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In the WKB approximation th&2S term in Schidinger’s equation is subordinate to tf}¢S|? term. Here
we study amodified WKB approximatiom which theV2S term dominatesafter a guess fo§ is supplied.
Our approximation produces only the nodeless ground-state wave function, but unlike the WKB approximation
it can be applied straightforwardly to problems having many degrees of freedom. As a test, we apply the
method to potential problems, including the hydrogen and helium atoms, apftifteld theory. We show that
good numerical results for the bound-state energy can be obtained even when the initial gugss for
manifestly inaccurate. Our method supplies the wave function as well as the €i89§0-2947@6)05007-X]

PACS numbsgfs): 03.65.Ge, 02.30.Mv, 03.65.Db

[. INTRODUCTION WKB approximation can be expected to be numerically in-
adequate. An additional contrast with the WKB approxima-
In quantum mechanics the wave function is sometimedion is that the modified WKB approximation can be applied
written in the form straightforwardly to problems having many degrees of free-
dom.
P(r)=expS(r). (1.9 The modified WKB approximation is not as straightfor-
ward as the WKB approximation because it is not generally

Schralinger's equation then takes the form true that|V2S|>|V S|? for bound-state wave functions. To

om see this explicitly, assume the potential vanishes when
V28+|VS|2=?[V(r)—E]. (1.2  r>a. Then forr>a,
Equation (1.2) is the quantum Hamilton-Jacobi equation. D-1 2mE\ 12

Here it has been deduced from Satirger’'s equation. Oth- S=5,—Kr—
ers have taken it as a basic postulate from which quantum
mechanics is constructdd,2]. Leacock and Padgett have
introduced angle-action variables and based an effective
scheme for computing energy eigenvalues on the Hamiltorwhere motion is inD spatial dimensions. Comparing the
Jacobi equatiofl]. gradient and Laplacian applied to this expression, we find
The WKB approximation ensues when the téfifSterm  that the modified WKB approximation is justified only when
in Eq. (1.2) is dropped in leading order and later incorpo-D=1 andK=0 (or at leastK~0.) This is the case of a
rated as a correctid8]. It is commonly understood that this weakly bound particle moving in one dimensigRecall that
step is justified in the semiclassical regime where the gradiin one dimension there is always one bound state in an at-
ent of the de Broglie wavelengtN,\, has a magnitude much tractive potential, no matter how weak the potentidlhis
smaller than one, and the wave function oscillates manyersion of the modified WKB approximation has been devel-
times over distances that characterize the variation of theped[4]. One obtains an expression for the energy of the
potential. bound state as a series of integrals over powers of the poten-
In this paper we consider the alternate ordering of termgial. The relative size of thath term is proportional to the
where the term{VS|? is dropped in leading order and later nth power of the parametev,ma?/#2, whereV, is the
treated as a correction. This isnsodified WKB approxima- strength of the potential and its range. We see here an
tion. Here we develop the modified WKB approximation for expected contrast with the WKB approximation: a series of
nodeless wave functions. For a particle moving in a potendecreasingoowers of Planck’s constant. Despite this, if the
tial, such a wave function describes a bound state, and in potential is such as to make the parameter small, the approxi-
bosonic field theory it describes the ground state. Thus thenation succeeds.
modified WKB approximation, as developed here, augments The straightforward case just described is quite different
the WKB approximation in an important case where thefrom the modified WKB approximation considered in this
paper, where we treat the general c&& 1, K#0. We
evade the “no-go” conclusion, above, by supplying an ini-
*Electronic address: bronzan@physics.rutgers.edu tial guess forS. Thus we write

5 In(r/ry), KE(__hz— ,
(1.3

1050-2947/96/54)/41(11)/$10.00 54 41 © 1996 The American Physical Society


https://core.ac.uk/display/25177319?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

42 J. B. BRONZAN 54

S(r)=F(r)+T(r), (1.9 are lifted when the see# is introduced. The present modi-
fied WKB approximation is an approximation in which an
where the see& has the asymptotic forr(iL.3), and is cho- initial guessF is systematically improved by our version of
sen to be an initial guess fd. The correctionT is now  the quantum Hamilton-Jacobi equation, E.5. The se-
determined by our version of the quantum Hamilton-Jacobguence of approximations is formally convergent. To carry

equation: out the approximation we require a reasonable deddr
which the integrals and Green functions we encounter can be
V2T 4 2VE.VT =2m[V(r)—E 1-V2F - |VF|? computed. Choosing= is equivalent to choosing a trial
n n"T 42 n ground-state wave function, arifl, is the corresponding

variational estimate of the ground-state energy. These enti-
ties are required to initiate the sequence of modified WKB

The indexn=0,1, . .. labels the successive approximationsapprox'mams’ but they stand apart from those approximants.

to T and hences. The initial approximation ignores the gra- The first modified WKB approximant t8is F+ To, and the

dient of T; the next approximation uses the initial approxi- TISrSEt modified WKB approximant to the ground-state energy
1.

mation for the gradient, and so forth. Note that for eackie The wave function arising from our construction is node-
obtain a different approximation to the bound-state eNerGY.cc The reason is that iy vanishes on the surface
E,. Although Eq.(1.5 is written for a problem with one f(r).=0 there will be a term If(r) in S. In the neighbor-

degree of freedom, the same equation holds for many deriood of the node, this logarithm dominat8sand we must
grees of freedom provided the differential operators are taken

