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Abstract

We discuss some applications of the effective quantum field theory to the de-
scription of the physics beyond the Standard Model. We consider two different
examples. Inthefirst one we derive, at the one-loop level, an effective lagrangian
for an extension of the Standard Model with a charged scalar singlet by “integrat-
ing out” the heavy scalar. In the second example we illustrate the use of general
effective theories at the loop level.

If the physical problem contains several distinct energy scales (masses of the particles etc.)
and we are interested in effects at lower energy scale, then the proper language is an effective
guantum field theory (EQFT) language [1]. In this case the heavy degrees of freedom can be
“integrated out” and the physicsat lower energy scale can be described by an effectivelagrangian
(EL) inthe form of the dimensional expansion

Lops = Lot Lo+ aglot o )
Here £, contains operators with canonical dimension < 4 (which can be renormalizable).
L, (n > 1) are linear combinations of non-renormalizable operators with dimension n + 4
which are suppressed by A", where A is an energy scale at which “new physics’ sarts, and
parametrize our ignorance of the dynamics at high energies. Two questions are relevant when
the EL is constructed:
- What is the symmetry of the problem?
- What isthe (light) particle spectrum?
For any given accuracy physics at energy scale, £, can be described by a limited number of
terms as the contribution of operators of higher dimension is suppressed by the factor (£/A)".
Obvioudy, when the energy scale approaches the scale A one needs more and more termsin
order to describe physics accurately enough. The renormalizability (in the text-book sense) is
replaced by the requirement that physics at |ow scal es cannot dramatically depend on the physics
at higher scales [2].

1Contributionto the Proceedings of the 28th Symposium on the Theory of Elementary Particles, Wendisch-Rietz,
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The EQFT language can be used in two conceptually different cases. First, when the full
theory is known but it contains heavy degrees of freedom which can be “integrated-out” and
one can describe low energy physics in a very transparent and economic way with an EL. In
this case parameters of EQFT are determined completely by the matching to the full theory. An
early example of this case is the lagrangian for low energy light-by-light scattering derived by
Euler and Heisebrerg [3] by integrating out the “heavy” electron in QED. The second situation
iswhen the full theory isunknown and an EL is built only from assumptions about symmetries
and the particle content. The famous early example of such an approach is the four-fermion
Fermi’s theory [4] of weak interaction. In this case the parameters of the EQFT can obtained
only from experiment.

Althoughthe EQFT approach wasused in particle physicsfor along time! for the description
of electroweak interactionsthe main eff ortshave been madein thedirection of the construction of
renormalizable theories by enlarging the symmetry group, particle content etc. But the success
of the minimal Standard Model (SM) based on SU(2), @ U(1)y has started to change this point
of view. In many recent works the impact of possible “new physics’ is analyzed by adding to
the SM lagrangian effective non-renormalizable operators built from the standard fields. Inthis
caseit is natural to assume the standard SU(2);, @ U(1)y symmetry for the new interactions’.
However, a complication arises due to the fact that the SM symmetry is spontaneously broken
to U(1).,,. Then there are two possibilities:

- The gauge symmetry is realized linearly. It means that the Higgs particle is present in
the physical spectrum. Thisisthe simplest decoupling situation - effects of non-renormalizable
operators disappear when the scale of “new physics’ increases (only experiment can tell us
something about this scale). Thefirst termin the EL isthe usua minimal SM.

- The gauge symmetry isrealized non-linearly. Thereisno elementary scalar in the particle
spectrum. The scale of “new physics’ cannot be much larger than the Fermi scale asit hasto cure
the bad behaviour of the model without Higgs. Therefore, the operators of higher dimension
become also relevant at the energy scale of modern experiments. Written in unitary gauge, the
lagrangian has the most general form consistent with Lorentz invariance and unbroken U/ (1).,,
symmetry. Thefirst termin the EL is anon-renormalizable non-linear sigma model [7,8].

