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In the WKB approximation the¹2S term in Schro¨dinger’s equation is subordinate to theu“Su2 term. Here
we study amodified WKB approximationin which the¹2S term dominates~after a guess forS is supplied!.
Our approximation produces only the nodeless ground-state wave function, but unlike the WKB approximation
it can be applied straightforwardly to problems having many degrees of freedom. As a test, we apply the
method to potential problems, including the hydrogen and helium atoms, and tof4 field theory. We show that
good numerical results for the bound-state energy can be obtained even when the initial guess forS is
manifestly inaccurate. Our method supplies the wave function as well as the energy.@S1050-2947~96!05007-X#

PACS number~s!: 03.65.Ge, 02.30.Mv, 03.65.Db

I. INTRODUCTION

In quantum mechanics the wave function is sometimes
written in the form

c~r !5expS~r !. ~1.1!

Schrödinger’s equation then takes the form

¹2S1u“Su25
2m

\2 @V~r !2E#. ~1.2!

Equation ~1.2! is the quantum Hamilton-Jacobi equation.
Here it has been deduced from Schro¨dinger’s equation. Oth-
ers have taken it as a basic postulate from which quantum
mechanics is constructed@1,2#. Leacock and Padgett have
introduced angle-action variables and based an effective
scheme for computing energy eigenvalues on the Hamilton-
Jacobi equation@1#.

The WKB approximation ensues when the term¹2S term
in Eq. ~1.2! is dropped in leading order and later incorpo-
rated as a correction@3#. It is commonly understood that this
step is justified in the semiclassical regime where the gradi-
ent of the de Broglie wavelength,“l, has a magnitude much
smaller than one, and the wave function oscillates many
times over distances that characterize the variation of the
potential.

In this paper we consider the alternate ordering of terms
where the termu“Su2 is dropped in leading order and later
treated as a correction. This is amodified WKB approxima-
tion. Here we develop the modified WKB approximation for
nodeless wave functions. For a particle moving in a poten-
tial, such a wave function describes a bound state, and in a
bosonic field theory it describes the ground state. Thus the
modified WKB approximation, as developed here, augments
the WKB approximation in an important case where the

WKB approximation can be expected to be numerically in-
adequate. An additional contrast with the WKB approxima-
tion is that the modified WKB approximation can be applied
straightforwardly to problems having many degrees of free-
dom.

The modified WKB approximation is not as straightfor-
ward as the WKB approximation because it is not generally
true thatu¹2Su@u“Su2 for bound-state wave functions. To
see this explicitly, assume the potential vanishes when
r.a. Then forr.a,

S5S02Kr2
D21

2
ln~r /r 0!, K[S 2

2mE

\2 D 1/2,
~1.3!

where motion is inD spatial dimensions. Comparing the
gradient and Laplacian applied to this expression, we find
that the modified WKB approximation is justified only when
D51 andK50 ~or at leastK;0.) This is the case of a
weakly bound particle moving in one dimension.~Recall that
in one dimension there is always one bound state in an at-
tractive potential, no matter how weak the potential.! This
version of the modified WKB approximation has been devel-
oped @4#. One obtains an expression for the energy of the
bound state as a series of integrals over powers of the poten-
tial. The relative size of thenth term is proportional to the
nth power of the parameterV0ma2/\2, where V0 is the
strength of the potential anda its range. We see here an
expected contrast with the WKB approximation: a series of
decreasingpowers of Planck’s constant. Despite this, if the
potential is such as to make the parameter small, the approxi-
mation succeeds.

The straightforward case just described is quite different
from the modified WKB approximation considered in this
paper, where we treat the general caseDÞ1, KÞ0. We
evade the ‘‘no-go’’ conclusion, above, by supplying an ini-
tial guess forS. Thus we write*Electronic address: bronzan@physics.rutgers.edu
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S~r !5F~r !1T~r !, ~1.4!

where the seedF has the asymptotic form~1.3!, and is cho-
sen to be an initial guess forS. The correctionT is now
determined by our version of the quantum Hamilton-Jacobi
equation:

¹2Tn12“F•“Tn5
2m

\2 @V~r !2En#2¹2F2u“Fu2

2u“Tn21u2, T2150. ~1.5!

The indexn50,1, . . . labels the successive approximations
to T and henceS. The initial approximation ignores the gra-
dient of T; the next approximation uses the initial approxi-
mation for the gradient, and so forth. Note that for eachn we
obtain a different approximation to the bound-state energy
En . Although Eq.~1.5! is written for a problem with one
degree of freedom, the same equation holds for many de-
grees of freedom provided the differential operators are taken
to operate in a space of appropriate dimension.

Of course, ignoring the gradient ofT in Eq. ~1.5! is dif-
ferent from ignoring the gradient ofS in Eq. ~1.2! because
much of the gradient ofS is supplied by the termu“Fu2.
Nevertheless, the modified WKB approximation follows the
opposite strategy to that of the WKB approximation in treat-
ing terms in the quantum Hamilton-Jacobi equation. Here the
Laplacian term is treated exactly and the gradient term
through successive approximations.

In Sec. II we demonstrate that this sequence of approxi-
mations is formally convergent providedF is well chosen. It
is useful to state what we find. Assume that our seed differs
from S by a function scaled by a small parametere:

F~r !5S~r !2eS1~r !. ~1.6!