: . : : explicitly incorporate it intoF if we obtain a wave function
to operate in a space of approprlate d!mensmn. o with a node. Note that we must specify the surfdee0,
Of course, ignoring the gradient df in Eq. (1.5 is dif- o oot
i . ; . which is known only under special circumstances. We do not
ferent from ignoring the gradient & in Eq. (1.2) because

. . . 5 consider such cases here; deiis will be smooth, and we
much of the gradient of is supplied by the termiVF|?. - . .
T L therefore limit ourselves to nodeless wave functions. This
Nevertheless, the modified WKB approximation follows the

opposite strategy to that of the WKB approximation in treat-11cans that the energiés, are approximations to the ground-

g ems in e Qam Hamon-Jacoequaton. Here nEE STETOC, 11 Rl 1) e Soor o b o
Laplacian term is treated exactly and the gradient ter d

, L cussed, but we do not do so in this paper.
through successive approximations. o O e
In Sec. Il we demonstrate that this sequence of approxi- L|!<e the WKB appromm_atpr_n, the modified .WKB ap-
mations is formally convergent providédis well chosen. It proximation is nonperturbative; it does not require the pres-

. . ... _ence of a small parameter in the Hamiltonian. Its major limi-
is useful to state what we find. Assume that our seed differs_,.”” " o : .

. ation is that it is restricted to the ground-state wave function.
from S by a function scaled by a small parameter

But the modified WKB approximation has this important ad-
F(r)=S(r)— eSy(r). (e  vantage: Equatior(ll._S) fpr T, is linear. We yvill see t_hat it _
can be solved readily in many cases of interest, including
It follows that the exacT is €S,. In Sec. Il we show that ~ Particles moving in three dimensions in nonspherical poten-
tials, and many-body problems like bosonic lattice field
E,=E+e""2A,, T,=€S;+€""°R,. (1.7 theory. In the latter problem the method can be extended to
study some of the vacuum state correlation functions that are
HereE is the true bound-state energy, and the fackgysnd  of central importance in field theory. All these possibilities
R, are finite ate=0. The convergence is formal because weare closed to the WKB approximation, which is generally
have not given estimates for thee dependence oA, and  unmanageable except for a particle whose motion effectively
R, . If these factors increase with faster than an exponen- reduces to one dimension.
tial, the sequence does not converge, but is instead asymp- In Sec. Il we present a theoretical development of the
totic. modified WKB approximation. We include the solution of
The convergence estimates of Et).7) depend on the fact the dynamical equatioril.5), the convergence of the se-
that the termT,_, appears quadratically on the right-hand quence of approximations, and several other matters.

—|VT,_4)% T_,=0. (1.5

side of Eq.(1.5. WhenF differs little from S, T is small, In following sections the modified WKB approximation is
and|VT,_,|? is doubly small. In Sec. lll we will show how applied to a number of problems to show that it works in
the modified WKB approximation works in an example increasingly complex situations. In Sec. Ill we study a

where several approximants are evaluated. There we verifgpherically symmetric square well whose ground state is
that the accuracy d&,,, at givenn, depends on the choice of known by elementary methods. It is for this case that we
F. However, the same example will show that good resultstudy the dependence on the s€ednd the accuracy attain-
can be obtained, even with a very poor choiceFofwhen  able with higher approximants. There we show that even
nis only 2. with the worstF of the four we study, we obtain an energy
We again emphasize the difference between what is donihat differs from the exact energy by 0.31% whes 2. In
in Ref.[4] and what we do here. This is not a weak potentialSec. Il we also develop Green functions required for the
approximation, nor is it an expansion in inverse powers ofapplication of Eq.(1.5 to potential problems where the po-
f.. Here we are not limited to cases where the wave functiotiential is nonspherical. In Sec. IV we study long-range po-
changes slowly over the distance characterizing the variatiotentials, with the hydrogen atom as a particularly simple sub-
of the potential. All of these limitations, present in REf], case. We finish by applying the modified WKB
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approximation to many-body problemsg?* field theory in

Sec. V, and the helium atom in Sec. VI. Conclusions are

presented in Sec. VII.
Il. MODIFIED WKB EQUATIONS

The energies in Eq(1.5 are determined by a general
requirement. Consider the surface integral

fﬁ dA.[eZFVTn]:f dvVv.[e¥FVT,]. (22
S \
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)

2 2m 2
V r0+2VFVr0:_?a0+E |VSl
(2.6)
2 2m 2
Ver,+2VF-Vr,=— Zzant 2eVS;-Vr,_1—|Vr,_4

It follows that Eq.(1.7) holds forn=0. Furthermore, if1.7)

holds forn, then from Eqgs(2.5), (2.6) we see that it holds

for n+1, and the result is established by induction.
EnergyE,, requiresT,,_; for its computation. This infor-

mation can be used to find a better estimate of the state

As Sis expanded to infinity, the surface integral decreases tenergy from the expectation

zero because of the exponential fall of the faa8r. Using

Eq. (1.5 we obtain the eigenvalue equation determining

E,:

OzdeeZF(Zﬁ—T[V(r)—En]—VZF—|VF|2—|VTn1|2 .
(2.2

(¥H|y)
=——— L y=exp(F+T,_y). 2.
&n L) p=exp(F+Ty_1) 2.7
The error iny is O(e"™1); variational argumenit5] gives
£,—E=0(e*""?) LE =0(e" (2.9
" " [E—E S