The use of EQFT at tree leve is straightforward. However, during last years, motivated by
high precision of the data, peopl e started to bound effectiveinteractionsfromtheir contributionin
loops. This hasto be done with certain caution as such non-renormalizableinteractions give, in
general, adivergent result. Nevertheless, using the appropriate framework one can obtain finite
non-ambiguous results. Aswe already mentioned, in the EQFT language all operators allowed
by the symmetries of the problem are already present in the EL. Therefore, there alwaysexistsa
counterterm available to absorb any divergencethat could appear in loop calculations. The price
that has to be payed is that it is not possible to analyze effects of one operator independently
of other operators that mix with it under renormalization. Under certain assumptions one can
reduce the basis of operatorswhich mix. The more assumptions one makes the stronger will be
the bounds one obtains on the couplings of the effective operators. The less assumptions one
makes the more reliable will be the bounds obtained. For example, if we want to analyze an
operator that contributes to experimental observables at one-loop level we can use a“minimal”
set of operators (which, in general, does not form a closed basis) that contains the operator in
guestion plus all the operatorsthat mix “directly” with it at the one-loop level.

In this talk we will illustrate the construction and use of the EQFT by considering two
examples: in thefirst onethe EL is derived from a known underlying model; in the second one

10ne of the most successful application isthe so-called Chira Perturbation Theory [5].
2Dimension-six SU(2);, @ U(1)y areclassified and listed in [6].



the use of general EQFT at the loop level is discussed.

First, we consider the construction of the EL from a renormalizable model which is an
extension of the SM with acharged scalar singlet [9]. The full lagrangian for this model is

L = Lsv + Ly, (2

wherethe Ls), refersto the minimal SM part and the £, describes the additional charged scalar
singlet,

L, = (D) D*h — m? | — a|b|* = Bl ple + <fabz7a£bh+ + h.c.) : (3)

where the covariant derivative has the form D, = 9, + i¢’B, (the scalar has hypercharge
Y = —1); ¢ isaHiggsfield, [ isaleptonic SU(2) doublet.

This model is one of the simplest extensions of the SM, but in spite of its simplicity it has
interesting features common to any extension which contains alarge mass scale compared with
the Fermi scale (weassumethat m > 17'eV). Inadditionto the coupling of the scalar to leptons,
f, s an antisymmetric complex matrix in flavour space [9] and this leads to flavour-changing
interactionsin the leptonic sectors.

If the mass of the scalar, m, is much higher than the energy scale of experiments we can
integrate out the scalar. The effective action, S, ;; = [ d*zL.;¢(x), isdefined as

oiSers — el'SSM/DhDhJr exp{id“xﬁh(:z:)} . (4)

where Dh represents the functional integration over . The EQFT represented by the non-
local expression (4) is fully equivalent to the origina theory as far as Green functions with
“light” external particles are considered. Aswe are interested in the effects of the heavy scalar
(m > 1T'eV) on physics around the Fermi scale, we will keep only terms of order O(1/m?).
Expanding (functionally) the full action around the solution of the classical equation of
motion for the scalar field and integrating over %, the one-loop action can be written (in our
approximation) as
Sesr = Ssm + Sulho] + ¢ Tr{log(O)} (5)

withO = (= D?—m?— Belp). Thelast termin eg. (5) takesinto account termswhich originate
from the one-loop diagrams with only heavy scalar in loops. We refer to [9] for the details of
calculations of the fluctuation operator and give here the fina result which can be split in two
parts. Thefirst oneincludesall dimension-six operators
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The second part of the EL, contains operators of dimension not larger than four and they
have ultraviolet (UV) divergent coefficients’. Asal SU(2); @ U(1)y operatorswith dimension
< 4 aredready present in the SM lagrangian, this part of the EL is absorbed by the redefinition
of the SM couplings:
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3Although the generational lepton number is violated, the assignment of the total lepton number 2 to the scalar
assures that the total lepton number is conserved; as a consequence neutrinosremain massless at al orders.

“We used dimensional regularization. Divergences appear as simple polesin e inthefunction A, = 1/¢ — v +
2log(4mp/m).
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In order to keep the canonical form for the covariant derivative we have to renormalize the
hypercharge coupling, ¢', asfollows,

2 1/2
m g A&
g = (1+ 3(477)2) q . (20)

Note that the above rel ations are rel ations between the bare couplings of the full lagrangian and
the effective one.

Using the equation of motion for the scalar singlet the second term in the effective action,
Si[ho], can be formally written in the following non-local form

1
(=D? —m? — pol(z)p(z))

To obtain alocal approximation to it, one has to make an expansion in 1/m?:

1 oL,
(D2 —m? = ppt(a)p(z)) — m?

