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Single-beam collective effects can limit the current and therefore the performance of the Large Hadron Collider
(LHC), unless the impedance of the different vacuum chamber discontinuities seen by the beam is kept below
certain limits. Together with parasitic loss considerations, this has an impact on the design of several machine
components, such as monitors, kickers, bellows, warm sections, experimental beam pipes, rf-cavities, feedback
systems and especially on the thermal beam screen, with its millions of pumping slots. After reviewing the LHC
impedance budget in view of the most recent design options, we compute rise times and thresholds for different
instabilities, as well as coherent and incoherent tune shifts and parasitic losses.

KEY WORDS: Collective effects, impedances, instabilities

1 INTRODUCTION

Single-beam collective effects include incoherent phenomena, concerning the behaviour
of a single particle in the electromagnetic field produced by all the others, and coherent
i1?-teractions of the beam with its surroundings, usually described in terms of coupling impe
dances. The second group can be further subdivided into single-bunch effects, associated
with the broad-band impedance of low-Q structures, and multi-bunch effects, dominated
by the narrow-band impedance of high-Q resonators. Landau damping of coherent beam
oscillation modes, that takes place providing their tune shifts remain within the incoherent
tune spread, can be considered as a bridge between incoherent and coherent phenomena.

The main examples of incoherent effects are synchrotron radiation losses, direct space
charge and Laslett tune shifts due to image currents, as well as intra-beam scattering (that
we shall not discuss here). As we will see, the magnetic Laslett tune shift at injection in
the LHC is of the order of 10-2 : this large tune shift can be compensated by adjusting the
tuning quadrupoles, but sets rather stringent requirements on the equalization of the bunch
populations.

Coherent effects include parasitic losses, associated with the real part of the longitudinal
coupling impedance ZL, and complex tune shifts of the beam oscillation modes. For
Gaussian bunches, with r.m.s. bunch length as = car, the power dissipated by the wall
currents in an impedance with a resistive component Re[ZL(w)] is
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00

P = 2kbI{; LRe [ZLCpwo)] exp [- (pWOar )2] ,
p=o

where kb is the number of bunches, Ib the bunch current and W o the angular revolu
tion frequency around the ring. The quadratic dependence on the bunch current is to
be noted.

For a given beam intensity, the coherent oscillation modes are self-consistent solutions
of the linearized Vlasov equation. They satisfy an integral equation that can be transformed
into an infinite-dimensional eigenvalue problem: the eigenvectors are connected with the
power spectrum of the corresponding coherent modes and the eigenvalues are the associated
complex tune shifts. Note that the exact eigenvectors, as well as the eigenvalues, depend
both on the coupling impedance and on the longitudinal distribution of the bunches. The
latter is also a function of the current, owing to the potential well distortion.

In the limit of weak beam intensity, each mode is characterized by a number n,
defining its azimuthal dependence in the longitudinal phase space. For longitudinal modes
(n == ±1, ±2, ... ) the unperturbed tunes are Qt) == nQs, while for transverse head-tail

modes(n == 0, ±1, ±2, ... ) the unperturbed tunes are Q~p) == QfJ+nQs, where Qs denotes
the synchrotron tune and QfJ the betatron tune. When observed at a fixed location around
the ring, the signal corresponding to each oscillation mode consists of discrete spectral lines
at frequencies

{

Wo (pkb + m + nQs)

w
p

= Wo(pkb+m+nQs+ Qp)

for longitudinal modes,

for transverse modes.

Here m denotes the coupled-bunch mode number (0 ::s m ::s kb - 1).
To specify uniquely a given coherent mode, one should also assign its radial dependence in

the longitudinal phase space. For vanishing beam intensities, modes with the same azimuthal
number n and different radial dependence have the same tune Q(n), but this degeneracy is
progressively removed for increasing beam currents. However, if the tune shifts remain
much smaller than Qs, different radial modes will couple only when they belong to the
same azimuthal family n: such regime of weak beam intensity is governed by the so-called
Sacherer integral equation. A further simplification is obtained by neglecting the possible
coupling between radial modes with the same n (e.g., when the problem can be exactly or
approximately diagonalized analytically) and expressing the complex tune shift of the most
prominent radial mode in terms of its effective impedance, l measuring the degree to which
the impedance overlaps the mode spectrum. Then the complex tune shift for longitudinal
modes is approximately given by

(m,n) _ . Inl Qs1b (2JrR)3 (ZL)(m,n)
~QL --J---- - - ,

Inl + 1 3hrfVrf L n eff
(1)

where hrf and Vrf are the harmonic number and peakrf-voltage, respectively, R is the average
machine radius, L == 40's the full bunch length and the effective longitudinal impedance is
defined by
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(

ZL)(m,n)

n eff

Here hn (w) denotes the mode power spectrum and, for Gaussian bunches, it is

Similarly, the complex tune shift for transverse modes is approximately given by

. IR
~Q(m,n) _ _ J_ b fJ (Z )(m,n)

T - Inl + 12(Eje)L av T eff '
(2)

where fJav is the average betatron function, E j e the beam energy in volts and the effective
transverse impedance is defined by

00

L ZT(wp)hlnl (wp - w;)

(z )(m,n) =p_=_-_00 _
T eff 00

L hlnl (wp - w;)
p=-oo

In the following, we shall not consider the chromatic shift w; = Q'wo /1] associated with
the chromaticity Q' and the slippage factor 1].

From Eqs. (1) and (2), we see that the imaginary part of the effective impedance is
responsible for (real) coherent tune shifts and can lead to collective instabilities owing to
mode coupling or to loss of Landau damping, while the real part of the effective impedance
is related to the instability rise time. In the following, we show that the bunch population in
the LHC is limited to about 2.4 x 1011 protons, owing to suppression of Landau damping
for longitudinal high-order modes at 7 TeV. The transverse resistive wall instability has a
rise time longer than 100 revolution periods and can thus be cured by feedback. However
the LHC impedance budget is not yet complete and requires more detailed calculations.

