb increases, due to the lower values of mt appearing in

this regime. Furthermore, for the present case, for any �xed value of !, there is an e�ective

cancellation of the chargino and gluino-induced one loop corrections to Vcb and the total
e�ect of the down quark mass corrections on Vcb is small. Consequently, since for a �xed

value of ! large down quark mass corrections lower the value of tan �, as can be seen from
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Fig. 2, they also yield larger values of Vcb for a given �xed value of tan �. From Fig. 2

we also observe that the predictions for Vcb improve for larger values of �3(MZ). In fact,

for moderate values of !, if large values of �3(MZ) and large bottom mass corrections are

present, the predictions for Vcb in model 6 may actually be below the preferred experimental

values, but these solutions are associated with values of Mt which are generally too large.

From the discussion above, we see that the second and third generation fermion masses

and mixing angles can be consistently described within an SO(10) GUT with ! � 1. How-

ever, as we shall show in the following, the constraint coming from the predictions for the

�rst generation quark masses rule out values of ! � 0:5 within the minimalmodel. In section

4 we show how to overcome this di�culty at the expense of adding one new operator and 2

more parameters, in addition to !.

3.2 The �rst generation

The operator O12 is necessary to achieve acceptable predictions for the lowest generation
quark masses. Indeed, within the minimal model, there is a \unique" operator,

O12 = 161

�
45X

MP

�n
10

�
45X

M

�m
162; (12)

with n = m = 3, which yields acceptable ratios for the masses of the up, down and strange

quarks. This operator determines the equality of the Clebsch factors za and z
0

a and the
ratios of the Clebsch factors zd=zu = 27 and zd=ze = 1 (the ratio of Clebsch factors zd=zu
increases by a factor 3 for each power of 45X ). In addition the ratio, appearing in Eq. (4),
(zez

0
e)=(zdz

0
d) = 1. The above operator is of dimension ten, meaning that the absence of any

lower dimensional operators should be insured by some symmetry of the theory.

For ! = 1, one might think that the large ratio of Clebsch factors, zd=zu, arising from
the above relation, Eq. (12), is necessary in order to compensate the tan � (' mt=mb)
dependence of the up{type quark masses with respect to the down{type quark ones. It is
interesting to investigate then if lower values of !, and hence of tan �, can serve to relax the
restrictions on the Clebsch factors and hence, to lower the dimensionality of the above O12

operator. This, however, is not the case, as can be easily shown considering the relation

mu

md

=
ms

mc

�
mt

mb

�2 �u�c�2b
�d�s

�����zuz
0

u

zdz
0

d

����� exp 4(It � Ib): (13)

From Eq. (13) it follows that independent of the source of the hierarchy between the top

and bottom quark masses, large ratios of Clebsch factors are necessary in order to obtain
the phenomenologically preferred values for the ratio of the up to down quark masses, 0:2 �
mu=md � 0:8 [23]. The additional dependence on the integral factors Ib and It does not
help to lower this ratio. On the contrary, since for lower values of !, the integral factor

Ib decreases, while It changes only slightly, for the same values of the second and third

generation quark masses the ratio of the up to the down quark masses increases. This
means that, in order to keep phenomenologically allowed values of the �rst generation quark

masses, the ratio of the Clebsch factors zd=zu should actually increase, implying that the

dimensionality of the operator O12 should correspondingly increase for lower values of !.
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It is therefore apparent that, keeping the same operator structure as before, the range

of possible values of !, that is to say of tan �, will be restricted. Indeed, Figure 3 shows

the dependence of the ratio mu=md as a function of tan � (!) for models 6 and 9 and for

di�erent values of the down quark mass corrections, under the same assumptions discussed

for Fig. 1. It follows that the down quark mass corrections help only marginally in getting

phenomenologically allowed values for mu=md, and values of ! <
� 0:5 are disfavoured for

all these models. Indeed, for larger values of �3(MZ) � 0:12, even larger values of ! are

necessary in order to achieve good predictions for the �rst generation masses.

Increasing by one the dimensionality of the operator O12 keeps the equality zez
0

e = zdz
0

d,

necessary to achieve the proper ratio of �rst and second generation quark and lepton masses,

Eq. (4), but leads to wrong predictions for the Cabibbo angle [17]. Indeed, ignoring small

factors, the Cabibbo angle is approximately given by

sc '

s
md

ms

vuut�����zdz0

d

�����: (14)

Relaxing the equality zd = z
0

d by increasing by one the power of one of the 45X in O12 would
change sc by a factor

p
3, what would lead to predictions in conict with present data.