We can now assemble the equations to derive the conver- Equation (1.5 may be solved using the Green function

gence result§l.7). The true ground-state energyis deter-
mined by Eq. (2.2 with the replacementsg,—E,
T,-1—T. Subtracting equations,

2m
0=f dVGZF[?(En_E)'HVTn1|2_|VT|2 '
2.3
ye | averTivTi=vT, 2
E,=E+—
2m

deeZF

We now express thath-order factors in terms of their lim-
iting values and a deviation:

E,=E+a,, T,=—€S;+r,. (2.9
Then Eq.(2.3 becomes
52 dee2F|Vsl|2
_ 2
QPp=€" s —F7—,
2m
deeZF
(2.5
hz fdVeZF[26V81~Vrn_1—|VI‘n_1|2]
an (n=1)

“2m

deeZF

We next use Eq.1.5 and the analogous equation for
T=€S,;. Subtracting the equations

satisfying

LG(r,r')=68(r—r'), L=V?+2(VF)-V. (2.9

Then
2m
Tn(r):f dV’G(r,r’)( 57 [V—Eqn]-V*F—|VF|?

—IVTHIZ] (2.10

r

It is illuminating to expand the Green function in terms of
the orthonormal eigenfunctions &f because the argument
leads to the eigenvalue equatitth?) in a different way.

L b= by, fdvez':¢k1¢k2:5k1,kz- (2.11

Then

1 !
G(r,r'>=2k Em(rm(r')eﬁ“ (212

But there is a problem: annihilates a constant function, so

there is a normalized eigenfunction &f with eigenvalue
Zero:

-1/2

N= . mo=0.

deeZF

do(r)=N, (2.13

The contribution of this zero mode ® is infinite. Nonethe-
less, T, in Eq. (2.10 is finite if the projection of the driving
term onto the zero mode vanishes. The condition for that is
the eigenvalue equatiof2.2).

The eigenvalue equation fdg,; can be simplified. We
need the integral
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Now
—f dVe2F|VT0|2=—J dVV.[e*FT,VT,]

2
n(r)—J dr'r’?g(r,r ){ 7z [V=Ep]=F"= 5 F'
+f dV TV [e*FVT,].

(2.14 —(F’)2—<Tal>2] : (2.22

The first integral on the right vanishes by the divergence _ _
theorem, and the second may be transformed usinglgs).  The eigenvalue equation emerges here, not through a zero
mode, but through the bad asymptotic behavioRof Near

—0 R (1) e 2F(0)
—J dVe2F|VTO|2=JdVe2FT0D r=0,R"(r)~e ", and

—2FO0) e 2m 2
To(r)~ f dr'r'2e?F —[V—E ]-F"'— —F'
=fdVd\/eZF“)D(r)D(r’)G(r,r’), " rJo h? " r'
2.19 —(F'>2—<Tal>2] : (2.23
where '
To keepT, finite atr =0, the eigenvalue integral must van-
EZ_T[V Eo]- V2F—|VFI2. (2.1  iShi when it doesT,(0)=0.

o N Il. SPHERICAL SQUARE WELL POTENTIAL
The quantization condition fdE,; reads
We begin our study of the modified WKB approximation

2m by applying it to the case of the spherically symmetric po-
o=f dv e D+?(EO—E1)} tgmig,py J P y sy P
-V, (r<a)
1 A2F (1) ' ' _
+f dvdVe D(r)D(r")G(r,r"), V(r) [0 (r>a). (3.0
(2.17 )
2F() , , The radial Schrdinger equation fos-wave bound states can
2 | dVdVeT UD(r)D(r')G(r,r’) be solved, and the energies are determined by the equation
E;=Eot m [6]
e2F
f dv 2ma2 1/2
kacoka=—Ka, ka=|—>V,—(Ka)?| ,
WhenV(r) depends on a single coordinate, all differential h
equations involved in constructing the Green function can be 22 (3.2
solved. Consider the case whéfeF, andT depend only on E=— h°K
the radial coordinate, as happens in Sec. lll. Then the Green 2m

function satisfies the ordinary differential equation )
There is no bound state unle¥% exceeds the threshold

1 2 1 dF\d strength
Lg(r,r’ )— —8(r—r'), L—W+2 F"‘E ar 42 )
(2.1 [vo]m:m2 5| €. C=10. (3.3
Rather than expand in eigenfunctions, we constguftom ) ) )
the two solutions of. R=0, which are known. We use the eigenvalue integk@l. 23 to computek,. Itis
worthwhile to try several seeds to get some notion of how
rdr’e2F(r") E, depends orr. Here are four choices:
R*(r)=1, (f)_J —7 - (219
o T " [1—(K—|—1/r0)r (r<rg)
1(r)= ’
The Green function is —Kr=In(rirg) (r>ryp)
g(r,r')=RT(r-)R™(ro)/r">W(r") Fo(r)=—Kr—Iny(r/ry)?+1,
) (3.9
=—R*(r-)R™(ro)e?), (2.20 Fa(r)=—Kr—In(r/ro+1),
whereW is the Wronskian Fa(r)=—Kr.
WIRY )= dR* o g OR drR™ - e 2F(N) 2.21) (F is chosen so that the function and its derivative are con-
' ~odr dr rz ' tinuous atr=rg,.) The first three choices depend on a pa-
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TABLE I. The optimum values of,/a, the threshold potential computed. In our case, the worst sekgl, has the virtue that

strength, and the coefficie for the four choices foF(r). dT,/dr involves nothing more exotic than exponential func-
> » tions, and it is easy to compute higher approximations. At
F(r) ro/a 2ma(Voln/t C the same timeF, is manifestly inaccurate. It has incorrect
S(r) (exach 247 10 asymptotic behavior,zand bzecause of this, at our selected po-
tential strength tha’V,/A“=3.0 we are barely above
F.(r) 1.38 2.54 1.03 hreshold f hi d. The initial fl his:
F,(r) 0923 269 1.09 threshold for this seed. The initial energy reflects this:

E,=0.01092/2ma?, and the raticE,/E=0.179 is terrible.
When we computeE; we find E;=0.0549%:%/2ma?, and
E,/E=0.895. The second modified WKB approximant for
F, shows further improvement:E,=0.0598:%/2ma?;

rameterr, which determines where the logarithmic term E,/E=0.975. . .

switches on. The fourth choice is particularly crude and AS We mentioned in Sec. I, at any stage we have the

omits the logarithm and therefore does not have the know@Ption to use the action correctioh,, to calculate the

asymptotic behavior of Eq1.3). variational energy,, as well as the modified WKB energy
A computationally simple way of comparing seeds is toEn- When we do this foF-, we obtain results that confirm

obtain the threshold potential strength for the different casedhe  higher , aceuracy of the variational energy:
The results are summarized in Table |. 52:0061 13 2ma ' 52/E209969 In this case, at Iea.St,

Note thatE,=&, is a variational energy; in each case 900d results can be obtained with a poor seed. The results for

parameterka andr,/a have been chosen to minimize the F4 are recorded in Table II. 3 _
threshold potential strength, which is equivalent to minimiz-  One of the properties of the modified WKB approxima-
ing Ey. We see that the results are sensitivértoF, is the ~ tion we have emphasized is that it can be applied to potential
best of our choices; it gives a threshold potential strengtiroblems where/(r) has a general dependence ronThis
that is only 3% high, so we examirfg in more detail. statement is qualified by the requirement tR¢t) be ;uch

To make the exploration, we choose a potential strengtfhat Ed.(2.9) can be solved fo. One case where this can
well above threshold: ®a?V,/#2=3.0. The bound-state be done is wheW is nearly spherically symmetric. Then we
energy is given by Eq(3.2) to be E= —0.061 3%2/2ma2. chooseF to depend orr, relying on theT, to supply the

We find that at this potential strengfy, is minimized for ~nonspherical corrections. Note that the modified WKB
ro/a=1.505 (in the threshold calculation the value was method is more flexible than the method of separation of

1.39. We find Ey=—0.037%2/2ma. A measure of the coordinates in that it is not necessary for surfaces of constant

(mediocré quality of this result is the rati&,/E=0.619. potentlgl to exag:tly fall on surfaces of constant coordlnape.
We next computeE,. For this one degree-of-freedom Approximate coincidence sqfﬂces. Below we use separation

problem, we use Eq(2.2) because a simple formula for of coordinates to constru€ in spherical coordinates.

Fa(r) 0.638 2.81 1.14
Fa(r) 2.91 1.19

dT,/dr is available: WhenF depends only om, we write G in the form
dT —2F(r) 2 ~ m=/
e r m "o ’ * ’ ’
d_rn: T o dx XZEZF(X)[ ﬁT[V(X)_ En]_ F"(X) G(r’r )_ZO g/(r,r )m;_/ Y/m( 0!¢)Y/m(0 ;¢ )v
(3.6
2
— ;F’(x)—[F’(x)]z—[T,;1(x)]2]. (3.5  where the radial Green function satisfies
7 / 1 dF\9 OAVES!
We now obtain much improved results:E; Lzr) —+ —) 9ArrY) /(/2 )g/(r,r’)
= —0.058%%/2ma2, andE, /E=0.960. Almost 90% of the ar rodr ar r
error inEq has been removed i, . These results are tabu- 1
lated in Table II. =—do(r—r'). (3.7

The threshold energies afiit}) are sensitive to the choice
of the seed. However, it is not obligatory to search for 8This Green function is
high-quality seed. It may be preferable to use a very simple
seed if that allows higher modified WKB approximants to be g (r,r')= R}(r>)R;(r<)e2F“')/C/, 3.9

TABLE Il. Modified WKB corrections forF(r) andF,(r). whereR* "~ satisfy the homogeneous equation

F(r) Energy Energy# (exac} dzR/+ (1+ dF| dR, /(/+1)R Y i

Fa(r) Eo= —0.037%1%/2ma? 0.619 dr? r o dr/ dr r? =0 39
E;=—0.058%2/2ma? 0.960

Fa(r) Eo=—0.010%%/2ma? 0.179 The factor C, comes from the Wronskian
E,= —0.05491%/2m & 0.895 W(R; ,R,)=C e *F/r2,
E,= —0.0598%/2ma? 0.975 For /=0, Eq.(3.9 has the same solutions we found for
£,=—0.061 1%2/2ma? 0.9969 the case of spherical symmetry, and we can choose

Ry’ =R*'~ of Eq. (2.19. We again encounter the eigen-
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value integrak2.23 with this change: Only the-wave pro- ro .
jection of V enters into the determination &,. This is in X= 5"~ 1sing cosp,
keeping with our assumption that is nearly spherically
symmetric. The higheE,’s receive contributions from all of r
the angular projections of. y= _0‘/§2_ 1 sing sing,
The solutions of Eq(3.9) for />0 require further analy- 2
sis. We first note that near=0 they behave liker” or
r~/~1, and we must choosR, to have the nonsingular
behaviorr”. At larger, solutions of Eq.(3.9) behave like
those of Eq.2.19 because the last term in E(B.9) is un-
important at large. We must choose the solution behaving 1sé<ow, 0sO0sw, 0<¢<2m,
like a constant so tha&®* remains finite at large.
In the case ofF4(r), Eqg. (3.9 has solutions that are fa-
miliar functions. In the intervalt <r,, these are confluent dv= (
hypergeometic functions:

;
z= %’gcosﬁ, (3.19

(£2—cogh)singdedode.