Neglecting al terms but the first, the tree level contribution of the scalar to the EL is:

Salio] = — [ d*T () (x) (2)fTi(z) + O <%> R

L2y g . (12)

m4

1 = - 4 —
£ = = (LFOE'T) = — for Fon (Vipens) (@) (13)

where the summation over repeated flavour indices (a, b, o', §') isassumed. It correspondsto the
tree-level diagram with scalar exchange between two lepton currents.

However, by using the expansion (12) one does not obtain the complete answer even at order
1/m?. Doing this approximation we assumed that ¢> < m? whichisnot correct when the scalar
contributes in loops where the loop momentum runs up to infinity. As aresult we missed many
operators which correspond to one-loop diagramsin the full theory with heavy-light particlesin
loops.

In order to find them, we have to consider one-loop diagramsin the full theory with mixed,
heavy-light particlesin the loops and to subtract the corresponding one-loop contribution in the
effective theory using the tree-level lagrangian eq. (13) in loops.

In practice, deriving the matching conditions we can avoid the calculation in the effective
theory by splitting the scalar propagator in two parts

1 1 1 k2
k2 _ m2 - mZ + m2 (kZ _ mZ) (14)
and using only the second part in calculations. Doing this we increase the power of the
UV-divergence but decrease the power of the infrared (IR) divergence. Thus, al possible
small momentum singularities, which have nothing to do with the high-energy behaviour, are
transmitted to thelow energy EL. Most of the operatorsobtained by matching have UV-divergent
coefficients and serve as counterterms to the divergent loop contributions that appear in the
effective theory, some other operators have finite coefficients.
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To find the operators that appear as a consequence of the matching procedure we first
consider one-loop diagrams with the minimal number of the external particles keeping track of
the external momenta (to order p?/m?). Then we write effective operators which correspond to
such amplitudes. After thiswereconstruct the gaugeinvariance by promoting simple derivatives
to covariant derivatives. Sometimes, however, there is an ambiguity to do this and we need to
calculate diagrams with more external (gauge) particles. The full matching procedure can be
foundin[9].

As an example, we construct operators which correspond to the lepton self-energy with the
h-scalar in the loop. In the effective theory this contribution is zero because it is a massless
tadpole-like diagram. However, in the full theory we have a non-trivial result:

_ UM ( }) 29° Y o L
Tself—energy — (471_)2 2 Ac ‘I’ 2 ‘I’ 3m2 U(P) ﬂz(l 75)”(27) . (15)
For the first term in (15) we have the following operator
28, + )iTF PI) (16)

with Fi,, = (fT f)as/(47)2. Evidently this operator can be absorbed in the standard kinetic term
of the lepton doublet®.

The second termin eq. (15) isproportional to yp?, which requiresan effective operator of the
form i(, aa%). However, the promotion of thisterm to covariant derivatives is ambiguous:
should we use ) D?, 3 or D,, Jp D" ? The only way to resolve this ambiguity is to perform a
full calculation with one external gauge boson [9].

Thereare many other effective operatorsobtained by matching which correspondto diagrams
with external leptons and Higgs particles and different four-fermion operators corresponding to
box diagrams with a heavy line.

Before presenting thefinal form of the EL for themodel we discussthe renormalization of the
EL. We usethe M S-schemefor the renormalization of both thefull and effectivetheoriesand, in
this case, we obtain matching equations for the renormalized couplingsin both theories[10,7].
For example, we have the standard relations for the gauge coupling in the M S-scheme®

1
g = g+ 5 bed(w) -
1 _
g = g+ 5 b))+,
where b, and Eg are the lowest-order coefficients of the 5-functionsfor the coupling constants
in the full and the effective theories, respectively. Substituting these equations in the relation
between bare couplingsin the full and effective theories, eg. (10), and equating finite terms we
obtain the desired matching condition for the renormalized couplings:

7100 = o) = e gl on) 4+ )

Note that this equation can be obtained by just droppingthe 1/¢ containedin A, in eq. (10).
Thisisnot surprising sincethedivergent termineq. (10) givesjust the charged scalar contribution

5As a consequence we have to redefine the standard Yukawa couplings and the coupling of the tree-level
four-fermion operator, f,;.

