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Abstract

We discuss some applications of the effective quantum field theory to the de-
scription of the physics beyond the Standard Model. We consider two different
examples. In the first one we derive, at the one-loop level, an effective lagrangian
for an extension of the Standard Model with a charged scalar singlet by “integrat-
ing out” the heavy scalar. In the second example we illustrate the use of general
effective theories at the loop level.

If the physical problem contains several distinct energy scales (masses of the particles etc.)
and we are interested in effects at lower energy scale, then the proper language is an effective
quantum field theory (EQFT) language [1]. In this case the heavy degrees of freedom can be
“integrated out” and the physics at lower energy scale can be described by an effective lagrangian
(EL) in the form of the dimensional expansion

Leff = L0 +
1
Λ
L1 +

1
Λ2
L2 + � � � : (1)

Here L0 contains operators with canonical dimension � 4 (which can be renormalizable).
Ln (n � 1) are linear combinations of non-renormalizable operators with dimension n + 4
which are suppressed by Λn, where Λ is an energy scale at which “new physics” starts, and
parametrize our ignorance of the dynamics at high energies. Two questions are relevant when
the EL is constructed:
- What is the symmetry of the problem?
- What is the (light) particle spectrum?
For any given accuracy physics at energy scale, E, can be described by a limited number of
terms as the contribution of operators of higher dimension is suppressed by the factor (E=Λ)n.
Obviously, when the energy scale approaches the scale Λ one needs more and more terms in
order to describe physics accurately enough. The renormalizability (in the text-book sense) is
replaced by the requirement that physics at low scales cannot dramatically depend on the physics
at higher scales [2].

1Contribution to the Proceedings of the 28th Symposium on the Theory of Elementary Particles, Wendisch-Rietz,
August 30 - September 3, 1994, DESY 95-027
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The EQFT language can be used in two conceptually different cases. First, when the full
theory is known but it contains heavy degrees of freedom which can be “integrated-out” and
one can describe low energy physics in a very transparent and economic way with an EL. In
this case parameters of EQFT are determined completely by the matching to the full theory. An
early example of this case is the lagrangian for low energy light-by-light scattering derived by
Euler and Heisebrerg [3] by integrating out the “heavy” electron in QED. The second situation
is when the full theory is unknown and an EL is built only from assumptions about symmetries
and the particle content. The famous early example of such an approach is the four-fermion
Fermi’s theory [4] of weak interaction. In this case the parameters of the EQFT can obtained
only from experiment.

Although the EQFT approach was used in particle physics for a long time1 for the description
of electroweak interactions the main efforts have been made in the direction of the construction of
renormalizable theories by enlarging the symmetry group, particle content etc. But the success
of the minimal Standard Model (SM) based on SU(2)L
U(1)Y has started to change this point
of view. In many recent works the impact of possible “new physics” is analyzed by adding to
the SM lagrangian effective non-renormalizable operators built from the standard fields. In this
case it is natural to assume the standard SU(2)L 
 U(1)Y symmetry for the new interactions2.
However, a complication arises due to the fact that the SM symmetry is spontaneously broken
to U(1)em. Then there are two possibilities:

- The gauge symmetry is realized linearly. It means that the Higgs particle is present in
the physical spectrum. This is the simplest decoupling situation - effects of non-renormalizable
operators disappear when the scale of “new physics” increases (only experiment can tell us
something about this scale). The first term in the EL is the usual minimal SM.

- The gauge symmetry is realized non-linearly. There is no elementary scalar in the particle
spectrum. The scale of “new physics” cannot be much larger than the Fermi scale as it has to cure
the bad behaviour of the model without Higgs. Therefore, the operators of higher dimension
become also relevant at the energy scale of modern experiments. Written in unitary gauge, the
lagrangian has the most general form consistent with Lorentz invariance and unbrokenU(1)em
symmetry. The first term in the EL is a non-renormalizable non-linear sigma model [7,8].