2 SPACE CHARGE EFFECTS

The space charge of the beam gives rise to a detuning of the incoherent particle oscillations
and affects the collective behaviour of the beam oscillation modes. We first discuss the
detuning caused by the direct space charge effect, which for the LHC is significant only
at injection, and then the Laslett tune shifts associated with image currents induced on the
beam pipe and on the ferromagnetic magnet poles. Finally we consider the space charge
impedance, which dominates the transverse impedance budget at injection energy.
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2.1 Direct space charge tune shift

For a round beam, the tune shift of particles with small betatron amplitude due to direct
space charge is

_ Nbrp _ {-1.2 x 10-3 at 450 GeV,
~Qdsc - - -

4rr BfJ y 2EN -1.1 x 10-5 at 7 TeV.
(3)

Here Nb == 1011 is the number of particles per bunch, r p == 1.5347 x 10-18 m the
classical proton radius, y == (1 - fJ2)-1/2 the Lorentz factor, B the bunching factor and
EN == EfJy == 3.75 x 10-6 mrad is the normalized beam emittance. In Eq. (3) we have used

y == {479.6 at 450 GeV,

7460.5 at 7 TeV,

B = ,J2iias = { 1.22 x 10-5 at 450 GeV,

2rr R 7.05 x 10-6 at 7 TeV,

(4)

with R == 4242.89 denoting the average machine radius and as the r.m.s. bunch length,
equal to 13 cm at injection and to 7.5 cm at 7 TeV.

The direct space charge tune shift is smaller for particles with larger betatron amplitudes
and the resulting incoherent tune spread gives rise to Landau damping of transverse beam
oscillations (with the exception of rigid dipole oscillations).

2.2 Laslett tune shift

Owing to image currents induced on the beam pipe and on the ferromagnetic magnet poles,
all particles suffer another incoherent detuning having opposite sign in the two betatron
planes. The vertical Laslett tune shift is given by

_ NbkbrpfJav (81 82 ) ~ {-1.7 X 10-
2

at 450 GeV,
~QLaslett - - 2 + 2 -

ny h g -1.1 x 10-3 at 7 TeV,

where kb == 2835 is the number of bunches and fJav == 85 m the average betatron function.
The electric and magnetic Laslett coefficients 81 and 82 depend on the geometry of the beam
pipe (with half-height h) and of the ferromagnetic magnet poles (with distance 2g ~ 5 cm).
For a beam pipe of circular or square cross section we have 81 == 0, while assuming plane
magnet poles yields 82 == 0.41; these values have been used to compute the Laslett tune
shift in Eq. (4), since a more realistic estimate of the magnetic coefficient 82 for the circular
geometry of the cold bore is still missing. At injection energy the tune shift is large, but
can be compensated by adjusting the tuning quadrupoles. However this sets rather stringent
requirements on the equalization of the bunch populations Nb.

For a beam offset of 10% of the pipe 'radius', the electric coefficient would become
81 ::s 0.01, depending on the direction of the closed orbit deviation relative to the diagonals
of the square beam screen (see Figure 1a). Indeed the horizontal and vertical Laslett
coefficients form a non diagonal second-rank tensor,2 with 'normal modes' oriented at
45° from these diagonals. The consequences of this effect on betatron coupling should be
further investigated.
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FIGURE 1: Principal values of the incoherent (a) and coherent (b) electric Laslett tensors versus the beam offset
from the center of a square pipe, for different angular directions (), and for the inscribed circular pipe:2 the beam
offset Peq is scaled by the radius of the inscribed circle. For a beam offset in a given angular direction (()=Jr/4
corresponding to the diagonal of the square), there are two normal modes of oscillation and, in case of a circular
pipe, one of them is in the radial direction. The two principal values of the incoherent Laslett tensor have opposite
sign, but only the positive one is plotted in figure (a).

It is worth mentioning that, in the derivation of the space charge tune shifts,3 one usually
starts from the Lorentz force Fy = e (Ey + fJ Bx ) and applies the proper boundary conditions
for a round beam of radius a = -J2EfJav with uniform charge distribution in the transverse
plane. The vertical tune shift is then given by an expression of the type

~Q ex __1_ (1 + £1 2a
2

) + (1 _£2 2a
2 )+ (~ _1) (1 + £1 2a

2
)

B'fJ2 h2 g2 B' h2 '
\ )~\.. )

electric dc magnetic ac magnetic

where the first term corresponds to the effect of the electric field, while the magnetic contri
bution is split into a 'dc' and an 'ac' part. The proportionality constant is (Aav RrpfJav) / (a 2 y),
where Aav is the average beam density, and B' denotes the ratio of the average to the peak
density:

Finally one assumes no leakage of the 'ac' magnetic contribution and thus obtains



88 F. RUGGIERO

In the last step there is a relativistic cancellation of electric and magnetic terms, leading to
the separation of the direct space charge tune shift ~ Qdsc of Eq. (3), inversely proportional
to fJ y 2EN and obtained neglecting the small correction of order a2 / h2 , from the Laslett tune
shift ofEq. (4). However, during the filling of the machine, there can be some leakage of the
ac magnetic field at very low frequencies (comparable to the revolution frequency of 11 kHz)
and consequently a transient bunch-to-bunch tune variation ~Q I"'V y2 ~Qdsc812a2/ h2

I"'V

81. This possibility should be studied more carefully, since such a detuning cannot be
compensated by adjusting the quadrupoles.

2.3 Space charge impedance

In addition to incoherent tune shifts, space charge forces also affect the collective behaviour
of the beam. They can be characterized by purely imaginary coupling impedances4 that,
contrary to the ordinary case, depend both on the vacuum chamber geometry and on beam
properties, such as the Lorentz factor y and the r.m.s. beam radius a = JEf3av (note the
difference by a factor J2 compared to the a of the previous subsection).