It follows that the exactT is eS1 . In Sec. II we show that

En5E1en12An , Tn5eS11en12Rn . ~1.7!

HereE is the true bound-state energy, and the factorsAn and
Rn are finite ate50. The convergence is formal because we
have not given estimates for then dependence ofAn and
Rn . If these factors increase withn faster than an exponen-
tial, the sequence does not converge, but is instead asymp-
totic.

The convergence estimates of Eq.~1.7! depend on the fact
that the termTn21 appears quadratically on the right-hand
side of Eq.~1.5!. WhenF differs little from S, T is small,
andu“Tn21u2 is doubly small. In Sec. III we will show how
the modified WKB approximation works in an example
where several approximants are evaluated. There we verify
that the accuracy ofEn , at givenn, depends on the choice of
F. However, the same example will show that good results
can be obtained, even with a very poor choice ofF, when
n is only 2.

We again emphasize the difference between what is done
in Ref. @4# and what we do here. This is not a weak potential
approximation, nor is it an expansion in inverse powers of
\. Here we are not limited to cases where the wave function
changes slowly over the distance characterizing the variation
of the potential. All of these limitations, present in Ref.@4#,

are lifted when the seedF is introduced. The present modi-
fied WKB approximation is an approximation in which an
initial guessF is systematically improved by our version of
the quantum Hamilton-Jacobi equation, Eq.~1.5!. The se-
quence of approximations is formally convergent. To carry
out the approximation we require a reasonable seedF for
which the integrals and Green functions we encounter can be
computed. ChoosingF is equivalent to choosing a trial
ground-state wave function, andE0 is the corresponding
variational estimate of the ground-state energy. These enti-
ties are required to initiate the sequence of modified WKB
approximants, but they stand apart from those approximants.
The first modified WKB approximant toS is F1T0 , and the
first modified WKB approximant to the ground-state energy
is E1 .

The wave function arising from our construction is node-
less. The reason is that ifc vanishes on the surface
f (r )50, there will be a term lnf (r ) in S. In the neighbor-
hood of the node, this logarithm dominatesS, and we must
explicitly incorporate it intoF if we obtain a wave function
with a node. Note that we must specify the surfacef50,
which is known only under special circumstances. We do not
consider such cases here; ourF ’s will be smooth, and we
therefore limit ourselves to nodeless wave functions. This
means that the energiesEn are approximations to the ground-
state energyE. In Ref. @1# the solution of the quantum
Hamilton-Jacobi equation for bound states with nodes is dis-
cussed, but we do not do so in this paper.

Like the WKB approximation, the modified WKB ap-
proximation is nonperturbative; it does not require the pres-
ence of a small parameter in the Hamiltonian. Its major limi-
tation is that it is restricted to the ground-state wave function.
But the modified WKB approximation has this important ad-
vantage: Equation~1.5! for Tn is linear. We will see that it
can be solved readily in many cases of interest, including
particles moving in three dimensions in nonspherical poten-
tials, and many-body problems like bosonic lattice field
theory. In the latter problem the method can be extended to
study some of the vacuum state correlation functions that are
of central importance in field theory. All these possibilities
are closed to the WKB approximation, which is generally
unmanageable except for a particle whose motion effectively
reduces to one dimension.

In Sec. II we present a theoretical development of the
modified WKB approximation. We include the solution of
the dynamical equation~1.5!, the convergence of the se-
quence of approximations, and several other matters.

In following sections the modified WKB approximation is
applied to a number of problems to show that it works in
increasingly complex situations. In Sec. III we study a
spherically symmetric square well whose ground state is
known by elementary methods. It is for this case that we
study the dependence on the seedF and the accuracy attain-
able with higher approximants. There we show that even
with the worstF of the four we study, we obtain an energy
that differs from the exact energy by 0.31% whenn52. In
Sec. III we also develop Green functions required for the
application of Eq.~1.5! to potential problems where the po-
tential is nonspherical. In Sec. IV we study long-range po-
tentials, with the hydrogen atom as a particularly simple sub-
case. We finish by applying the modified WKB
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approximation to many-body problems:f4 field theory in
Sec. V, and the helium atom in Sec. VI. Conclusions are
presented in Sec. VII.

II. MODIFIED WKB EQUATIONS

The energies in Eq.~1.5! are determined by a general
requirement. Consider the surface integral

R
S
dA•@e2F“Tn#5E

V
dV“•@e2F“Tn#. ~2.1!

As S is expanded to infinity, the surface integral decreases to
zero because of the exponential fall of the factore2F. Using
Eq. ~1.5! we obtain the eigenvalue equation determining
En :

05E dV e2FH 2m\2 @V~r !2En#2¹2F2u“Fu22u“Tn21u2J .
~2.2!

We can now assemble the equations to derive the conver-
gence results~1.7!. The true ground-state energyE is deter-
mined by Eq. ~2.2! with the replacementsEn→E,
Tn21→T. Subtracting equations,

05E dV e2FF2m\2 ~En2E!1u“Tn21u22u“Tu2G ,
~2.3!

En5E1
\2

2m

E dV e2F@ u“Tu22u“Tn21u2#

E dV e2F
.

We now express thenth-order factors in terms of their lim-
iting values and a deviation:

En5E1an , Tn52eS11r n . ~2.4!