Surfaces of constarit are ellipsoids of revolution about the
Ra=t"®(/,2/+2,Kr+2rlry), z axis, the ellipses having foci at= *ry/2. If rq is appro-
(3.10 priately chosen(by a variational minimization oE,), the
shape of the ellipsoids can be made to resemble that of the
rod for é~1; for large ¢ the ellipsoids approach spheres of
radiusry&/2. An obvious choice foF is
In the intervalr >r , they are modified spherical Bessel func-
tions: F(§)=—Kroél2—Iné. (3.19

R =t/ "1®(—/—1,—2/,2Kr+2rlrg).

In prolate spheroidal coordinates, Ef.9) takes the form
R 3=\rekl, 1p(Kr), Ry= \/FeKrK/H/z(Kf)(- N
3.1

- 8G J 006 1
g (E f 0 sin 20 gz_l
We then have the solutions
L1 (92G+2(§2 1)dF IG
. [Rﬂ, r<rg Sinf0|de d¢ o9¢
= + > y 2
@ReatBRe 110 = = 5(&-¢')S(cosd—cost ) S(p— ¢').  (3.16
(3.12 ro
R — YR+ R, T<To The solution has the form
/ R/4, r>rop '
G(£.0.4:¢",0",.¢")
The coefficients are fixed by demanding that the functions © 7
and their first derivatives be continuousratr; they may => E m(EENY, m(0,0)Y5,(6' "),
be expressed in terms of Wronskians evaluated=at; . /=0 m==-
When a particle moves under the influence of a highly (3.17

nonspherical potential, the Green function should be con-
structed in coordinates chosen so it is reasonabled=féo ~ where the radial Green function satisfies
depend only on one of theng, As an example, consider a

potential well in the shape of a right circular cylinder of Y/m 2 g/m
diameterD and lengthL: -1 9€2 208+ (&°- 1) g o€
2
—Vo, |Zl<L2, x*+y?<D/2 A+ D)+ 1/9/m= 5(5—5’). (3.18
V(r)= . (3.13 &=
0 otherwise.
The radial Green function is

If L~D, this is an example of an approximately spherical
potential, and it is appropriate to use the Green function con " e2F (¢ 31
structed above. Here we consider the case of a long thin roc§J (6,87 roC,/m /n(€)E n(E>). 319

L>D. Now it is manifestly inadequate to take the surfaces

of constantF to be spherical. These surfaces ought to beC,m appears in the  Wronskian W(E",E")
figures of rotation about the axis in the form of elongated =C, me %FI(£2—1). The functions= /,, satisfy the homo-
cigars: prolate spheroids. This suggests use of the prolageneous equation obtained by removing thefunction
spheroidal coordinate system: source in Eq(3.18.
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The general method of constructing the Green function V. ¢* FIELD THEORY

appropriate to the rod-shaped potential well is now clear. We

discontinue discussion of the functiofs;,, except to point

out that the differential equation they satisfy has three regu

lar singular points and an irregular singular point at infinity.

The modified WKB approximation can be applied to
problems having many degrees of freedom. We illustrate this
using the case ap* field theory in one spatial dimension. In
the continuum the Hamiltonian is

1 2

IV. LONG-RANGE POTENTIALS L 1
Hzf dx( Eczwz(x)—i- >
0

deé(x)
dx

When a potential is long range and behaves at large dis-
tance liker P, 1<p<2, there is no longer a threshold 1 ¢c2 N
strength for the bound stafi]. The modified WKB approxi- + = —5(m?+ 6m?) p?(x) + —¢4(x)] . (52
mation reproduces this result, and it does so in lowest order, 2 24
whenn=0. We demonstrate this by showing that with the

choices ofF given by Eq.(3.4 we can adjust, so that We identify fields aix=0 andL. To treat the system by the

E,=0 no matter how weak the strength of the potential tail. modified WKB method we must deal with a discrete set of

A futher adjustment ofr, will then produce a negative degrees of freedom. We therefore divide the line iNtseg-

(bound-stateenergy. ments of lengtha; N=L/a. Each segment is represented by
We consider the case df,. For the potentialVy/rP a}dimens_ionlgzss !attice coordinatg, k=1, ... N. The lat-

(r>a), the eigenvalue equation implied by E§.23 takes tic® Hamiltonian is

the form, whem=E;=0: )