5We denote the M/ S renormalized quantities with the same symbol as the bare quantities, but adding an
additional dependence on the renormalization scale i All effective theory quantities will be distinguished by a
bar; D=4—2cand = 1 —~ 4 log(4n).




to the betafunction of ¢’ inthe full theory. For the coefficient of the quadratic termin the Higgs
potential we have

() = (1) = (1) 51+ 2loglfm) . 18)

and similar equations can be written for other couplings (and fields).

In order to avoid large logarithms, the matching conditions should be evaluated at some
scale around the charged scalar mass’. Then, using the SM renormalization group, run all the
couplings down in order to obtain their values at lower scales.

Eq. (18) isvery interesting and asimilar equation can befound in most theorieswith (at | east)
two different mass scales. This equation clearly exhibits the so-called naturalness problem of
the SM. m., (1) isthe mass parameter that appears in the Higgs potential part of the effective
Lagrangian, and it has to be of the order of the electrowesk scale. However, if m(y) isvery
large, one should also take m (1) largein order to have m.,(x) small enough. But even if we
do so at some scale g, it will be very difficult to keep m., (1) small a any other scale. This
represents a serious fine-tuning problem, which appears when the standard model is embedded
in another model containing mass scales much larger than the Fermi scale. It isimportant to
note that by using M S-scheme the problem appears only in the matching conditions.

Thefinal EL in terms of physical fields has the form (flavour indices are suppressed)

2
L0 = sy ( i = I L = Tn) + 822,y T = T)
My Cw
g 4

1 g _
o (=280 (80 3) + oh3) (B2 ) )

2
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gz el e) — 3z \Bt3 AL Fyuvr) (19)
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) 2, (V2MR W + S en) + )

3
—=— A" (e F'M. o, er) + h.C.)

(1+ s3) 2" ((eg "M o, eR) + hc.)

9 (W;(que%eR) + h.c.)

— o (@ er)(@fyer) + (VEEy v ) (VEF )
+ 2(epFyter) W Fyvr)) (20)

Here M. isthe charged lepton mass matrix and A" = 9 A” — 9" A* and Z* = 9" ZY — OV Z*
arethe field strengths of the photon and the Z boson, respectively; J%, J4, J ; are the standard
electromagnetic, neutral and charge currents.

This lagrangian shows all phenomenological consequences of the model in a very transpar-
ent way. The most interesting ones are different processes with generational lepton number
violations. For example, assuming (without loss of generality) a diagona form for the matrix

Although, in principle, they are valid for an arbitrary value of the renormalization scale .



M., from thefifth line of (20) we have the amplitude of the decay

T(er = €7) = —igFusit(pa),uq” (myR + maL)u(ps)e(q) (21)
L and R are, respectively, the left-handed and right-handed chirality operators. The amplitude
eg. (21) leads to the process 1 — ey without neutrino masses. Other terms lead to decays
u~ — e e et and Similar processes.

Another interesting process is the flavour changing Z-decay, Z — ¢ ¢, . To consider this
decay we have to take into account not only the contribution at tree level (third linein (20)) but
also the contribution given by thetree-level four-fermionlagrangian at oneloop. By construction
the sum is UV finite and depends only on the few parameters of the full model. For example,
from the upper bounds on the branching ratios for the decays 7 — eu, er, ur measured at
LEP[12] onegetsm > 1T eV (for coupling f =~ 1).

However, when the full theory is unknown, the situation is more complicated. Assume we
are in a two-operator mixing situation (like in the above case). Then for their renormalized
couplings at some scale i« we have

calp) = clpo) (1 + 711 log ﬁ) + co(po)v12109 L
Ho Ho

cali) = ca10)721100 1 + calpro) (1+wzlogﬁ> . (22)
Ho Ho

which are the solutions of the general renormalization group equation

dei(p)
dp

1 = ijei(p) . (23)
valid only inthe case that ~;; log(x:/m) < 1. Let us suppose that at experiment we measure the
coupling c,() a someenergy scale .. If wewant to extract bounds on ¢1( 1) we need to know
theinitial condition, ¢»( 1), as an effective theory predicts only the anomalous dimensions ;.
Thus, in this case we need to add (o) in the analysis and we either have to consider more
experimental data or make additional assumptions. Aswe will seein the next example such an
analysisis more complicated but neverthel ess one can get useful bounds on effective couplings.