Then Eq.~2.3! becomes

a05e2
\2

2m

E dV e2Fu“S1u2

E dV e2F
,

~2.5!

an5
\2

2m

E dV e2F@2e“S1•“r n212u“r n21u2#

E dV e2F
~n>1!.

We next use Eq.~1.5! and the analogous equation for
T5eS1 . Subtracting the equations

¹2r 012“F•“r 052
2m

\2 a01e2u“S1u2,

~2.6!

¹2r n12“F•“r n52
2m

\2 an12e“S1•“r n212u“r n21u2

~n>1!.

It follows that Eq.~1.7! holds forn50. Furthermore, if~1.7!
holds forn, then from Eqs.~2.5!, ~2.6! we see that it holds
for n11, and the result is established by induction.

EnergyEn requiresTn21 for its computation. This infor-
mation can be used to find a better estimate of the state
energy from the expectation

En5
^cuHuc&

^cuc&
, c5exp~F1Tn21!. ~2.7!

The error inc is O(en11); variational argument@5# gives

En2E5O~e2n12!,
En2E

uEn2Eu
5O~en!. ~2.8!

Equation~1.5! may be solved using the Green function
satisfying

LG~r ,r 8!5d~r2r 8!, L5¹212~“F !•“. ~2.9!

Then

Tn~r !5E dV8G~r ,r 8!H 2m\2 @V2En#2¹2F2u“Fu2

2u“Tn21u2J
r8

. ~2.10!

It is illuminating to expand the Green function in terms of
the orthonormal eigenfunctions ofL, because the argument
leads to the eigenvalue equation~2.2! in a different way.

Lfk5mkfk , E dV e2Ffk1fk25dk1,k2 . ~2.11!

Then

G~r ,r 8!5(
k

1

mk
fk~r !fk~r 8!e

2F~r8!. ~2.12!

But there is a problem:L annihilates a constant function, so
there is a normalized eigenfunction ofL with eigenvalue
zero:

f0~r !5N, N5F E dV e2FG21/2

, m050. ~2.13!

The contribution of this zero mode toG is infinite. Nonethe-
less,Tn in Eq. ~2.10! is finite if the projection of the driving
term onto the zero mode vanishes. The condition for that is
the eigenvalue equation~2.2!.

The eigenvalue equation forE1 can be simplified. We
need the integral
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2E dV e2Fu“T0u252E dV“•@e2FT0“T0#

1E dV T0“•@e
2F
“T0#.

~2.14!

The first integral on the right vanishes by the divergence
theorem, and the second may be transformed using Eq.~1.5!.

2E dV e2Fu“T0u25E dV e2FT0D

5E dV dV8e2F~r !D~r !D~r 8!G~r ,r 8!,

~2.15!

where

D[
2m

\2 @V2E0#2¹2F2u“Fu2. ~2.16!

The quantization condition forE1 reads

05E dV e2FFD1
2m

\2 ~E02E1!G
1E dV dV8e2F~r !D~r !D~r 8!G~r ,r 8!,

~2.17!

E15E01
\2

2m

E dVdV8e2F~r !D~r !D~r 8!G~r ,r 8!

E dV e2F
.

WhenV(r ) depends on a single coordinate, all differential
equations involved in constructing the Green function can be
solved. Consider the case whereV, F, andT depend only on
the radial coordinate, as happens in Sec. III. Then the Green
function satisfies the ordinary differential equation

Lg~r ,r 8!5
1

r 82
d~r2r 8!, L5

d2

dr2
12S 1r 1

dF

dr D d

dr
.

~2.18!

Rather than expand in eigenfunctions, we constructg from
the two solutions ofLR50, which are known.

R1~r !51, R2~r !5E
r0

r dr8e22F~r 8!

r 82
. ~2.19!

The Green function is

g~r ,r 8!5R1~r.!R2~r,!/r 82W~r 8!

52R1~r.!R2~r,!e2F~r 8!, ~2.20!

whereW is the Wronskian

W~R1,R2![
dR1

dr
R22R1

dR2

dr
52

e22F~r !

r 2
. ~2.21!

Now

Tn~r !5E
0

`

dr8r 82g~r ,r 8!H 2m\2 @V2En#2F92
2

r 8
F8

2~F8!22~Tn218 !2J
r 8

. ~2.22!

The eigenvalue equation emerges here, not through a zero
mode, but through the bad asymptotic behavior ofR2. Near
r50, R2(r );e22F(0)/r , and

Tn~r !;
e22F~0!

r E
0

`

dr8r 82e2F~r 8!H 2m\2 @V2En#2F92
2

r 8
F8

2~F8!22~Tn218 !2J
r 8

. ~2.23!

To keepTn finite at r50, the eigenvalue integral must van-
ish; when it does,Tn(0)50.

III. SPHERICAL SQUARE WELL POTENTIAL

We begin our study of the modified WKB approximation
by applying it to the case of the spherically symmetric po-
tential

V~r !5H 2V0 ~r,a!

0 ~r.a!.
~3.1!

The radial Schro¨dinger equation fors-wave bound states can
be solved, and the energies are determined by the equation
@6#

kacotka52Ka, ka5S 2ma2

\2 V02~Ka!2D 1/2,
~3.2!

E52
\2K2

2m
.