19

1 2
Eréﬁ—i_ §(¢k+1—¢k)

fie o
i-tes [
0 2mV0f°cr2pdrJr3 sz r2dr @1 ag=1
=——| =—=+3r5| ———. :
h? Ja r2+r(2) 0Jo (r?+rg)? ca

i1 2 24 om?) g7 102 s 5.2
5| 7| (MFomI)di——di|- (6.2

This may be written
Putting the field theory on the lattice introduces a short-

mVoré_p 20 distance cutoffa, or equivalently a large momentum cutoff
0=- 72 2sinm(p=1)12 f/a. This removes the notorious divergences of continuum
b quantum field theory. However, the divergences still lurk and
“ o [a\ZH3p )k 37 reveal themselves when we approach the continuum limit by
- — + . . takinga—0, N , with Na=L fixed. We want to be able
&1 kr(3-p)2 | 16 4.2 inga— —00, Wi iX w

to take the limit, of course, since for us the lattice is only a
computational device. In our case we find that as we take
For 1<p<2, there is some large value of for which this a—0 we approach a continuum theory having infinite mass.
equation is satisfied, no matter how sm#}l may be. There (We show this below.This pathology disappears when we

must be a nodeless bound state. include an appropriate mass counterterm in the Hamiltonian:
Whenp=1, we come to the classic case of the Coulomb

potential. At this point, the asymptotic behavior of the wave N 1 1

function changes, and in three dimensions the coefficient of sm?=— 7c Qo AO:Nle wg(D)’

the In(r/ry) term depends on the potential strength and
bound-state energy. Since this coefficient is no longer

known, the obvious response is to treat this coefficient as an _|[mca 2 : (W_p) 12
o . wo(P)= +4 sir? (5.3
additional parameter,;. Thus, for examplel; is general- h N
ized to
This counterterm is the lattice version of the very counter-
r term that must be included in the continuum Hamiltonian. At
ri—|K+—=Jr (r<ryp) smalla, A, grows logarithmically to keep the effective mass
Fi(r)= fo (43 finite.
—Kr—=rqn(r/rg) (r>ry).
1 A2
But now the determination of the variational parameters is Ao~ ;Inmzczaz' 5.4

obvious, because withr;=0, F;=—Kr=S. Therefore

T(r)=0, and we immediately have the hydrogen wave func- In one spatial dimensiong* field theory is super-

tion, with E,=E. The same result is achieved witf,,  renormalizablg8]. For this system, the explicit counterterm

F3, andF,. in (5.3 suffices to remove ath—0 divergences in “physi-
It is fortuitous that the hydrogen wave function occurscal” entities like the correlator

among the natural choices fdét. Still, it is nice that the

Coulomb potential is so easily encompassed by the modified

WKB approximation. (0| ¢(O)¢(x)|0>~hc< 0

1 N
N2 P 0>. (5.5
k=1
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Unfortunately, the ground-state ener@ythat has figured |\/|k k, Must be a function ok, —k, of periodN owing to the

prominently in the modified WKB approximation is not homogene|ty and periodicity of the Hamiltonian. It can be
“physical” in the sense used here. Even free field theory,, itten as a discrete Fourier transform.

A =0, includes zero-point energies for each degree of free-

dom, and when summed these divergeaas0. We will

cope withE as we go along. This point aside, Ed5.2), k= —2 +1(p)exr{
(5.3 define a lattice representation of continuupft field

theory to which we can apply the modified WKB approxi-

2mip(kyi—ko)

N (5.13

With this the eigenvalue equation decouples into modes.

mation.
A central issue for this many-degree-of-freedom problem (p) 27p
is finding anF that is appropriate, and for which the multi- 0=1,(0){ X 5+ o (P) 1-cos—
dimensional integrals can be evaluated and the Green func- P
tion found. There is just one choice for which thisdasy I 5
the Gaussian +(calh)“(m-+ dm°)
=—1 =1 1 |? 2Eqa
F 2k§<2 Mklk2¢kl¢k2 Mo, (5.6 +N()\hca2) _Z (p) _W} (5.14
with M a real symmetric matrix. Consider the eigenvalue The w(p) are parameters iM that are fixed by minimiz-
equation fork,. ing E,. We find
= —¢pM¢ _ 2 ca 2 )\chaZ 1/2
0 J (Hd(b)e [% [(¢k+1 ¢k) w(p)= 7) (m2+ 5m2)+ A+Si|’]2 %p)} ,
+(calh)2(m2+ Sm?) ¢+ (N ica) pi12] (5.19
1 1
—2Eqalfic+Tr(M)— ¢M2¢]. (5.7) A=Y 2 W(p)” (5.1

Every term in the large curly brackets involves powers of Equation(5.16 determinesA, and it is enlightening to
¢, so the integral can be evaluated by taking derivativeg€xamine its solution near the continuum limihen we drop

with respect toe, of the generating function the countertermdm?. Following Eq.(5.4),
i => A Zip—2 Al —In * ofinin—2
|1(a)—f(Hd(b)eX[I—(ﬁM(ﬁ-Ha(ﬁ), ap= - aydy - - nm, )\ﬁ ——— + n n)\h cal
(5.8 (5.17

This generator, in turn, can be evaluated easily by a chang€herefore the square of the effective mass{ip) becomes,
of coordinates. Let the eigenvectors and eigenvaludg be  in the limit of smalla,

9anduf.
oA P MEA N
Moi=u%9 (g=1,... N). (5.9 Mo+ — Mt . (5.18
The new coordinates are This shows that we approach a continuum theory having
infinite mass. On the other hand, when we do include the
- vl - 4y d 51 counterterm, Eqg. (5.16 has the solution A=Ay;
; Pk b 2 70K (519 o(p)=we(p). Then the mode functiom(p) never changes,

) ) no matter what the lattice spacing or coupling strength.
In these coordinatels becomes a product i independent The energyE, is

Gaussian integrals, and
N

o Eo  fic 12 m2c3 [ AA3 A2 (51
_ 7 Lo T~ 222 N& “P "5 e /B0 (319
() \/mex 4aM al. (5.11 p
e

The sum on the right is the zero-point energy of the degrees
Equation(5.7) becomes of freedom. It is present in free field theory, and its contri-
bution is quadratically divergent ia™ . Théa Iazst term, pro-
_ -1_p\p-1 20 2 2\n—1 portional to the dimensionless coupling:*>/m-c, diverges
0 Il(o){ Ek [Midc = Mycjca+(cal)"(me o) My /2 like (Ina~1)2. In perturbation theory it arises because anoma-
lous combinatorics spoil the cancellation of divergences in
self-energy loops and . This failure to cancel occurs only
at order\ of perturbation theory, s&, already exhibits all
~Tr(M?M 1)}. (5.12  the terms that diverge as— 0.