The use of EQFT at tree level is straightforward. However, during last years, motivated by
high precision of the data, people started to bound effective interactions from their contribution in
loops. This has to be done with certain caution as such non-renormalizable interactions give, in
general, a divergent result. Nevertheless, using the appropriate framework one can obtain finite
non-ambiguous results. As we already mentioned, in the EQFT language all operators allowed
by the symmetries of the problem are already present in the EL. Therefore, there always exists a
counterterm available to absorb any divergence that could appear in loop calculations. The price
that has to be payed is that it is not possible to analyze effects of one operator independently
of other operators that mix with it under renormalization. Under certain assumptions one can
reduce the basis of operators which mix. The more assumptions one makes the stronger will be
the bounds one obtains on the couplings of the effective operators. The less assumptions one
makes the more reliable will be the bounds obtained. For example, if we want to analyze an
operator that contributes to experimental observables at one-loop level we can use a “minimal”
set of operators (which, in general, does not form a closed basis) that contains the operator in
question plus all the operators that mix “directly” with it at the one-loop level.

In this talk we will illustrate the construction and use of the EQFT by considering two
examples: in the first one the EL is derived from a known underlying model; in the second one

1One of the most successful application is the so-called Chiral Perturbation Theory [5].
2Dimension-six SU (2)L 
 U (1)Y are classified and listed in [6].
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the use of general EQFT at the loop level is discussed.

First, we consider the construction of the EL from a renormalizable model which is an
extension of the SM with a charged scalar singlet [9]. The full lagrangian for this model is

Lfull = LSM + Lh; (2)

where the LSM refers to the minimal SM part and theLh describes the additional charged scalar
singlet, h

Lh = (D�h)
yD�h�m2 jhj2 � � jhj4 � � jhj2 'y'+

�
fab èa`bh+ + h.c.

�
; (3)

where the covariant derivative has the form D� = @� + ig0B� (the scalar has hypercharge
Y = �1); � is a Higgs field, l is a leptonic SU(2) doublet.

This model is one of the simplest extensions of the SM, but in spite of its simplicity it has
interesting features common to any extension which contains a large mass scale compared with
the Fermi scale (we assume thatm � 1TeV ). In addition to the coupling of the scalar to leptons,
f , is an antisymmetric complex matrix in flavour space [9] and this leads to flavour-changing
interactions in the leptonic sector3.

If the mass of the scalar, m, is much higher than the energy scale of experiments we can
integrate out the scalar. The effective action, Seff =

R
d4xLeff (x), is defined as

eiSeff = eiSSM
Z
DhDh+ exp

n
id4xLh(x)

o
; (4)

where Dh represents the functional integration over h. The EQFT represented by the non-
local expression (4) is fully equivalent to the original theory as far as Green functions with
“light” external particles are considered. As we are interested in the effects of the heavy scalar
(m � 1TeV ) on physics around the Fermi scale, we will keep only terms of orderO(1=m2).

Expanding (functionally) the full action around the solution of the classical equation of
motion for the scalar field and integrating over h, the one-loop action can be written (in our
approximation) as

Seff = SSM + Sh[h0] + iTr flog(O)g (5)

withO = (�D2�m2��'y'). The last term in eq. (5) takes into account terms which originate
from the one-loop diagrams with only heavy scalar in loops. We refer to [9] for the details of
calculations of the fluctuation operator and give here the final result which can be split in two
parts. The first one includes all dimension-six operators

L(1)det =
1
m2

1
(4�)2

 
�
�3

6
('y')3

+
�2

12
@�('

y')@�('y') +
g02�

12
('y')B��B

�� �
g02

60
@�B��@�B

�� :

!

(6)
The second part of the EL, contains operators of dimension not larger than four and they

have ultraviolet (UV) divergent coefficients4. As all SU(2)L
U(1)Y operators with dimension
� 4 are already present in the SM lagrangian, this part of the EL is absorbed by the redefinition
of the SM couplings:

m̄2
' = m2

' �m2 �

(4�)2
(1 + ∆�) ; (7)

3Although the generational lepton number is violated, the assignment of the total lepton number 2 to the scalar
assures that the total lepton number is conserved; as a consequence neutrinos remain massless at all orders.