There is no bound state unlessV0 exceeds the threshold
strength

@V0# th5
\2

2ma2 S p

2 D 2C, C51.0. ~3.3!

We use the eigenvalue integral~2.23! to computeE0 . It is
worthwhile to try several seeds to get some notion of how
E0 depends onF. Here are four choices:

F1~r !5H 12~K11/r 0!r ~r,r 0!

2Kr2 ln~r /r 0! ~r.r 0!
,

F2~r !52Kr2 lnA~r /r 0!
211,

~3.4!
F3~r !52Kr2 ln~r /r 011!,

F4~r !52Kr .

(F1 is chosen so that the function and its derivative are con-
tinuous atr5r 0 .) The first three choices depend on a pa-
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rameter r 0 which determines where the logarithmic term
switches on. The fourth choice is particularly crude and
omits the logarithm and therefore does not have the known
asymptotic behavior of Eq.~1.3!.

A computationally simple way of comparing seeds is to
obtain the threshold potential strength for the different cases.
The results are summarized in Table I.

Note thatE05E0 is a variational energy; in each case
parametersKa and r 0 /a have been chosen to minimize the
threshold potential strength, which is equivalent to minimiz-
ing E0 . We see that the results are sensitive toF. F1 is the
best of our choices; it gives a threshold potential strength
that is only 3% high, so we examineF1 in more detail.

To make the exploration, we choose a potential strength
well above threshold: 2ma2V0 /\

253.0. The bound-state
energy is given by Eq.~3.2! to beE520.061 32\2/2ma2.
We find that at this potential strengthE0 is minimized for
r 0 /a51.505 ~in the threshold calculation the value was
1.38!. We find E0520.0379\2/2ma2. A measure of the
~mediocre! quality of this result is the ratioE0 /E50.619.

We next computeE1 . For this one degree-of-freedom
problem, we use Eq.~2.2! because a simple formula for
dTn /dr is available:

dTn
dr

5
e22F~r !

r 2 E
0

r

dx x2e2F~x!H 2m\2 @V~x!2En#2F9~x!

2
2

x
F8~x!2@F8~x!#22@Tn218 ~x!#2J . ~3.5!

We now obtain much improved results: E1
520.0589\2/2ma2, andE1 /E50.960. Almost 90% of the
error inE0 has been removed inE1 . These results are tabu-
lated in Table II.

The threshold energies andE0 are sensitive to the choice
of the seed. However, it is not obligatory to search for a
high-quality seed. It may be preferable to use a very simple
seed if that allows higher modified WKB approximants to be

computed. In our case, the worst seed,F4 , has the virtue that
dT0 /dr involves nothing more exotic than exponential func-
tions, and it is easy to compute higher approximations. At
the same time,F4 is manifestly inaccurate. It has incorrect
asymptotic behavior, and because of this, at our selected po-
tential strength 2ma2V0 /\

253.0 we are barely above
threshold for this seed. The initial energy reflects this:
E050.0109\2/2ma2, and the ratioE0 /E50.179 is terrible.
When we computeE1 we find E150.0549\2/2ma2, and
E1 /E50.895. The second modified WKB approximant for
F4 shows further improvement:E250.0598\2/2ma2;
E2 /E50.975.

As we mentioned in Sec. II, at any stage we have the
option to use the action correctionTn21 to calculate the
variational energyEn as well as the modified WKB energy
En . When we do this forF4 we obtain results that confirm
the higher accuracy of the variational energy:
E250.061 13\2/2ma2; E2 /E50.9969. In this case, at least,
good results can be obtained with a poor seed. The results for
F4 are recorded in Table II.

One of the properties of the modified WKB approxima-
tion we have emphasized is that it can be applied to potential
problems whereV(r ) has a general dependence onr . This
statement is qualified by the requirement thatF(r ) be such
that Eq.~2.9! can be solved forG. One case where this can
be done is whenV is nearlyspherically symmetric. Then we
chooseF to depend onr , relying on theTn to supply the
nonspherical corrections. Note that the modified WKB
method is more flexible than the method of separation of
coordinates in that it is not necessary for surfaces of constant
potential to exactly fall on surfaces of constant coordinate.
Approximate coincidence suffices. Below we use separation
of coordinates to constructG in spherical coordinates.

WhenF depends only onr , we writeG in the form

G~r ,r 8!5 (
l 50

`

gl ~r ,r 8! (
m52l

m5l

Yl m~u,f!Yl m* ~u8,f8!,

~3.6!

where the radial Green function satisfies

]2gl ~r ,r 8!

]r 2
12S 1r 1

dF

dr D ]gl ~r ,r 8!

]r
2
l ~ l 11!

r 2
gl ~r ,r 8!

5
1

r 2
d~r2r 8!. ~3.7!

This Green function is

gl ~r ,r 8!5Rl
1~r.!Rl

2~r,!e2F~r 8!/Cl , ~3.8!

whereR1,2 satisfy the homogeneous equation

d2Rl
dr2

12S 1r 1
dF

dr D dRldr
2
l ~ l 11!

r 2
Rl 50. ~3.9!

The factor Cl comes from the Wronskian
W(Rl

1 ,Rl
2)5Cl e

22F(r )/r 2.
For l 50, Eq. ~3.9! has the same solutions we found for

the case of spherical symmetry, and we can choose
R0

1,25R1,2 of Eq. ~2.19!. We again encounter the eigen-

TABLE I. The optimum values ofr 0 /a, the threshold potential
strength, and the coefficientC for the four choices forF(r ).