For a smooth vacuum pipe of radius b = 17.4 mm (i.e. inscribed in the square cross
section of the LHC liner), the coupling impedances are:·

.wR Zo [ (b)]ZL(W)=-j-- 1+21n - ,
2c y2 a

. ZoR (1 1 )ZT(W) = -j - - - - ,
y2 2a2 b2

where Zo = 376.73 Q is the free space impedance and c the speed of light. At injection
energy, when a = 0.815 mm, we have

ZL .
-=-j5.8mQ,
n

fJavZT = -j 442.4 MQ

and the coherent tune shifts of the lowest longitudinal and transverse modes, computed
according to Eqs. (1) and (2) for a nominal bunch population Nb = 1011 particles, are given
in Table 1. At 7 TeV, when a = 0.207 mm, we have

ZL = -j3.3 X 10-5 Q,
n

fJavZT = - j 28.6 MQ

and the corresponding coherent tune shifts can be neglected.

TABLE 1: Coherent space charge tune shifts at injection.

Longitudinal tune shifts

LlQZ) =-4.64x10-7

LlQ~) =-6.18x 10-7

LlQ~) =-6.96x 10-7

Transverse tune shifts

LlQi) =7.49 x 10-4

LlQV) =3.75x 10-4

LlQ~) =2.50x 10-4

LlQ~) =1.87x 10-4
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The transverse space charge impedance is a tensor with properties similar to those of
the Laslett coefficients:2 as shown in Figure 1b, the principal values of the Laslett tensor
for coherent transverse dipole oscillations in a beam screen with square cross section are
slightly smaller than the values corresponding to the inscribed circular pipe. Therefore, in
establishing the LHC impedance budget, we shall use the previous simpler results valid for
the pessimistic choice of the inscribed circular pipe.

3 BROAD-BAND RESONATORS

Besides coherent space charge effects and pumping slots in the beam screen, the main
sources of broad-band impedance in the LHC are bellows and monitor tanks. The longi
tudinal and transverse coupling impedances of these elements will be parameterized by the
superposition of a few resonant contributions with low quality factors QL and QT:

RL
ZL(W) = -------:------

(
WrL W )'1-jQL ---

W WrL

(5)

RT WrT

(

wrT W ). W '
1-jQT ---

W WrT

(6)

where WrL and WrT are the resonant frequencies, while RL and RT are the longitudinal and
transverse shunt impedances.

A final design of the LHC bellows shielding is not yet available, therefore we consider
the geometry of the sse bellows5 and approximate the longitudinal impedance of a single
bellows package by two broad-band resonators with shunt impedances 20 Q and 30 Q,
resonant frequencies 6.2 GHz and 16 GHz and quality factors 6 and 1, respectively. The
transverse impedance is approximated by a resonator with shunt impedance 1.9 kQ/m,
resonant frequency 2.8 GHz and quality factor 3.5. The low-frequency impedances amount
to ZL/n = j 0.08 Q and ZT = j 1.6 MQ/m. This is for a total number of 3000 bellows,
comparable to the number of bellows in LEP, and the broad-band resonator parameters
are summarized in Table 2. The total transverse impedance measured for the LEP shielded
bellows is ZT = j 0.16 MQ/m. Since the vertical aperture of the LEP vacuum chamber is
b = 3.5 cm and ZT scales with the inverse of the second to third power of the pipe radius,
this leads to a value in agreement with our estimate for the LHC, under the pessimistic
assumption of a reduced pipe radius b = 1.5 cm (equal to the SSC value).

The influence of the shallow cavities which house the 500 strip-line monitors has been
approximated6,7 by a broad-band resonator with a quality factor Q = 1, a resonant
frequency of 6 GHz and a low-frequency inductance ZL/n = j 0.04 Q. The resistive
part of the impedance rises only above the pipe cut-off frequency and, for a single monitor
tank, it reaches an average value of 20 Q at about twice this frequency. Its contribution to
the cryogenic heat load is therefore negligible,8 since there is practically no overlap with
the bunch power spectrum. The transverse impedance is obtained from the longitudinal one
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TABLE 2: Global parameters for the broad-band resonators.

Longitudinal wrL/2rr QL RL

shielded bellows 6.2 GHz 6 60 kQ

shielded bellows 16 GHz 1 90 kQ

monitor tanks 6 GHz 1 21.3 kQ

Transverse wrT/2rr QT {Jav x RT

shielded bellows 2.8 GHz 3.5 85x5.7 MQ

monitor tanks 6 GHz 1 172.8x1.17 MQ

by using the same relation as in the case of the resistive wall, although for any structure
other than a smooth pipe this relation is only approximate

2R ZL
ZT = -b2 -, (7)

eft n

assuming an effective beam pipe radius beft = 1.7 cm. The corresponding broad-band
resonator parameters are reported in Table 2.

Since all the broad-band resonators have resonant frequencies of several GHz and the
power spectrum of the lowest modes is typically below 1 GHz, their effective impedance
does not depend very much on the azimuthal mode number. The total effective impedances
associated with the broad-band resonators for the lowest longitudinal and transverse modes
at injection are

(ZL) = j 81.5 mQ,
n eft

(ZL) .- =]40.0mQ,
n eft

for shielded bellows,

for monitor tanks,

and the coherent tune shifts of a few low-order modes, computed according to Eqs. (1), (2),
(5) and (6) for a nominal bunch population Nb = 1011 particles, are given in Table 3.

TABLE 3: Coherent tune shifts at injection due to the broad-band resonators.