+(Mica?) (M H)?/16]— 2Eqa/fic+ Tr(M)
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To computeE; we need the Green function satisfying
J (H de |e” ™MDy (),
(92
—2pM G(d, ¢ )=11 8(p— bp), 5.2
(a¢ ¢ ¢) (6.0 =11 o= ) (5.20 2
= 2
in matrix notation. We use Eq2.12) to constructG, which Dn(¢) {zk (1= b+ (m?+ 6m?) ¢
requires us to construct eigenfunctions of the operator on the 5
left. We again use coordinateg then the equation for the N AMca® 4| 2aE,
eigenfunctions and eigenvalue is 12 Tk hc
N 2 2 &Tn*l 2
2 e — 2970 PP = . (5.21) +Tr(M)— pM<p— ¢ | [ (5.27

This equation may be solved by separation of variables. Setting this to zero, we obtain a finif, ase— 0. Thus we

again encounter the eigenvalue equation as a consistency

N - . .
_ 9 condition for the solution of Schdinger’s equation.
g = L1 He (V). (522 The dependencies on the fields in 5,26 are Gaussian,
SO we can useé,; to evaluate the generating function
The functionsH are Hermite polynomials satisfying

d?H(x dHy(x = ' '
00 L GHO0 (@) HH dpdg )G(rﬁ,qﬁ)
dx dx
(5.23 xXexp— oMo +iad+iBe’)
f dxe* )H (X) 53 Sy \/—251(Sl|) 7TN/2 1 1
:\/:ex _Za’M_la_ZBM_lﬁ)
det(M
There areN indices on our wave function, and the eigen- M)
value is a linear function of them: 1\ ridz 1 e
X|—= —expg —za[Z"M~]B].
N 2/ Je z 2
= —2q§=‘,l Squd. (5.24 (5.28
The Green function is By differentiation ofl, we obtain all the contributions in
1/2
1 dz> Mg
6= _E) o fo |7 ﬁcf<Hd¢d¢'>e*¢M¢G<¢,¢')D<¢>D<¢'>

El_EOZ

w : 2a
S (2| R D) [ mage-ome
X — . .
sg=0 \ 2 (Sq!) .29 (5.29
The purpose of the integration overis to produce the de- The result is
nominator 14 in Eq. (2.12. The sum oves, is given by
Mehler’s formula[9]. Reverting to the original variables,
E.;—Eo m?c®(aa3\2 A,
G(6.0)= 1\/de(M dz - 7 \m%/ 382 (5.30
N e z\/detl—zz’\")
M M z2M where
XeXF{_d"l_ZzM(ﬁ’_‘f’l_Zsz’ , ,
mca\“ (idz 1
M =|— 2 (MM 1) } . (5.3)
+2¢' 7w (5.26 2\ fo z N[, ke

As we expect from the discussion of Sec. Il, this GreenUsing Eq.(5.13,
function does not exist becauge=0 is an eigenvalue. In
Eq. (5.26 the divergence appears a0, and it has been 1N g 2 min(ke —k
regulated by a cutoff az=e. However, when computing (MM, == exr{ mip(ky 2)} (5.32
T,, the coefficient of the ¥/factor is 12 Ng=1 wo(p) N ’
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3 It is straightforward to verify thal , remains finite as.—0.
N) The expression fol, is the three-loop vacuum bubble
graph of second-order perturbation theoiyn ‘“old-
> 1 fashioned” form). Thus it seems that what emerges is simply
wo(P1) @o(P2) wo(P3) wo(P1+ P2+t P3) perturbation theory. Such a result is plausible because our
F is theS of free field theory, and we compute corrections to
y 1 that. However, the result fdE,—E, is deceptive; what we
[wo(P1) + wo(P2) + wo(P3) + wo(P1+P2+P3)]° obtain is not straightforward perturbation theory, butar-
dering of perturbation theory.
(5.33 Convenient equations for counting powershofre

P1.P2.P3

| magiem i, Ty 1T, Ty 0100

En—En_1=

f (Tld¢)e*"

Ta(@)—Th-1(P)= J (Ild¢")G(,¢")(2a/ic)(Eq—1—En) H{[dH(Tn-2=Tn-1)/ 3" J[(Tn_2+ Tn_1)/ I ]}).
(5.39

We have established directly tHaf— E,=0O()\?); it follows  coupling because witF, ¢,=0. (This example shows that

from the top equation thaf,=O(\). The second equation althoughF need not be accurate, as we emphasized in Sec.

then establishe$;— To=0(\?). lll, it must belong to the correct class of function®ut
The next round of estimates determineS,—E; in F, as the variational parametets! vary smoothly with

=0O(A3+\*%) becauseT,+T;=0O(A+\?). By induction X, avacuum expectation value can develop beyond a critical

one establishes thai, andE, includeall perturbative terms  coupling.