Therefore, for low values of !, if the dimension of the operator O12, Eq. (12), is changed,

to obtain correct values for the ratio of the �rst and second generation quark masses, it should
be increased by two units. Once more, however, the variation in the dimensionality of this
operator has an additional e�ect, which is related to the behaviour of the Jarlskog CP-odd
invariant J = Im[VudVtbV

�
tdV

�
ub]. Ignoring again small, inessential factors, it is straightforward

to show that

J ' �2 jzuzdj

jzez
0

ej

�����yeyd
����� me

m�

exp (2It + 2Ib � 3I� ) : (15)

Thus, increasing the dimension of the operator O12 in two units implies a decrease in the

CP{odd invariant J in a factor three. Since the observed CP{violation in the K system
is well described by models 6 and 9 before the modi�cation of the operator O12, a factor
three suppression of the Jarlskog invariant would imply that the amount of CP{violation
associated with the Cabibbo-Kobayashi-Maskawa is insu�cient to explain the experimental

data. The possible variations of Vcb (or equivalently of Vtd) due to supersymmetric threshold

corrections in the down quark sector, which we have discussed above, are not su�ciently

large to compensate this type of e�ect. Numerically, we observe the e�ect of increasing the

dimension of the operator O12 through the prediction for the bag parameter BK [24],

BK ' �K
jzez

0

ejq
jzdz

0

djjzuj

m�

me

s
md

ms

exp(2It + 2Ib � 3I�)

�2 sin�
: (16)

which tends to be larger than one in all models, and, hence, unacceptable since the phe-

nomenologically preferred values are BK = 0:8� 0:2 [22],[25].

The general conclusion of this study is that, keeping the same operator structure as in
Ref. [17], values of ! � 0:5 cannot be accomodated, without spoiling the predictions for

either the �rst generation quark masses, the Cabibbo angle or the CP-violation sector of the
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theory. Hence, the preferred value of ! ' 1 restricts us to be close to the minimal SO(10)

model and the values of tan � and Mt which lead to acceptable predictions are also quite

restricted (see the discussion in section 3.1). In the next section we show that it is still

possible to obtain acceptable predictions for the �rst generation with small values of tan �.

However, this solution requires the addition of one new operator and thus one more complex

parameter in addition to the free parameter ! discussed above.

4 Extending minimal SO(10) and tan� � 1

One could think of improving the agreement between the theoretical predictions and the

experimentally observed values of the �rst generation masses, or the �K parameter, by as-

suming very large supersymmetric threshold corrections to these variables. In Fig. 3 we have

shown that if the down quark mass corrections have the structure which naturally appears
when the squark matrices are block diagonal (see Appendix), only slight changes of the pre-
dictions for the �rst generation masses are obtained through such threshold corrections. In
the general case, however, the squark mass matrices may be far from being three by three

block diagonal and �rst generation down quark mass corrections, proportional to the second
or even third generation masses, as shown in the appendix (Eq. (19)), may be present.

Persuing this direction however opens up a pandoras box of new possibilities and new
problems. It is interesting to note that, if the supersymmetry breaking is transferred to the
observable sector through gravitational e�ects, a nontrivial inter-generation squark mixing,

generated through renormalization e�ects at scales of the order of the grand uni�cation scale,
is unavoidable [28],[29],[30], [31]. A reliable computation of this e�ect demands, however, the
knowledge of the precise physics beyond the grand uni�cation scale. In general, a large squark
mixing would also involve large avor changing neutral current e�ects. Barring unnatural
cancellations, large avor violations in the fermion sector can only be consistent with the

experimental constraints on avor changing neutral currents and the neutron electric dipole
moment if the characteristic scale of the squark masses is larger or of order 1 TeV. A large
squark mixing also implies signi�cant couplings of these heavy squarks to the Higgs sector
of the theory (unless the third generation squarks do not mix with the �rst and second

generation ones), this will in turn imply a signi�cant �ne tuning in order to preserve the

stability of the weak scale. The presence of large supersymmetric corrections to the �K
parameter have similar consequences. In this work, we assume the presence of a super GIM

mechanism and avoid the discussion of non-universal squark and slepton masses at the GUT
scale. Note that in order to reduce the �ne-tuning and large corrections associated with

large values of tan � it is only necessary to have non universal Higgs masses.