Longitudinal tune shifts

~Q~) =9.66x 10-6

~QZ) =1.29x 10-5

~Q~) =1.45 x 10-5

Transverse tune shifts

~Qi) =-5.80xl0-4

~Qi) =-2.92x 10-4

~Q~) =-1.96x 10-4

~Q~) =-1.48x 10-4
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TABLE 4: Coherent tune shifts at injection due to strip-line monitors.

91

Longitudinal tune shifts

~Q~) =1.28xlO-7

~QZ) =-4.34xlO-7

~Q~) =2.80x 10-7

4 LOW FREQUENCY IMPEDANCE

Transverse tune shifts

~Q~) =-7.56xlO-4

~Qi) =-4.80xlO-6

~Qi) =8.l6xlO-6

~Qi) =-3.5lxlO-6

Strip-line monitors and abort kickers are the main sources of low-frequency impedance.
They contribute essentially to the coherent tune shift of the lowest head-tail mode.

The coupling impedances of the beam position monitors, consisting of two strip lines
with length £, = 30 cm, each subtending an azimuthal angle ¢ = 110° x 2Jr/360 rad and
having a characteristic impedance Zs = 50 Q, are

ZT(W) = ~~ (~)2 sin2(t) ZL(W)
2 b2 ¢ 2 w'

where Nm = 500 is the total number of monitors and we have assumed that each strip-line
plate has a radial distance b = 17.4 mm from the beam axis. Monitors are provided close
to each quadrupole to measure the horizontal or vertical beam position and the factor 1/2
appearing in the transverse impedance ZT accounts for the fact that only half of the monitors
contribute in a given plane; the betatron function to be used in Eq. (2) for the transverse tune
shifts is however fJmax = 172.8 m, i.e. the maximum beta in the regular arc. If the monitors
were equipped with four strip lines, to measure the horizontal and vertical beam position
at the same time, the longitudinal impedance would be multiplied by a factor two but the
transverse tune shifts would remain almost the same, since half of the monitors would be
at the minimum beta fJmin = 30.3 m.

The tune shifts at injection for a nominal bunch population Nb = 1011 are shown in
Table 4: as can be seen, the only significant contribution is that to the transverse dipole tune

shift ~ Q~). The effective impedances, defined here as the overlap integrals with the bunch
power spectrum ho(w), are

( ZL) = j 127 mQ,
n eff

( ZL) = j 73 mQ,
n eff

fJav (ZT)eff = j 446.6 MQ

fJav (ZT)eff = j 257.9 MQ

at injection,

at 7 TeV.
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The LHC abort kicker magnets are located at a very high-beta region, with fJav == 600 m,
and extend over a total length L == 14 x 1.26 m. They are equipped with a ceramic vacuum
chamber of thickness il == 4.5 mm, width w == 40 mm and height h == 28 mm. The inside
of the chamber has a titanium coating of thickness d == 1 /Lm to reduce the high-frequency
impedance seen by the beam and to conduct away the static charge.9 Moreover, two copper
plates between the H-shaped ferrites on the outside of the ceramic chamber reduce the low
frequency impedance, by carrying most of the beam image currents. Assuming an electric
penueability E == 10 for the ceramic and considering the pessimistic case of a circular
pipe with radius b == h /2 == 14 mm, the coupling impedances at frequencies well below
w/2rr r-v c/(2rr JEb) == 1 GHz can be written10

ZL(W) - Z _w_L _s(_w_)_+_J_s
- 0 4rrc s(w)2 + ~2'

2c ZL(W)
ZT(W) == b2 -w-,

where -y!s(w) is the ratio between the geometric mean of the pipe radius and the coating
thickness, on one side, and the skin-depth DTi (w) in the titanium, having resistivity
PTi == 7 x 10-7 Qm,

bd
s(w) = 0fi(w)'

(b + il)2
~ - - 234- (b + il)2 - b2 - . .

The corresponding low-frequency values of ZL/n and fJavZT are

ZL- == J53 mQ,
n

fJavZT == J 1384 MQ, for w ---+ o.

As shown in Figure 2, the real part of ZT has a peak around the bunch frequency
kbwo/2rr r-v 30 MHz, corresponding to fJavRe(Z!faX) == 692 MQ. The tune shifts of the
transverse coherent modes have therefore an imaginary part depending on the coupled-

bunch mode number m; its maximum value at injection is max [1m (f...Q!rm,n») ] =
1m ( f... Q¥045,O») ~ 2 x 10-6, corresponding to a very weak: coupled-bunch instability

of the transverse dipole mode with a rise time of about 7 sec, easily cured by feed-back. The
real parts of the longitudinal and transverse tune shifts depend very little on m. They are
reported in Table 5 for the lowest coherent modes, assuming Nb == 1011: the only significant

contribution is that to the transverse dipole tune shift il Q~). The effective impedances,
defined again as the overlap integrals with the bunch power spectrum ho(w),'are

( ZL) == J7 mQ,
n eff

( ZL) J4 mQ,
n eff

fJav (ZT)eff == J 108.5 MQ

at injection,

at 7 TeV.
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FIGURE 2: Average beta times the real part of the transverse impedance ZT in MQ (a) and imaginary part of the
longitudinal impedance ZLjn in mQ (b) versus the frequency wj2rr in MHz, for the LHC abort kickers.

It is worth mentioning that, owing to the shielding by eddy currents, the maximum surface
resistance Roax compatible with the required kicker rise time ik = 3 /-LS would be

Rmax _ /-LoW _ 53 r'\o - - m~{.j,

rrkik

where we have assumed a safety factor k = 0.1 between the rise time due to shielding and
the kicker rise time ik, corresponding to more than 99% of the maximum field after a time
equal to ik for a 8-like variation of the external magnetic field. Therefore, the associated
maximum thickness of the titanium layer could be

dmax PTi 13 1= max = . /-Lm.Ro

At the moment, however, there is no stringent argument in favour of a thicker titanium
coating of the ceramic chamber, whose technical realization would also be rather difficult.