F(r ) r 0 /a 2ma2@V0# th /\
2 C

S(r ) ~exact! 2.47 1.0
F1(r ) 1.38 2.54 1.03
F2(r ) 0.923 2.69 1.09
F3(r ) 0.638 2.81 1.14
F4(r ) 2.91 1.19

TABLE II. Modified WKB corrections forF1(r ) andF4(r ).

F(r ) Energy Energy/E~exact!

F1(r ) E0520.0379\2/2ma2 0.619
E1520.0589\2/2ma2 0.960

F4(r ) E0520.0109\2/2ma2 0.179
E1520.0549\2/2ma2 0.895
E2520.0598\2/2ma2 0.975
E2520.061 13\2/2ma2 0.9969
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value integral~2.23! with this change: Only thes-wave pro-
jection ofV enters into the determination ofE0 . This is in
keeping with our assumption thatV is nearly spherically
symmetric. The higherEn’s receive contributions from all of
the angular projections ofV.

The solutions of Eq.~3.9! for l .0 require further analy-
sis. We first note that nearr50 they behave liker l or
r2l 21, and we must chooseRl

2 to have the nonsingular
behaviorr l . At large r , solutions of Eq.~3.9! behave like
those of Eq.~2.19! because the last term in Eq.~3.9! is un-
important at larger . We must choose the solution behaving
like a constant so thatR1 remains finite at larger .

In the case ofF1(r ), Eq. ~3.9! has solutions that are fa-
miliar functions. In the intervalr,r 0 , these are confluent
hypergeometic functions:

Rl 15r l F~ l ,2l 12,2Kr12r /r 0!,
~3.10!

Rl 25r2l 21F~2l 21,22l ,2Kr12r /r 0!.

In the intervalr.r 0 they are modified spherical Bessel func-
tions:

Rl 35AreKr I l 11/2~Kr !, Rl 45AreKrK l 11/2~Kr !.
~3.11!

We then have the solutions

Rl
25HRl 1 , r,r 0

aRl 31bRl 4 , r.r 0
,

~3.12!

Rl
15H gRl 11dRl 2 , r,r 0

Rl 4 , r.r 0
.

The coefficients are fixed by demanding that the functions
and their first derivatives be continuous atr5r 0; they may
be expressed in terms of Wronskians evaluated atr5r 0 .

When a particle moves under the influence of a highly
nonspherical potential, the Green function should be con-
structed in coordinates chosen so it is reasonable forF to
depend only on one of them,j. As an example, consider a
potential well in the shape of a right circular cylinder of
diameterD and lengthL:

V~r !5H 2V0 , uzu,L/2, Ax21y2,D/2

0 otherwise.
~3.13!

If L;D, this is an example of an approximately spherical
potential, and it is appropriate to use the Green function con-
structed above. Here we consider the case of a long thin rod:
L@D. Now it is manifestly inadequate to take the surfaces
of constantF to be spherical. These surfaces ought to be
figures of rotation about thez axis in the form of elongated
cigars: prolate spheroids. This suggests use of the prolate
spheroidal coordinate system:

x5
r 0
2
Aj221sinu cosf,

y5
r 0
2
Aj221 sinu sinf,

z5
r 0
2

j cosu, ~3.14!

1<j,`, 0<u<p, 0<f,2p,

dV5S r 02 D 3~j22cos2u!sinu dj du df.

Surfaces of constantj are ellipsoids of revolution about the
z axis, the ellipses having foci atz56r 0/2. If r 0 is appro-
priately chosen~by a variational minimization ofE0), the
shape of the ellipsoids can be made to resemble that of the
rod for j;1; for largej the ellipsoids approach spheres of
radiusr 0j/2. An obvious choice forF is

F~j!52Kr 0j/22 lnj. ~3.15!

In prolate spheroidal coordinates, Eq.~2.9! takes the form

]

]j F ~j221!
]G

]j G1
1

sinu

]

]u Fsinu ]G

]u G1F 1

j221

1
1

sin2uG]2G]f2 12~j221!
dF

dj

]G

]j

5
2

r 0
d~j2j8!d~cosu2cosu8!d~f2f8!. ~3.16!

The solution has the form

G~j,u,f;j8,u8,f8!

5 (
l 50

`

(
m52l

l

gl ,m~j,j8!Yl m~u,f!Yl m* ~u8f8!,

~3.17!

where the radial Green function satisfies

~j221!
]2gl m

]j2
12Fj1~j221!

dF

dj G]gl m]j

2F l ~ l 11!1
m2

j221Ggl m5
2

r 0
d~j2j8!. ~3.18!

The radial Green function is

gl m~j,j8!5
2

r 0Cl m
e2F~j8!J l m

2 ~j,!J l m
1 ~j.!. ~3.19!

Cl m appears in the Wronskian W(J1,J2)
5Cl me

22F/(j221). The functionsJ l m
6 satisfy the homo-

geneous equation obtained by removing thed function
source in Eq.~3.18!.
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The general method of constructing the Green function
appropriate to the rod-shaped potential well is now clear. We
discontinue discussion of the functionsJ l m

6 except to point
out that the differential equation they satisfy has three regu-
lar singular points and an irregular singular point at infinity.