4We used dimensional regularization. Divergences appear as simple poles in � in the function ∆� = 1=�� 
 +
2log(4��=m).
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�̄ = � �
�2

2(4�)2
∆� (8)

and the B� field

B̄� =

 
1 +

g02∆�

3(4�)2

!1=2

B� : (9)

In order to keep the canonical form for the covariant derivative we have to renormalize the
hypercharge coupling, g0, as follows,

ḡ0 =

 
1 +

g02∆�

3(4�)2

!1=2

g0 : (10)

Note that the above relations are relations between the bare couplings of the full lagrangian and
the effective one.

Using the equation of motion for the scalar singlet the second term in the effective action,
Sh[h0], can be formally written in the following non-local form

Sh[h0] � �
Z
d4x è(x)f`(x) 1

(�D2 �m2 � �'y(x)'(x))
`(x)fy è(x) +O

� 1
m4

�
: (11)

To obtain a local approximation to it, one has to make an expansion in 1=m2:

1
(�D2 �m2 � �'y(x)'(x))

= �
1
m2

+
1
m4

(D2
+ �'y(x)'(x)) + � � � : (12)

Neglecting all terms but the first, the tree level contribution of the scalar to the EL is:

L(0) =
1
m2

( èf`)(`fy è) = 4
m2

fabf
�
a0b0(�

c
aLebL)(eb0L�

c
a0L) ; (13)

where the summation over repeated flavour indices (a; b; a0; b0) is assumed. It corresponds to the
tree-level diagram with scalar exchange between two lepton currents.

However, by using the expansion (12) one does not obtain the complete answer even at order
1=m2. Doing this approximation we assumed that q2 � m2 which is not correct when the scalar
contributes in loops where the loop momentum runs up to infinity. As a result we missed many
operators which correspond to one-loop diagrams in the full theory with heavy-light particles in
loops.

In order to find them, we have to consider one-loop diagrams in the full theory with mixed,
heavy-light particles in the loops and to subtract the corresponding one-loop contribution in the
effective theory using the tree-level lagrangian eq. (13) in loops.

In practice, deriving the matching conditions we can avoid the calculation in the effective
theory by splitting the scalar propagator in two parts

1
k2 �m2

= �
1
m2

+
1
m2

k2

(k2 �m2)
(14)

and using only the second part in calculations. Doing this we increase the power of the
UV-divergence but decrease the power of the infrared (IR) divergence. Thus, all possible
small momentum singularities, which have nothing to do with the high-energy behaviour, are
transmitted to the low energy EL. Most of the operators obtained by matching have UV-divergent
coefficients and serve as counterterms to the divergent loop contributions that appear in the
effective theory, some other operators have finite coefficients.
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To find the operators that appear as a consequence of the matching procedure we first
consider one-loop diagrams with the minimal number of the external particles keeping track of
the external momenta (to order p2=m2). Then we write effective operators which correspond to
such amplitudes. After this we reconstruct the gauge invariance by promoting simple derivatives
to covariant derivatives. Sometimes, however, there is an ambiguity to do this and we need to
calculate diagrams with more external (gauge) particles. The full matching procedure can be
found in [9].

As an example, we construct operators which correspond to the lepton self-energy with the
h-scalar in the loop. In the effective theory this contribution is zero because it is a massless
tadpole-like diagram. However, in the full theory we have a non-trivial result:

Tself�energy =
(fyf)ab

(4�)2

 
2
�

∆� +
1
2

�
+

2
3
p2

m2

!
ū(p) 6p

1
2
(1� 
5)u(p) : (15)

For the first term in (15) we have the following operator

2(∆� +
1
2
)i(`F 6D`) ; (16)

with Fab � (fyf)ab=(4�)2. Evidently this operator can be absorbed in the standard kinetic term
of the lepton doublet5.

The second term in eq. (15) is proportional to 6pp2, which requires an effective operator of the
form i(`a 6@@2`b). However, the promotion of this term to covariant derivatives is ambiguous:
should we use 6DD2, 6D3 or D� 6DD� ? The only way to resolve this ambiguity is to perform a
full calculation with one external gauge boson [9].

There are many other effective operators obtained by matching which correspond to diagrams
with external leptons and Higgs particles and different four-fermion operators corresponding to
box diagrams with a heavy line.