To improve the agreement between the theoretical and experimental predictions for small
values of tan�, a possible alternative is the modi�cation of the structure of the operators
discussed above. Since, as shown section 3, low values of ! are perfectly consistent with the

second and third generation quark and lepton masses and mixing angles, any modi�cation

should concentrate on the form of the \12" elements. In Ref. [17], it was argued that if O12

proceeds from a single operator, its form is uniquely determined. This conclusion is based

on the analysis of the associated Clebschs and the relations given in Eqs. (4), (13) and (14).
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However, since O12 has a large dimension, the relaxation of the assumption that the \12 "

elements come from a single operator seems natural. If the e�ect of two operators had to

add in an unnatural way in order to lead to the correct phenomenological predictions, the

predictive power of the theory would be spoiled. Therefore, the additional operator should

not modify the equality of zez
0

e and zdz
0

d and should give no relevant corrections to the ratio

of zd=z
0

d. On the other hand, we want to modify the ratio of mu=md without a�ecting the CP-

odd sector in a relevant way. It is crucial to notice that there is a very important di�erence

between the dependence of J and that of mu=md on the Clebsch factors. While mu=md

depends on the product zuz
0

u, the CP-odd invariant J depends on zu, but is independent of

z
0

u. Hence, we are searching for an operator which modi�es z
0

u, leaving zu invariant. There

is only one combination of operators which ful�lls all the above criteria, namely,

O12 = 161(45X )
n10(45X )

n162 +K161(45X)
m(45T3R)

l10(45X )
m162 (17)

where K is of order one. The predictions for za and z
0

a within this framework are:

zu = 1; z
0

u = 1 + f

zd = (�3)n; z
0

d = (�3)n + (�1)l(�3)mf

ze = (�3)n; z
0

e = (�3)n + (�1)l(�3)mf; (18)

where f is the coe�cient characterizing the relative weights of the two contributions, and
it is computable from K and the vacuum expectation values above. For simplicity, we shall
assume that f is a real number. In that case, for values of f of order one and values of m
smaller than n by at least two units, it is easy to see that the only prediction which will
be modi�ed considerably is mu=md. One can therefore achieve low values of tan � with a

correct prediction for mu=md. This demands very low values of ! and values of f close to
�1. For instance, for model 6, mb(mb) ' 4.2 GeV, and �3(MZ) ' 0:12, the value of ! which
leads to tan � ' 1:5 is as small as 0.004. In this case, values of f ' �0:8, n = 3 and m = 0
lead to good predictions for the CKM matrix and the quark masses.

5 Conclusions

We have analysed the fermion mass problem within the context of supersymmetric SO(10)
uni�cation, studying not only the minimal case, but also the departure from the minimal
conditions assuming that the fermion masses arise from interactions of the spinor representa-

tions with a single 10 representation, but this 10 only contains a part of the two light Higgs

doublets. Moreover, we studied the implications of the down quark mass corrections, under

the assumption that, within a good approximation, a super GIM mechanism is in e�ect.

We have shown that, for ! < 1 (moderate values of tan �), and considering the simplest
operator structure, large bottom mass corrections are helpful in accomodating the experi-

mentally preferred values for Mt, yielding also acceptable values for Vcb. However, moderate

or low values of tan � lead to wrong predictions either for the �rst generation quark masses
or for the CP-odd sector of the theory, a property that is not changed by the presence of

supersymmetric threshold corrections. We have also shown that the operator structure may
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be extended to yield proper values for all fermion masses and mixing angles for low values

of tan � � 3. This extension requires, however, the presence of additional 45 states in the

theory, one new operator contributing to the �rst generation masses and another complex

parameter.

6 Appendix { Supersymmetric threshold corrections

Let us discuss the down quark mass corrections induced by supersymmetric particle loops

in more detail. The dominant corrections to the down quark mass matrix are given by

chargino{up squark and gluino{down squark one loop contributions and they read,

(�md)IL = �
2�3

3�
M~g

6X
j=2

h
DIjD

�
(L+3)j(m

2
~dj
�m2

~d1
)I(m2

~dj
;m2

~d1
;M2

~g )
i

(19)

+
6X

j=2

2X
�=1

"
dL

16�2
Z+
2�Z

�
2�m�C

�
KLU

�
KjuMU(M+3)jCMI(m

2
~uj
�m2

~u1
)I(m2

~uj
;m2

~u1
;m2

�)