IV. LONG-RANGE POTENTIALS

When a potential is long range and behaves at large dis-
tance like r2p, 1,p,2, there is no longer a threshold
strength for the bound state@7#. The modified WKB approxi-
mation reproduces this result, and it does so in lowest order,
when n50. We demonstrate this by showing that with the
choices ofF given by Eq.~3.4! we can adjustr 0 so that
E050 no matter how weak the strength of the potential tail.
A futher adjustment ofr 0 will then produce a negative
~bound-state! energy.

We consider the case ofF2 . For the potentialV0 /r
p

(r.a), the eigenvalue equation implied by Eq.~2.23! takes
the form, whenn5E050:

052
2mV0

\2 E
a

`r 22pdr

r 21r 0
2 13r 0

2E
0

` r 2dr

~r 21r 0!
3 . ~4.1!

This may be written

052
mV0r 0

12p

\2

2p

2 sinp~p21!/2

2 (
k50

` S ar 0D
2k132p ~21!k

k1~32p!/2
1

3p

16r 0
. ~4.2!

For 1,p,2, there is some large value ofr 0 for which this
equation is satisfied, no matter how smallV0 may be. There
must be a nodeless bound state.

Whenp51, we come to the classic case of the Coulomb
potential. At this point, the asymptotic behavior of the wave
function changes, and in three dimensions the coefficient of
the ln(r /r 0) term depends on the potential strength and
bound-state energy. Since this coefficient is no longer
known, the obvious response is to treat this coefficient as an
additional parameter,r 1 . Thus, for example,F1 is general-
ized to

F1~r !5H r 12SK1
r 1
r 0

D r ~r,r 0!

2Kr2r 1ln~r /r 0! ~r.r 0!.

~4.3!

But now the determination of the variational parameters is
obvious, because withr 150, F152Kr5S. Therefore
T(r )50, and we immediately have the hydrogen wave func-
tion, with E05E. The same result is achieved withF2 ,
F3 , andF4 .

It is fortuitous that the hydrogen wave function occurs
among the natural choices forF. Still, it is nice that the
Coulomb potential is so easily encompassed by the modified
WKB approximation.

V. f4 FIELD THEORY

The modified WKB approximation can be applied to
problems having many degrees of freedom. We illustrate this
using the case off4 field theory in one spatial dimension. In
the continuum the Hamiltonian is

H5E
0

L

dxH 12 c2p2~x!1
1

2 Fdf~x!

dx G2

1
1

2

c2

\2 ~m21dm2!f2~x!1
l

24
f4~x!J . ~5.1!

We identify fields atx50 andL. To treat the system by the
modified WKB method we must deal with a discrete set of
degrees of freedom. We therefore divide the line intoN seg-
ments of lengtha; N5L/a. Each segment is represented by
a dimensionless lattice coordinatefk , k51, . . . ,N. The lat-
tice Hamiltonian is

H5
\c

a (
k51

N F2
1

2

]2

]fk
2 1

1

2
~fk112fk!

2

1
1

2 S ca\ D 2~m21dm2!fk
2l\ca

24
fk
4G . ~5.2!

Putting the field theory on the lattice introduces a short-
distance cutoffa, or equivalently a large momentum cutoff
\/a. This removes the notorious divergences of continuum
quantum field theory. However, the divergences still lurk and
reveal themselves when we approach the continuum limit by
takinga→0, N→`, with Na5L fixed. We want to be able
to take the limit, of course, since for us the lattice is only a
computational device. In our case we find that as we take
a→0 we approach a continuum theory having infinite mass.
~We show this below.! This pathology disappears when we
include an appropriate mass counterterm in the Hamiltonian:

dm252
l\

4c
D0 , D05

1

N(
p51

N
1

v0~p!
,

v0~p!5F Smca

\ D 214 sin2S pp

N D G1/2. ~5.3!

This counterterm is the lattice version of the very counter-
term that must be included in the continuum Hamiltonian. At
smalla, D0 grows logarithmically to keep the effective mass
finite.

D0;
1

p
ln

\2

m2c2a2
. ~5.4!

In one spatial dimensionf4 field theory is super-
renormalizable@8#. For this system, the explicit counterterm
in ~5.3! suffices to remove alla→0 divergences in ‘‘physi-
cal’’ entities like the correlator

^0uf~0!f~x!u0&;\cK 0U 1N(
k51

N

fkfk1x/aU0L . ~5.5!
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Unfortunately, the ground-state energyE that has figured
prominently in the modified WKB approximation is not
‘‘physical’’ in the sense used here. Even free field theory,
l50, includes zero-point energies for each degree of free-
dom, and when summed these diverge asa→0. We will
cope withE as we go along. This point aside, Eqs.~5.2!,
~5.3! define a lattice representation of continuumf4 field
theory to which we can apply the modified WKB approxi-
mation.

A central issue for this many-degree-of-freedom problem
is finding anF that is appropriate, and for which the multi-
dimensional integrals can be evaluated and the Green func-
tion found. There is just one choice for which this iseasy,
the Gaussian

F52 1
2 (
k1 ,k2

Mk1k2
fk1

fk2
[2 1

2fMf, ~5.6!

with M a real symmetric matrix. Consider the eigenvalue
equation forE0 .