Before presenting the final form of the EL for the model we discuss the renormalization of the
EL. We use theMS-scheme for the renormalization of both the full and effective theories and, in
this case, we obtain matching equations for the renormalized couplings in both theories [10,?].
For example, we have the standard relations for the gauge coupling in the MS-scheme6

g0�� = g0(�) +
1
2�̂

bg0g03(�) + � � � ;

ḡ0�� = ḡ0(�) +
1
2�̂

b̄g0 ḡ03(�) + � � � ;

where bg0 and b̄g0 are the lowest-order coefficients of the �-functions for the coupling constants
in the full and the effective theories, respectively. Substituting these equations in the relation
between bare couplings in the full and effective theories, eq. (10), and equating finite terms we
obtain the desired matching condition for the renormalized couplings:

ḡ0(�) = g0(�)�
g0(�)3

3(4�)2
log(�=m) + � � � : (17)

Note that this equation can be obtained by just dropping the 1=�̂ contained in ∆� in eq. (10).
This is not surprising since the divergent term in eq. (10) gives just the charged scalar contribution

5As a consequence we have to redefine the standard Yukawa couplings and the coupling of the tree-level
four-fermion operator, fab.

6We denote the MS renormalized quantities with the same symbol as the bare quantities, but adding an
additional dependence on the renormalization scale �. All effective theory quantities will be distinguished by a
bar; D = 4� 2� and 1

�̂
= 1

�
� 
 + log(4�).
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to the beta function of g0 in the full theory. For the coefficient of the quadratic term in the Higgs
potential we have

m̄2
'(�) = m2

'(�) �m2
(�)

�(�)

(4�)2
(1 + 2 log(�=m)) ; (18)

and similar equations can be written for other couplings (and fields).
In order to avoid large logarithms, the matching conditions should be evaluated at some

scale around the charged scalar mass7. Then, using the SM renormalization group, run all the
couplings down in order to obtain their values at lower scales.

Eq. (18) is very interesting and a similar equation can be found in most theories with (at least)
two different mass scales. This equation clearly exhibits the so-called naturalness problem of
the SM. m̄'(�) is the mass parameter that appears in the Higgs potential part of the effective
Lagrangian, and it has to be of the order of the electroweak scale. However, if m(�) is very
large, one should also take m'(�) large in order to have m̄'(�) small enough. But even if we
do so at some scale �, it will be very difficult to keep m̄'(�) small at any other scale. This
represents a serious fine-tuning problem, which appears when the standard model is embedded
in another model containing mass scales much larger than the Fermi scale. It is important to
note that by using MS-scheme the problem appears only in the matching conditions.

The final EL in terms of physical fields has the form (flavour indices are suppressed)

L(1) = �
g2

2m2
W

�Z(c
2
WJ

�
A � J

�
Z)(c

2
WJA� � JZ�) +

g

cW
�ZZ�(c

2
WJ

�
A � J

�
Z)

+
2
3

g

m2cW

�
�(1� 2s2

W )

�
∆� +

4
3

�
+ s2

W

1
3

��
M 2

ZZ
� +

g

ĉW
J
�
Z

�
(�LF
��L)

+
2
3

g

m2cW

��
∆� +

4
3

�
+ s2

W

1
3

��
M 2

ZZ
� +

g

cW
J�
Z

�
(eLF
�eL)

�
2
3

�
∆� +

4
3

�
g

m2

�
(
p

2M 2
WW+

� + Jy
�)(�LF


�eL) + h.c.
�

�2
9
e2

m2
J�
A(eF
�e) �

2
3
e2

m2

 
∆� +

5
3

!
J�
A(�LF
��L) (19)

�
1
6
e

m2
A�� �(eLFMe���eR) + h.c.