up to O(A"*1) and someof the perturbative terms up to A trick attributed to Feynman can be applied to this prob-

O(\P), p=2". lem to allow the calculation of the vacuum expectation val-
The reordering of perturbation theory has its origin in theues of operators other th&h For example, suppose we wish

quadratic form of the gradient terms that the modified WKBto compute the correlator of E€6.5). For this purpose aug-

approximation treats by successive approximations. We samentH by adding a termé(1/N)2 ¢y by, 4- The extended

in Sec. |l that the same nonlinearity is what leads to formaHamiltonian remains homogeneous and periodic, so the tech-

convergence of the approximation. Therefore the reorderingiques we have developed continue to apydepends on

of perturbation theory is the means by which the modified¢, of course, and by first-order perturbation thediry &),

WKB approximation “improves” perturbation theory when dE/dé(¢=0) is just the correlator of Eq5.5). Of course,

A\ is not small. we know E only approximately, and we must replace it by
We learn from our exercise with lattice field theory thatE or &,.

calculations can be carried out, and they lead to sensible

results. But it is possible, within the modified WKB approxi- VI. HELIUM

mation, to contemplate alternatives that transcend perturba-

tion theory by choosing to be non-Gaussian. an obvious  Because of the Pauli principle, helium is the only multi-

generalization of is electron atom for which a symmetric spatial wave function is
physical. The nodeless state we construct is the ground state
N of helium.
FZqEI [— 3299 %= 177", (5.3 The Hamiltonian we study includes only the potential

terms representing the electric forces acting on electrons

. moving around an immobile nucleus. The ground-state en-
We use plane-wave coordinates so that all degrees of fre%- g 9

dom are counled. The mode eigenvalue equation is unfami rgy of the simplified Hamiltonian therefore differs slightly
. P o . genv. q rom that of physical helium where magnetic, recoil, and
iar, and Mehler’s formula is not available, so we must work

harder. A computer would be required to assentBle relativistic corrections are present. The Hamiltonian is

A payoff is possible when a seed like is used. Recall 1 ., ., 2 2
that at\23/m?c~ 10, ¢* field theory makes a transition to a H=—5(VitVa)————+ =t (6.2)
state of brokenp«— — ¢ symmetry in which the field has a voe vtz
vacuum expectation valu€0|4(x)|0)=¢o#0 [8]. From  We use dimensionless coordinates, so the eigenvalues of
this fact alone we see th& must be inadequate at strong must be multiplied byme®*/#2.
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A standard textbook variational computation with this Note that the energi€s, andE, are closer tdH) than were
Hamiltonian assumes that the wave function is a product ofhe corresponding energies in the case of the spherical square
exponential(hydrogeni¢ factors[10]. The resulting energy, well. This suggests that convergence for helium is good, and
(H)=—(27/16f= —2.848, is very close to the experimental that&, would differ from the ground-state energy of Hamil-
ground-state energy; 2.90, and we adopt it as a standard tonian (6.1) by a fraction of a percent. Indeeé,; could lie
for the problem. Since we have the tools to deal with manybelow(H) because the latter is a variational estimate.
body problems whefk is a quadratic form, we use

VIl. CONCLUSIONS
F=—3Ko(ri+r3)—Kyry-r,. (6.2

) o We have proposed an approximation for nodeless wave
Our choice ofF corresponds to a Gaussian first guess for thgynctions in quantum mechanics and field theory that as-
helium wave function. We computg, choosingKo and  symes the relative importance of gradient and Laplacian
K1 to minimize it and find terms is the reverse of that in the WKB approximation. As
_ _ _ with any such scheme, usefulness is an important issue. We
Bo=—2.324, Ko=1.549, K;=(0.09238K,. 6.3 have eiplored usefulness by applying the modified WKB
' approximation to several problems. The examples of the
We obtain only 0.816 of the “standard” binding, which spherical square well and the helium atom provide interest-
means that the modified WKB correction is substantial. Aning numerical results. In these cases we chose a simple seed
interesting feature of our result is thKt is so small. The F and found that the initialvariationa) estimates of the
repulsion between electrons enhances the probability of findground-state energy were incorrect by several tens of per-
ing the electrons on Opposite sides of the nucleus, but not bgent. The first nontrivial modified WKB correction removed
much. In fact, if we se;=0, the binding is decreased by three-quarters of the error, or more. Where we calculated the
less than 1%, and,= —2.301. We use this version &  second nontrivial modified WKB correction, the improve-
when calculatinge; because of the resulting simplifications. ment was compounded. For the case of the spherical square
The computation off; now parallels that of Sec. V. The Well, the variational energy, was in error by 0.31%, start-
main new feature is that the terms in the potential are Coulnd with F4, which is manifestly inaccurateF({ has incor-
lomb, not polynomial. When we use generating functionf€ct asymptotic behavior and a threshold potential strength
I,, we integrate over parameters to generate the Coulom@ly slightly below the strength used in the computation.

terms, using the relation In practice, the WKB method is difficult to apply to prob-
lems with many degrees of freedom. The modified WKB
1 1 (d« ) method does suffer from this fault. With a quadratic choice
T 52| g ediar] 6.4 for F we developed the formulas necessary for the treatment
of many-body problems, and we applied them to the rather
Summarizing our results: different problems ofp* field theory and the helium atom.
Eo=-2.301, E;=—-2.707, (H)=-2.848, 65 ACKNOWLEDGMENT
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