TABLE 5: Real parts of the coherent tune shifts at injection due to abort kickers.

Longitudinal tune shifts

~Q~)=4.80x 10-8

~QZ) =2.43 x 10-8

~QZ) =1.65x10-8

Transverse tune shifts

~Q~)=-3.08x 10-4

~ Q~) =-1.33 x 10-5

~Q~) =-3.36x10-6

~Q~) =-1.52x10-6



94 F. RUGGIERO

5 BEAM SCREEN AND PUMPING SLOTS

As shown in Figure 1 of Reference 11, the LHC beam screen has a square cross section
with rounded comers; the radius of the inscribed circle is b == 17.4 mm and the radius
of curvature of the rounded comers is almost exactly equal to b12. The stainless steel
screen has a thickness of 1 mm and its inside is coated with a copper layer of thickness
t == 50 /Lm and residual resistance ratio RRR rv 100. Since the screen is at a temperature
T rv 20° K, the corresponding copper resistivity is PCu == 1.8 X 10-10 Qm at injection
and PCu == 5.5 X 10-10 Qm at top energy, respectively, taking due account of the
magnetoresistance effect in a magnetic field B == 0.56 Tesla at injection and B == 8.65 Tesla
at 7 TeV. The stainless steel resistivity is Pss == 5 x 10-7 Qm.

As sketched in Figure 1 of Reference 12, in the beam screen there are 500 rectangular
slots per meter. Each slot has a length l == 8 mm and a width w == 1.5 mm, with rounded
edges; the corresponding fractional surface of beam screen covered by slots is 4.3%, which
is sufficient for vacuum pumping considerations. The slots are staggered along two rows
located at a distance of b12 from the middle of each screen side, i.e., just where the rounded
comers touch the sides of the square, and their arrangement is such that each cross section
of the screen contains four slots. The induced image currents at the slot positions have
been numerically computed to be smaller by a factor 0.79, compared to the case of a round
screen with radius b. This gives a geometric reduction factor fgeom == 0.63 == (0.79)2
for the longitudinal slot impedance and we assume the same geometric factor also for the
transverse impedance, although the analytic result for a perfectly square screen cross section
is about 15% lower. A further reduction factor fth == 0.6 comes from the finite thickness of
the beam screen. Finally, the aspect ratio llw == 5.3 of the LHC slots corresponds13 to a
relative polarizability arel == 1.5 compared to the case of round holes with radius rh == w 12.
In conclusion, the total coupling impedances of the pumping slots can be obtained by
computing the impedances of Nh == 500 X 2JT Rim == 13.3 millions of round holes, in a
thin round screen inscribed in the square LHC liner, and then multiplying the result by a
global reduction factor F

F == fgeomftharel == 0.56.

This yields

n

2R ZL .
ZT == -2 - == ] 0.44 MQ/m.

b n

The latter corresponds to a weighted transverse impedance fJavZT == j 37.1 MQ. The
corresponding tune shifts at injection, for a nominal bunch population Nb == 1011, are
shown in Table 6.

In addition to these inductive impedances, the pumping slots may give rise to high-Q
trapped modes with frequencies slightly below the screen cut-off frequency and associated
with narrow-band impedances having high peak values of ZLln rv 300 Q: 13 according
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TABLE 6: Coherent tune shifts at injection due to pumping slots.
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Longitudinal tune shifts

L\QZ) =1.29x 10-6

L\QZ) =1.72x10-6

L\Q~) =1.94x 10-6

Transverse tune shifts

L\ Qi) =-6.28 x 10-5

L\Q~) =-3.14x 10-5

L\Q~) =-2.09x 10-5

L\Qi) =-1.57x 10-5

to preliminary estimates,14 the maximum acceptable value of ZLI n for beam stability is
around 15 Q. Therefore, the present base-line design of the LHC beam screen includes
a 10% randomization of the slot lengths, leading to a reduction of their effective quality
factors and of the corresponding narrow-band impedance by a factor 20. The slot spacing
should also be randomized, to damp possible higher-frequency travelling modes associated
with the periodic slot pattern.

6 OTHER SOURCES OF IMPEDANCE

The LHC rf-system consists of two sets of four superconducting cavities with fundamental
frequency of 400.8 MHz. At frequencies below 765 MHz, which is the cut-off frequency
of the 30 cm diameter drift tubes, the impedance of these cavities has sharp resonances
corresponding to the fundamental and higher cavity modes, while the low-frequency
inductance is estimated to be ZLln = j 10 mQ. Assuming an average beta-function
fJav ~ 100 m at the location of the superconducting rf-cavities and using the approximate
relation Eq. (7) with an effective pipe radius heff = 15 cm, yields a very modest weighted
transverse impedance fJavZT ~ 0.4 MQ: in the following, we make the pessimistic
assumption that these low-frequency values be treated as effective impedances. Possible
coupled-bunch instabilities associated with the narrow-band impedance of superconducting
and septum cavities, required for longitudinal feedback, are discussed in Section 8.

Other sources of impedance are the so-called experimental chambers, having a rather
small low-frequency inductance ZLln rv j 1.6 mQ,Qrecombination chambers, where two
vacuum beam pipes merge into one, beam collimators, injection kickers and septa, gate
valves, electrostatic transverse dampers and aperture transitions, such as warm-to-cold and
square-to-round transitions. The total number of these elements and their design are still
subject to significant modifications, therefore their contribution is not yet included in the
impedance budget discussed in the next section.