One of the most elusive among the non-standard four-fermion interactions is that which
involves only neutrinos. Best bounds on the effective coupling of the V-A form (we assume
lepton universality for simplicity)

L7 = Gr Y, (n7a(1= 1)) (17a(1 = 15)v5) (24)

L= 0T

were obtained [13] from itstree-level contribution to the invisible width of the 7Z-boson viathe
decay 7/ — vvvv:
ler] <390 (25)

When the right-handed neutrinos are involved in the interaction much stronger bounds were
obtained recently [14] from the primordial nucleosynthesis.

Thus, in the case of V — A dtructure the interaction may be rather strong. One can ask
on the possible bounds one could obtain on this interaction via its one-loop contribution to the



Z — vv. Usding the fact that the invisible Z-width is measured at LEP with an accuracy better
than one-percent [12] one can get asimple estimate:
AF;U - ClGFMé
M7 (4n)2

c1 < (1-10) - . (26)

Thisestimate suggeststhat one can obtain good boundsby considering thefour-neutrino operator
at theloop level.

The above estimate is rather naive because inserting the non-renormalizable vertex in the
loop diagramweget adivergent result. 1t should be renormalized by adding aderivative coupling
of the Z-boson to neutrinos [15]

L7 = _% ‘Gr Y. (c2+ Do) (1" Lvi)0° Zga (27)
114

T=€, 04y T
where ¢, isthe MS renormalized coupling and the corresponding counterterm is
Acy = —c1y12% -
€
Moreover, since by using only four-neutrino interactions we do not assume SU(2) symmetry,

we have to also add a non-standard direct (non-derivative) coupling of the Z-boson to neutrinos,
c3 (thereis no symmetry which forbidsit). Then the full renormalized vertex Zvv isgiven by

1= 5l (calp) + ealw) (122 (logl1?/14%]) + imb(a%)) + r12)) +es(u)] . (28)
with 1 e
Y12 = ﬁ , k12 = 712E . (29)

The running couplings in our approximation (we neglect all contributions with gauge bosons
running in the loops) are given by

c(p) & ealpo) (30)
2
ca(pt) = c2(po) + c1(p10) 712109 (%) : (31)

where 1o is some reference scale. The effective four-neutrino operator at the one-loop level
contributes to the running of the coupling of the operator (27) and we have to consider mixing
between at least these two operators’. The coupling c3(;¢) does not mix with the other couplings
because it corresponds to an operator of different dimension, then cs(p) ~ c3( o).

Obvioudly, we need several experimental data in oder to put bounds on these couplingsin
amodel independent way. As the ¢® dependence of the coefficients in front of the various
couplings is different, we can separate different couplings by considering their contribution to
the observables at distinct energy scales. apart from the invisible /7 -width measured at LEP we
consider data from high energy deep inelastic scattering (DIS).

The details of our analysis can be found in [15] here we list only final results. The three-
parameter (model independent) fit tothefull body of datagivesthefollowingboundsat 68% C.L.

¢3(po) = 0.004 + 0.009 copo) =47+7 c1(po) = —100+ 140. (32)

80bviously, there are many other four-fermion operatorsli ke(l_l)(ﬁy), etc., which also mix with the Z-neutrino
coupling (27). But as we are neglecting loops with gauge bosons, they do not mix directly at the one-loop level
with the four-neutrino operator and, as they can be strongly bounded from other processes, we will disregard them.
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The extreme values of ¢1( o), of order ~ 240, are possible only because of large cancellations
between the contributions of the three non-standard couplings. If one decides that such can-
cellations are unnatural, then one obtains a much better bound for the contact four-neutrino
interaction. The complete analysis givesin this case

which is 200 times better than bounds on the four-neutrino coupling from the tree level analysis
eg. (25).

In this talk we illustrate by two examples the construction and use of the effective field
theory approach to the description of physics beyond the minimal Standard Model. In the first
example we sketch the construction of the one-loop effective lagrangian for the extension of
the Standard Model with a heavy charged scalar singlet [9]. We discuss the matching of the
effective theory to the underlying full theory. In the second example [15] we illustrate the use
of the general effective lagrangian at the loop level by bounding elusive four-fermion neutrino
operator from its contribution in loops to the invisible width of the -boson and to the neutral
to charged currents ratio measured in the deep inelastic scattering.
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