05E ~Pdf!e2fMfH(
k

@~fk112fk!
2

1~ca/\!2~m21dm2!fk
21~l\ca2!fk

4/12#

22E0a/\c1Tr~M !2fM2fJ . ~5.7!

Every term in the large curly brackets involves powers of
fk , so the integral can be evaluated by taking derivatives
with respect toak of the generating function

I 1~a!5E ~Pdf!exp~2fMf1 iaf!, af[(
k

akfk .

~5.8!

This generator, in turn, can be evaluated easily by a change
of coordinates. Let the eigenvectors and eigenvalues ofM be
vq andmq.

Mvq5mqvq ~q51, . . . ,N!. ~5.9!

The new coordinates are

hq5(
k

fkvk
q , fk5(

q
hqvk

q . ~5.10!

In these coordinatesI 1 becomes a product ofN independent
Gaussian integrals, and

I 1~a!5
pN/2

AdetM
expS 2

1

4
aM21a D . ~5.11!

Equation~5.7! becomes

05I 1~0!H(
k

@Mkk
212Mk,k11

21 1~ca/\!2~m21dm2!Mkk
21/2

1~l\ca2!~Mkk
21!2/16#22E0a/\c1Tr~M !

2Tr~M2M21!J . ~5.12!

Mk1k2
must be a function ofk12k2 of periodN owing to the

homogeneity and periodicity of the Hamiltonian. It can be
written as a discrete Fourier transform.

Mk1k2
61 5

1

N(
p51

N

v61~p!expF2p ip~k12k2!

N G . ~5.13!

With this the eigenvalue equation decouples into modes.

05I 1~0!H(
p

Fv~p!

2
1

1

v~p! S 12cos
2pp

N

1~ca/\!2~m21dm2! D G
1N~l\ca2!F 1N(

p

1

v~p!G22 2E0a

\c J . ~5.14!

Thev(p) are parameters inM that are fixed by minimiz-
ing E0 . We find

v~p!5F S ca\ D 2~m21dm2!1
l\ca2

4
D1sin2S pp

N D G1/2,
~5.15!

D5
1

N(
p

1

v~p!
. ~5.16!

Equation~5.16! determinesD, and it is enlightening to
examine its solution near the continuum limitwhen we drop
the countertermdm2. Following Eq.~5.4!,

D;
1

p
ln

4

l\ca2D
, D;

1

p
ln

4

l\ca2
1OS ln ln 4

l\ca2D .
~5.17!

Therefore the square of the effective mass inv(p) becomes,
in the limit of smalla,

m21
l\3D

4c
;m21

l\3

4pc
ln

4

l\ca2
. ~5.18!

This shows that we approach a continuum theory having
infinite mass. On the other hand, when we do include the
counterterm, Eq. ~5.16! has the solution D5D0;
v(p)5v0(p). Then the mode functionv(p) never changes,
no matter what the lattice spacing or coupling strength.

The energyE0 is

E0

L
5

\c

2a2 F 1N(
p51

N

v~p!G2
m2c3

\ S l\3

m2cDD0
2 . ~5.19!

The sum on the right is the zero-point energy of the degrees
of freedom. It is present in free field theory, and its contri-
bution is quadratically divergent ina21. The last term, pro-
portional to the dimensionless couplingl\3/m2c, diverges
like (lna21)2. In perturbation theory it arises because anoma-
lous combinatorics spoil the cancellation of divergences in
self-energy loops andD0 . This failure to cancel occurs only
at orderl of perturbation theory, soE0 already exhibits all
the terms that diverge asa→0.
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To computeE1 we need the Green function satisfying

S ]2

]f2 22fM
]

]f DG~f,f8!5)
k

d~fk2fk8!, ~5.20!

in matrix notation. We use Eq.~2.12! to constructG, which
requires us to construct eigenfunctions of the operator on the
left. We again use coordinatesh; then the equation for the
eigenfunctions and eigenvalue is

(
q51

N F ]2

]~hq!2
22mqhq

]

]hqGc5mc. ~5.21!

This equation may be solved by separation of variables.

c$s%5 )
q51

N

Hsq
~hqAmq!. ~5.22!

The functionsHs are Hermite polynomials satisfying

d2Hs~x!

dx2
22x

dHs~x!

dx
12sHs~x!50,

~5.23!

E
2`

`

dx e2x2Hs1
~x!Hs2

~x!5ds1 ,s2Ap2s1~s1! !.

There areN indices on our wave function, and the eigen-
value is a linear function of them:

m522(
q51

N

sqm
q. ~5.24!

The Green function is

G5S 2
1

2D e2f8Mf8E
0

1dz

z )
q51

N S mq

p D 1/2

3F (
sq50

` S zmq

2 D sq Hsq
~hqAmq!Hsq

~hq8Amq!

~sq! !
G . ~5.25!

The purpose of the integration overz is to produce the de-
nominator 1/mk in Eq. ~2.12!. The sum oversq is given by
Mehler’s formula@9#. Reverting to the original variables,

G~f,f8!52
1

2

Adet~M !

pN/2 E
e

1 dz

zAdet~12z2M !

3expF2f8
M

12z2M
f82f

Mz2M

12z2M
f

12f8
MzM

12z2M
fG . ~5.26!