Q This result has been recently obtained by Y.H. Chin, using his code ABCI with a 2 mm mesh size in the radial
direction. The structure, shown in Figure 11 of Reference 12, is 20 m long and has a maximum radial extent
of 25 cm, with a minimum radius of 2.5 cm. Owing to the small tapering angle, a fine radial mesh is required
to perform a sufficiently accurate calculation: the inductance previously obtained using an 8 mm mesh size was
overestimated by a factor two. The frequencies, quality factors and shunt impedances of trapped modes in the
structure have recently been computed by V.P. Yakovlev, using his code SUPERLANS.
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7 IMPEDANCE BUDGET AND INSTABILITY THRESHOLDS

According to the impedance catalogue discussed in the previous sections, the total effective
impedance of the LHC at injection and at top energy is summarized in Tables 7 and 8,
respectively. We recall that the effective low-frequency impedances have been defined
as the overlap integrals with the bunch power spectrum ho(w); this coincides with the
conventional definition for the transverse dipole mode (n = 0) and gives a weighted average
of the longitudinal impedance ZL/n, although the lowest longitudinal mode corresponds
to n = 1.

TABLE 7: LHC effective impedance (in Q) at 450 GeV.

Injection Im(ZL/n)eff ,BavIm(ZT)eff x 10-6

Space charge -0.0058 -442.4

Shielded bellows 0.0815 139.5

Monitor tanks 0.0400 203.0

Pumping slots 0.0156 37.1

Total broad band 0.1313 -62.8

Strip-line monitors 0.127 446.6

Abort kickers 0.007 181.2

SC cavities 0.010 0.4

Total low frequency 0.144 628.2

TABLE 8: LHC effective impedance (in Q) at 7 TeV.

Top Energy Im(ZL/n)eff ,BavIm(ZT)eff x 10-6

Space charge -3.3x 10-5 -28.6

Shielded bellows 0.0815 139.5

Monitor tanks 0.0400 203.0

Pumping slots 0.0156 37.1

Total broad band 0.1371 351.0

Strip-line monitors 0.073 257.9

Abort kickers 0.004 108.5

SC cavities 0.010 0.4

Total low frequency 0.087 366.8
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7.1 Longitudinal single-bunch effects

The threshold bunch current I:; for the longitudinal microwave instability can be written

where L = 40's is the full bunch length, hrf = 35640 the rf harmonic number and Vrf the
peak rf-voltage

L = {0.52 m at 450 GeV,

0.30 m at 7 TeV, {
8 MV at 450 GeV,

Vrf =
16 MV at 7 TeV.

The total effective impedance is the sum of the broad-band and of the low-frequency
contributions

bb If { (0.131 + 0.144) Q = 0.275 Q at 450 GeV,
(ZL/n)eff = (ZL/n)eff + (ZL/n)eff = j

(0.137 + 0.087) Q = 0.224 Q at 7 TeV.

Therefore, since I~h = N~hewo/2n:, we obtain the following rather high threshold bunch
populations

h
{

6.4 x 1012 at 450 GeV,
N t rv

b -
3.0 x 1012 at 7 TeV.

The coherent tune shifts induced by the broad-band impedance for high-order longitudinal
modes should remain smaller than the synchrotron tune spread

Using Eq. (1) and assuming a safety factor 4 for the ratio Ll Qs/Ll QL, we obtain the following
threshold bunch current corresponding to suppression of Landau damping

The associated maximum bunch populations at injection and at top energy are

h
{

2.0 x 1012 at 450 GeV,
N t rv

b -
2.4 x 1011 at 7 TeV.

Therefore, the most dangerous single-bunch longitudinal effect in the LHC is the possible
suppression of Landau damping at 7 TeV; however this would occur only at more than twice
the nominal bunch population.
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7.2 Transverse single-bunch effects

The dominant single-bunch instability in the case of transverse oscillations is the mode
coupling instability, occurring when the relative tune-shift of two adjacent head-tail modes
equals the synchrotron tune Qs. The corresponding threshold current, approximately equal
also to that for the transverse microwave instability, is

th 2QsE/e L
I b ~ -

tlavIm (ZT)eff R

The total transverse impedance is the sum of the broad-band and of the low-frequency
contributions

tlav (ZT)eff = tlav (ZT)~~ + (ZT)~ff)

{

(-62.8 + 628.2) MQ == 565.4 MQ at 450 GeV,

j (351.0 + 366.8) MQ = 717.8 MQ at 7 TeY.

The associated maximum bunch populations at injection, when Qs == 5.4 x 10-3 , and at
top energy, when Qs == 1.95 x 10-3 , are therefore

h
{

5.9 x 1011 at 450 GeV,
N t rv

b -
1.5 x 1012 at 7 TeV.

A more accurate estimate of the mode-coupling threshold at injection can be obtained
using the tune shifts of the head-tail modes with n == 0 and Inl == 1 given in Table 1, 3,
6, 4 and 5 for the coherent space charge, the broad-band resonators, the pumping slots, the
strip-line monitors and the abort kickers, respectively,

{
(7.49 - 5.80 - 0.63 - 7.56 - 3.08) x 10-4 == -9.58 x 10-4 for n == 0,

~QT ==
(3.75 - 2.92 - 0.31 - 0.05 - 0.13) x 10-4 == 0.34 x 10-4 for n == -1.

This gives a slightly lower threshold

th rv Qs 1011 rv 5 4 1011Nb - (-1) (0) x -. x .
~QT - ~QT

Assuming a nominal bunch population Nb == 1011 particles, the transverse tune shift
induced at injection by the broad-band impedance for a high-order head-tail mode of order
n is

(n) 1 Ib R bb 1 x 10-4

~QT == --n-+-1 2(E/e)L tlavIm (ZT)eff c::= -n-+-1-' for n :::: 1.

The space charge tune spread ~ Qsc ~ 1.2 x 10-3 is therefore sufficient to provide Landau
damping of the high-order transverse modes. The tune shift of the transverse dipole mode,
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mainly induced by the low-frequency impedance, is ~ Q+O) :::::: -1 x 10-3 and stability can
be ensured if a comparable tune spread (other than the space charge tune spread) is present
in the beam, either due to natural magnetic non-linearities or to the system of octupolar
lenses.