�

+
1
6

g

m2cW
(1 + s2

W )Z�� �(eLFMe���eR) + h.c.
�

�
1

3
p

2

g

m2

�
W+

��(�LFMe���eR) + h.c.
�

�
(4�)2

m2

�
(eLF


�eL)(eLF
�eL) + (�LF

��L)(�LF
��L)

+ 2(eLF
�eL)(�LF
��L)
�
: (20)

Here Me is the charged lepton mass matrix and A�� = @�A� � @�A� and Z�� = @�Z� � @�Z�

are the field strengths of the photon and the Z boson, respectively; J�
A; J

�
Z; J

y
� are the standard

electromagnetic, neutral and charge currents.
This lagrangian shows all phenomenological consequences of the model in a very transpar-

ent way. The most interesting ones are different processes with generational lepton number
violations. For example, assuming (without loss of generality) a diagonal form for the matrix

7Although, in principle, they are valid for an arbitrary value of the renormalization scale �
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Me, from the fifth line of (20) we have the amplitude of the decay

T (eb ! ea 
) = �i
e

3
Fabū(pa)���q

�(mbR +maL)u(pb)�
�(q) ; (21)

L and R are, respectively, the left-handed and right-handed chirality operators. The amplitude
eq. (21) leads to the process � ! e
 without neutrino masses. Other terms lead to decays
�� ! e�e�e+ and similar processes.

Another interesting process is the flavour changing Z-decay, Z ! e+a e
�
b . To consider this

decay we have to take into account not only the contribution at tree level (third line in (20)) but
also the contribution given by the tree-level four-fermion lagrangian at one loop. By construction
the sum is UV finite and depends only on the few parameters of the full model. For example,
from the upper bounds on the branching ratios for the decays Z ! e�; e�; �� measured at
LEP [12] one gets m � 1TeV (for coupling f � 1).

However, when the full theory is unknown, the situation is more complicated. Assume we
are in a two-operator mixing situation (like in the above case). Then for their renormalized
couplings at some scale � we have

c1(�) = c1(�0)

 
1 + 
11 log

�

�0

!
+ c2(�0)
12 log

�

�0

c2(�) = c1(�0)
21 log
�

�0
+ c2(�0)

 
1 + 
22 log

�

�0

!
: (22)

which are the solutions of the general renormalization group equation

�
dci(�)

d�
= 
ijcj(�) ; (23)

valid only in the case that 
ij log(�=m)� 1. Let us suppose that at experiment we measure the
coupling c2(�) at some energy scale �. If we want to extract bounds on c1(�0) we need to know
the initial condition, c2(�0), as an effective theory predicts only the anomalous dimensions 
ij .
Thus, in this case we need to add c2(�0) in the analysis and we either have to consider more
experimental data or make additional assumptions. As we will see in the next example such an
analysis is more complicated but nevertheless one can get useful bounds on effective couplings.

One of the most elusive among the non-standard four-fermion interactions is that which
involves only neutrinos. Best bounds on the effective coupling of the V-A form (we assume
lepton universality for simplicity)

L��� = c1 GF

X
i;j=e;�;�

(�̄i
�(1� 
5)�i)(�̄j
�(1� 
5)�j) ; (24)

were obtained [13] from its tree-level contribution to the invisible width of the Z-boson via the
decay Z ! ��̄��̄:

jc1j � 390 : (25)

When the right-handed neutrinos are involved in the interaction much stronger bounds were
obtained recently [14] from the primordial nucleosynthesis.

Thus, in the case of V � A structure the interaction may be rather strong. One can ask
on the possible bounds one could obtain on this interaction via its one-loop contribution to the

7



Z ! ��̄. Using the fact that the invisible Z-width is measured at LEP with an accuracy better
than one-percent [12] one can get a simple estimate:

∆Γ�̄ �

Γ�̄�

�
c1GFM

2
Z

(4�)2
! c1 � (1–10) � : (26)

This estimate suggests that one can obtain good bounds by considering the four-neutrinooperator
at the loop level.

The above estimate is rather naı̈ve because inserting the non-renormalizable vertex in the
loop diagram we get a divergent result. It should be renormalized by adding a derivative coupling
of the Z-boson to neutrinos [15]

L��Z = �
g

2cW
��GF

X
i=e;�;�;::

(c2 + ∆c2) (�̄i
�L�i)@�Z�� ; (27)

where c2 is the MS renormalized coupling and the corresponding counterterm is

∆c2 = �c1
12
1
�̂
:

Moreover, since by using only four-neutrino interactions we do not assume SU(2) symmetry,
we have to also add a non-standard direct (non-derivative) coupling of theZ-boson to neutrinos,
c3 (there is no symmetry which forbids it). Then the full renormalized vertex Z�̄� is given by