#
:

The above expression has also been obtained in Ref. [21]. In the above, U and D are the

unitary matrices diagonalizing the six by six up and down squark mass matrices, (D1i and
D4i denote, for example, the component of the mass eigenstate ~di in the left and right handed
down squark, respectively), Z�

�� are the unitary matrix which diagonalize the two by two
chargino matrix, m� are the chargino mass eigenstates, CIJ are the CKM matrix elements,
dI and uI are the down and up quark Yukawa couplings, respectively, and M~g is the gluino

mass. The integral I(a; b; c) is given by

I(a; b; c) =
ab ln(a=b) + bc ln(b=c) + ac ln(c=a)

(a� b)(b� c)(a� c)
: (20)

All indeces denoted by capital letters run from 1 to 3 and a summation over the indeces K
andM is implicit. The state ~d1 (~u1) denotes any particular eigenstate, which may be chosen,

for example, as the heaviest one. A dependence of the above expression on the quark mass
matrices is implicit in the necessary left right mixing term, which is only generated by terms

proportional to the quark masses.

Furthermore, if the up and down squark matrices are three by three block diagonal,
implying the existence of a super GIM mechanism in the theory, the following property is

ful�lled

DKjD
�
(M+3)j = ��KM

dK(AdK � � tan �)v1

m2
~dK
�m2

~d(K+3)

; UKjU
�
(M+3)j = ��KM

uK(AuK � � cot �)v2

m2
~uK
�m2

~u(K+3)

;

(21)
whereAK are the conventionally de�ned trilinear soft supersymmetry breaking terms and � is

the supersymmetric Higgs mass parameter appearing in the superpotential. The positive sign
in the above expression corresponds to the case j = K, while the negative sign corresponds

to the case j = K + 3. Keeping the dominant terms in the large tan� regime, the down
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quark mass corrections take, hence, a very simple form,

(�md)IL =
2�3

3�
�IL(dLv1) tan � �M~gI(m

2
~dL
;m2

~d(L+3)
;M2

~g )

+
6X

j=2

2X
�=1

"
(dLv1) tan �

16�2
Z+
2�Z

�
2�m�C

�
MLjuM j

2AuMCMII(m
2
~uM
;m2

~u(M+3)
;m2

�)

#
:(22)

The above expression reproduces the one obtained in Ref. [21] under similar assumptions.

In the present limit, the gluino corrections a�ect only the values of the mass eigenstates,

while the chargino corrections give also corrections to the o�{diagonal terms. Studying the

renormalization group evolution of the soft supersymmetry breaking mass parameters one

can show that the gluino contributions are generally dominant and opposite in sign to the

chargino contributions [15]. Moreover, due to the hierarchy between the up quark masses,

only the term proportional to ju3j2 becomes important in the chargino contributions. Hence
the chargino-induced corrections to the down and strange masses are very small. Further-
more, as has been shown in Ref. [21], the most relevant corrections to the CKM matrix

elements are given by �Vcb=Vcb ' �(�mb=mb)
ch: ' �Vtd=Vtd, where (�mb=mb)

ch represents
only the chargino contributions to the total bottom mass corrections.
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Figure 1: a) The pole top quark mass as a function of tan � for a running bottom mass
mb(mb) = 4:15 GeV and three di�erent values of the strong gauge coupling, �s(MZ) =

0:115, 0.120 and 0.125, respectively, for model 6. The coe�cient Kc parametrizing the down
quark mass corrections takes values, Kc = 0 (dashed line), Kc = �0:003 (dotted line) and

Kc = �0:006 (dot-dashed line). The solid lines represent, from right to left, values of ! = 1,

0.6, 0.2 and 0.06, respectively. For large values of �3(MZ) the curves are cutted at the point
at which the top Yukawa coupling becomes strong at high energy scales, h2t (MGUT )=4� � 1.

15



Figure 1: b) The same as Fig. 1.a but for model 9.
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Figure 2: a) The same as in Fig. 1.a but for the Cabibbo-Kobayashi-Maskawa matrix element

Vcb as a function of tan �.
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Figure 2: b) The same as in Fig. 2.a but for model 9.
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Figure 3: a) The same as in Fig. 1.a but for the ratio of the �rst generation masses mu=md

as a function of tan �.
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Figure 3: b) The same as in Fig. 3.a but for model 9.

20