8 COUPLED-BUNCH INSTABILITIES DUE TO RF-CAVITY MODES

A detailed analysis of possible coupled-bunch instabilities driven by the narrow-band
impedance of superconducting and feedback cavities can be found in Reference 15. The
frequency and R/ Q of the most prominent high order modes (HOM) have been computed
using the code URMEL: these parameters depend only on the geometry of the rf-cavities.
For each HOM (assuming all the others to be non-existent) the code BBI is then used
to estimate the coherent tune shifts of all the coupled-bunch modes; for HOM's of the
superconducting cavities, where the coherent modes of both beams can be coupled by the
common impedance, the tune shifts are computed for a single beam with twice the nominal
bunch intensity. A comparison of the coherent tune shifts with the synchrotron tune spread
(for longitudinal modes) or with the space charge tune spread (for transverse modes) leads
to a maximum Q value of that particular HOM compatible with Landau damping. The result
is that a moderate damping of most HOM's with Q values in the order of 104 is sufficient to
ensure beam stability. A few HOM's, especially in the septum cavities, may require further
damping with a tuned antenna.

9 TRANSVERSE RESISTIVE WALL INSTABILITY

The transverse resistive wall instability rise time T can be written

1
(8)

where ZT is the transverse impedance at the frequency W of the lowest unstable coupled
bunch mode. To avoid significant restrictions on the choice of working point, in the case of
LHC we make the pessimistic assumption w/2n ~ 3.3 kHz, corresponding to a fractional
betatron tune below an integer by 0.3. For a round pipe of radius b, consisting of an inner
metallic layer of thickness t and resistivity p, surrounded by an outer metallic layer of
thickness t ' and resistivity p', we have

2c Rp
ZT = ~ b38 (1 + j)~.

Here 8 = ,J2p/ /-LoW is the skin depth and ~ the two-layer penetration factor, given by the
following expressionb

bExpression (4.38) used in the SSC Conceptual Design5 is wrong, since it does not reduce to the correct single-layer
fonnula4 when p=p' .
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~ = 1 + Pred',
1+ Prelll'

r;;
Prel = yp

1 - exp [-2(1 + j)t /8]
1(8, t) = 1+ exp [-2(1 + j)t /8]'

where P, 8 and 1(8, t) refer to the inner layer, while p', 8' and I' = 1(8', t') refer to the
outer layer.

Since the instability rise time in a pipe with square cross section16 of side a is the same
as for a round pipe of diameter 2b = 1.103 x a, for the LHC beam screen we can use our
fonnula (8) with an effective radius b ~ 0.55 x 34.8 = 19 mm. Assuming a large thickness
tss r-v 10 mm for the stainless steel beam screen (which, from this point of view, behaves as
if it were in contact with the cold bore11 ) and a temperature T r-v 20o K, in Table 9 we report
the resistive wall instability rise times at injection energy, corresponding to different values
of the copper layer thickness tcu under the hypothesis that all the machine be cold. The skin
depths in copper and in stainless steel are 8cu ~ 0.1 mm and 8ss ~ 6.2 mm, respectively.

The effect of highly resistive regions (welds) at the top and bottom of the beam screen is
difficult to assess quantitatively since:

1. The azimuthal extent of these regions (r-v 1 mm) is smaller than the corresponding
skin depth at 3.3 kHz (8 r-v 6mm, assuming stainless steel resistivity for the welds):
therefore the boundary conditions for field matching should properly take into account
the transition regions on both sides of each weld, with an azimuthal extent presumably
of order 8,

2. the outer cold bore plays a role, although very little field can be expected to leak out
of the welds owing to the previous remark,

3. The lack of isotropy may lead to a tensor transverse impedance.

However, the rise time of the transverse resistive wall instability is dominated by the
wann sections of the machine. If 10% of the beam pipe consists of a 2 mm thick copper
chamber at room temperature (with pc~rm = 1.5 x 10-8 Qm, 8c~rm ~ 1 mm and the same

TABLE 9: Transverse resistive wall instability rise times at injection, for a beam screen temperature T=200K
and different values of the copper layer thickness tcu.

copper layer penetration weighted impedance instability rise

thickness tcu [fLm] factor ~ ,BavRe(ZT) [GQ] time T [msec]

50 1.3- j 1.0 5.4 28

40 1.6- j 1.3 6.7 23

30 2.0- j 1.7 8.8 17

20 3.0- j 2.6 13.0 12

10 5.8- j 4.8 24.6 6
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geometry and average beta as in the remaining cold pipe), for a 50 /-lm copper coating of
the beam screen at 200 K the instability rise time is reduced from 28 to 21 msec. For a
screen temperature of 50oK, the corresponding rise time would be 9 msec, i.e., shorter than
100 revolution periods. An upper bound for the effect of the welds is therefore sufficient at
this stage of the LHC design and, according to numerical estimates based on discontinuous
Leontovich boundary conditions at the transitions hetween copper layer and welds,17 the
instability rise time is reduced by no more than 20% if the azimuthal extent of each weld is
below 2.5 mm.

10 PARASITIC LOSSES

The design of the LHC beam screen results from an optimization of its geometrical,
mechanical, thermal and electromagnetic properties. 18 In particular, the thickness of the
inner copper layer is constrained to small values to minimise eddy current forces in case of
a magnet quench and to large values to reduce the low-frequency resistive wall impedance,
responsible for transverse coupled-bunch instabilities. An original proposal to have only
four copper strips, instead of a uniform copper coating, would have solved the problem of
quench forces; however the ohmic losses due to image currents induced by the beam in
the uncoated high-resistivity regions (about 50% of the screen surface) would have been
unacceptable. 11 Indeed, the resistive losses in stainless steel are about JPsslPCu ~ 30
times larger than in copper at cryogenic temperatures (assuming PCu == 5.5 x 10-10 Qm)
and, over most of the bunch spectrum, image currents can be computed just by solving the
electrostatic two-dimensional problem with boundary conditions independent of the wall
resistivity.