T̂ = �
g

2cW
GF [q

2
�
c2(�) + c1(�)

�

12

�
log(�2=jq2j) + i��(q2

)
�
+ �12

��
+ c3(�)] ; (28)

with


12 =
1

3�2
; �12 = 
12

17
12

: (29)

The running couplings in our approximation (we neglect all contributions with gauge bosons
running in the loops) are given by

c1(�) � c1(�0) ; (30)

c2(�) = c2(�0) + c1(�0)
12 log

 
�2

0

�2

!
; (31)

where �0 is some reference scale. The effective four-neutrino operator at the one-loop level
contributes to the running of the coupling of the operator (27) and we have to consider mixing
between at least these two operators8. The coupling c3(�) does not mix with the other couplings
because it corresponds to an operator of different dimension, then c3(�) � c3(�0).

Obviously, we need several experimental data in oder to put bounds on these couplings in
a model independent way. As the q2 dependence of the coefficients in front of the various
couplings is different, we can separate different couplings by considering their contribution to
the observables at distinct energy scales: apart from the invisibleZ-width measured at LEP we
consider data from high energy deep inelastic scattering (DIS).

The details of our analysis can be found in [15] here we list only final results. The three-
parameter (model independent) fit to the full body of data gives the following bounds at 68% C.L.

c3(�0) = 0:004� 0:009 c2(�0) = 4:7� 7 c1(�0) = �100� 140 : (32)

8Obviously, there are many other four-fermion operators like (l̄l)(�̄�), etc., which also mix with theZ-neutrino
coupling (27). But as we are neglecting loops with gauge bosons, they do not mix directly at the one-loop level
with the four-neutrino operator and, as they can be strongly bounded from other processes, we will disregard them.
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The extreme values of c1(�0), of order � 240, are possible only because of large cancellations
between the contributions of the three non-standard couplings. If one decides that such can-
cellations are unnatural, then one obtains a much better bound for the contact four-neutrino
interaction. The complete analysis gives in this case

jc1(�0)j � 2 : (33)

which is 200 times better than bounds on the four-neutrino coupling from the tree level analysis
eq. (25).

In this talk we illustrate by two examples the construction and use of the effective field
theory approach to the description of physics beyond the minimal Standard Model. In the first
example we sketch the construction of the one-loop effective lagrangian for the extension of
the Standard Model with a heavy charged scalar singlet [9]. We discuss the matching of the
effective theory to the underlying full theory. In the second example [15] we illustrate the use
of the general effective lagrangian at the loop level by bounding elusive four-fermion neutrino
operator from its contribution in loops to the invisible width of the Z-boson and to the neutral
to charged currents ratio measured in the deep inelastic scattering.

References

[1] for recent review of the EQFT see, e.g: H. Giorgi, Annu. Rev. Nucl. Sci. 43 (1993) 209
and refs. cited therin.

[2] S. Weinberg, Conference Summary, UTTG-25-92, Talk presented at the XXVI Interna-
tional Conference on High Energy Physics, Dallas, Texas, August, 1992

[3] H. Euler, Ann. der Phys. 26 (1936) 398 W. Heisenberg and H. Euler, Z. Phys. 98 (1936)
714

[4] E. Fermi, Ric. Scient. 4 (1934) 491 ; Nuovo Cim. 11 (1934) 1

[5] for recent review of the ChPT see, e.g: E. De Rafael, CPT-93-P-2967 and refs. cited therin.

[6] see e.g. W. Buchmüller and D. Wyler, Nucl. Phys. B268 (1986) 621.

[7] T. Appelquist and C. Bernard, Phys. Rev. D22 (1980) 200

[8] A.C. Longhitano, Phys. Rev. D22 (1980) 1166

[9] M. Bilenky and A. Santamaria, Nucl. Phys. B420 (1994) 47.

[10] S. Weinberg, Phys. Lett. 91B (1980) 51

[11] L. Hall, Nucl. Phys. B178 (1981) 75

[12] Review of Particles Properties, Phys. Rev. D50 (1994) 1173.

[13] M. Bilenky, S. Bilenky and A. Santamaria Phys. Lett. B301 (1993) 287.
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