In case of uniform copper coating, the resistive wall losses for a square liner of side a
are the same as the losses in a circular liner of radius b == a 12. A numerical solution of the
electrostatic problem shows that these losses are also the same for the LHC square liner
with rounded comers, having radius of curvature equal to a 14. Therefore, using the formula
for a circular liner of radius b == 17.4 mm, the power loss is given by

P
w

== r (~) kb (NbeC)2! pCuZo as-3/2 c:::: {0.45 kW at 450 GeV,
4 b 21T 2 1.97 kW at 7 TeV,

where we have assumed a screen temperature of 200 K and a nominal bunch population
Nb == 1011 particles. This result does not change appreciably if the anomalous skin-effect
is taken into account. 11

The numerical solution of the electrostatic problem also shows that the ratio between the
image current density induced at the centre of the rounded comers and that for a circular
inscribed liner is almost exactly 1/2. Therefore a high-resistivity region of small azimuthal
extent /:!"l « b (e.g., a weld with resistivity Pss )' located at one of the rounded comers
increases the ohmic losses by

/:!"Pw r-v 1 f¥!SS /:!"l-- - ---
Pw - 4 Pcu 21Tb'
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For two welds at the top and bottom of the LHC screen, each having a width ~i = 1 mm,
the corresponding resistive wall losses are increased by 14%.

To obtain an upper bound for the power loss through the pumping slots, we consider
circular holes of diameter equal to the slot width 2rh = w = 1.5 mm, covering the same
fractional surface f = 4.3% of a circular screen with radius b = 17.4 mm. Therefore,
we neglect the geometric reduction factor of 0.79 for the induced image current at the slot
position and the further reduction of power loss through slots compared to that through
circular holes, confirmed by recent measurements by F. Caspers. However, even for an
infinitely thick wall, HO,l waves with cut-off frequency Jr C/ i can propagate through a slot
of length i. The issue of how efficiently these waves can be excited by the beam and the
consequent tolerances on the slot alignment with respect to the beam axis remain to be
clarified. The power loss through circular holes of radius rh, covering a fractional surface
f in a circular screen of radius b, thickness t, outer resistivity p, surrounded by an outer
circular pipe of radius b' and resistivity p', is given by19

(5) [Nbe ( t )]2 zo,J2ii;;/P
Ph = r - kb -2 frh F - (b ~) ,

4 3Jr rh a 5/ 2b 1 _ !!..-
r + b' p'

where the function F(t /rh) is associated with attenuation from the 'inside' to the 'outside'
of the hole through the circular wave guide of radius rh and length t equal to the hole depth:

F(x) = 2e-1.841x [1 - 0.19 (1 - e-3.682X)] - e-2.405x [1 - 0.14 (1 _e-4.81X )] .

Assuming the same resistivity p = p' = Pss = 5 x 10-7 Qm for the outer surface of
the beam screen and of the cold bore, for a screen thickness t = 1 mm and a cold bore
radius b' = 24.15 mm, the power loss through circular holes is 0.26 kW. To help re
ducing the fraction of this power dissipated at the cold bore, it is foreseen to arrange
microwave absorbers attached to the outside surface of the LHC screen (not touching
the 2°K surface of the cold bore). Since the attenuation length of the coaxial region
between beam screen and cold bore would then become shorter, these microwave ab
sorbers can also significantly reduce the coherent build-up of the TEM waves travel
ling in synchronism with the beam and thus the corresponding power loss through the
pumping slots.

The parasitic losses for LHC at top energy are summarized in Table 10. We have
included an upper bound for the power loss due to coherent synchrotron radiation (possibly
largely overestimated) and for the leakage of electromagnetic energy through a gap
~ = 0.01 mm between the sliding contacts of the bellows'? The latter is certainly
a rather pessimistic assumption, in view of the new bellows design including spring
fingers at the entrance of the gap. The parasitic losses in the shielded bellows have
been estimated using the broad-band resonator parameters of Table 2. However, as in
the case of the monitor tanks, the broad-band resonators are not meant to model the
real part of the longitudinal impedance; the corresponding losses represent therefore only
an upper bound.
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TABLE 10: Summary of parasitic losses for LHC at 7 TeV.
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Power loss

[kW]

3.67

«0.54

1.97

0.27

0.26

<0.80

«1.03

8.54

11 CONCLUSIONS

For a Single Beam

Incoherent synchrotron radiation

Coherent synchrotron radiation

Resistive wall (200 K)

Welds

Pumping slots

Shielded bellows

Leaks in bellows gaps

Total

Power loss per

unit length [mW/m]

216

«32

74

10

10

<30

«38

410

Instability thresholds and parasitic losses have been estimated using somewhat conservative
assumptions. However the LHC impedance budget is not complete and more detailed
calculations are still required, although we believe that the most significant contributions
have been taken into account. The possibility of a transient bunch-to-bunch detuning during
injection and the consequences of closed orbit residuals on the betatron coupling are
important topics for future studies: together with a more careful computation of the magnetic
Laslett tune shift, they have implications on the injection tolerances and on the strategies
for orbit correction and coupling compensation.

Further experimental and theoretical investigations on trapped and high-frequency modes
caused by the pumping slots in the beam screen are in order. Their electromagnetic
properties, such as detuning due to slot randomization or damping associated with mode
conversion at the slots,20 can be measured and their effects on the beam dynamics should
be computed.

Power losses through the pumping slots associated, e.g., with a possible microwave
structure of the beam spectrum, should also be investigated. This may have an impact on
the final design of the beam screen, including the optimal choice of the slot length and the
arrangement of microwave absorbers in the outer coaxial region between the screen and the
cold bore.
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