As we expect from the discussion of Sec. II, this Green
function does not exist becausem50 is an eigenvalue. In
Eq. ~5.26! the divergence appears atz50, and it has been
regulated by a cutoff atz5e. However, when computing
Tn , the coefficient of the 1/z factor is

E S) df De2fMfDn~f!,

Dn~f!5H(
k

F ~fk112fk!
21S ca\ D 2~m21dm2!fk

2

1
l\ca2

12
fk
4G2

2aEn
\c

1Tr~M !2fM2f2S ]Tn21

]f D 2J . ~5.27!

Setting this to zero, we obtain a finiteTn ase→0. Thus we
again encounter the eigenvalue equation as a consistency
condition for the solution of Schro¨dinger’s equation.

The dependencies on the fields in Eq.~5.26! are Gaussian,
so we can useI 1 to evaluate the generating function

I 2~a,b!5E S) df df8DG~f,f8!

3exp~2fMf1 iaf1 ibf8!

5
pN/2

Adet~M !
expS 2

1

4
aM21a2

1

4
bM21b D

3S 2
1

2D Ee

1dz

z
expS 2

1

2
a@zMM21#b D .

~5.28!

By differentiation ofI 2 we obtain all the contributions in

E12E05
\c

2a

E ~Pdf df8!e2fMfG~f,f8!D~f!D~f8!

E ~Pdf!e2fMf

.

~5.29!

The result is

E12E0

L
52

m2c3

\ S l\3

m2cD
2 D2

384
, ~5.30!

where

D25Smca

\ D 2E
0

1dz

z

1

N F (
k1 ,k2

~zMM21!k1 ,k2G4. ~5.31!

Using Eq.~5.13!,

~zMM21!k1 ,k25
1

N(
p51

N
zv0~p!

v0~p!
expF2p ip~k12k2!

N G , ~5.32!
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D25Smca

\ D 2S 1ND 3
3 (

p1 ,p2 ,p3

1

v0~p1!v0~p2!v0~p3!v0~p11p21p3!

3
1

@v0~p1!1v0~p2!1v0~p3!1v0~p11p21p3!#
.

~5.33!

It is straightforward to verify thatD2 remains finite asa→0.
The expression forD2 is the three-loop vacuum bubble

graph of second-order perturbation theory~in ‘‘old-
fashioned’’ form!. Thus it seems that what emerges is simply
perturbation theory. Such a result is plausible because our
F is theS of free field theory, and we compute corrections to
that. However, the result forE12E0 is deceptive; what we
obtain is not straightforward perturbation theory, but areor-
deringof perturbation theory.

Convenient equations for counting powers ofl are

En2En215

E ~Pdf!e2F$@]~Tn222Tn21!/]f#@]~Tn221Tn21!/]f#%

E ~Pdf!e2F
,

Tn~f!2Tn21~f!5E ~Pdf8!G~f,f8!„~2a/\c!~En212En!1$@]~Tn222Tn21!/]f8#@]~Tn221Tn21!/]f8#%….

~5.34!

We have established directly thatE12E05O(l2); it follows
from the top equation thatT05O(l). The second equation
then establishesT12T05O(l2).

The next round of estimates determinesE22E1
5O(l31l4) becauseT01T15O(l1l2). By induction
one establishes thatTn andEn includeall perturbative terms
up to O(ln11) and someof the perturbative terms up to
O(lp), p52n.

The reordering of perturbation theory has its origin in the
quadratic form of the gradient terms that the modified WKB
approximation treats by successive approximations. We saw
in Sec. II that the same nonlinearity is what leads to formal
convergence of the approximation. Therefore the reordering
of perturbation theory is the means by which the modified
WKB approximation ‘‘improves’’ perturbation theory when
l is not small.

We learn from our exercise with lattice field theory that
calculations can be carried out, and they lead to sensible
results. But it is possible, within the modified WKB approxi-
mation, to contemplate alternatives that transcend perturba-
tion theory by choosingF to be non-Gaussian. an obvious
generalization ofF is

F̃5 (
q51

N

@2 1
2 m̃q~hq!22 1

4 ñ q~hq!4#. ~5.35!

We use plane-wave coordinates so that all degrees of free-
dom are coupled. The mode eigenvalue equation is unfamil-
iar, and Mehler’s formula is not available, so we must work
harder. A computer would be required to assembleG.

A payoff is possible when a seed likeF̃ is used. Recall
that atl\3/m2c;10,f4 field theory makes a transition to a
state of brokenf↔2f symmetry in which the field has a
vacuum expectation value:̂0uf(x)u0&5f0Þ0 @8#. From
this fact alone we see thatF must be inadequate at strong

coupling because withF, f050. ~This example shows that
althoughF need not be accurate, as we emphasized in Sec.
III, it must belong to the correct class of functions.! But
in F̃, as the variational parametersm̃q vary smoothly with
l, a vacuum expectation value can develop beyond a critical
coupling.

A trick attributed to Feynman can be applied to this prob-
lem to allow the calculation of the vacuum expectation val-
ues of operators other thanH. For example, suppose we wish
to compute the correlator of Eq.~5.5!. For this purpose aug-
mentH by adding a termj(1/N)(kfkfk1d . The extended
Hamiltonian remains homogeneous and periodic, so the tech-
niques we have developed continue to apply.E depends on
j, of course, and by first-order perturbation theory~in j),
dE/dj(j50) is just the correlator of Eq.~5.5!. Of course,
we knowE only approximately, and we must replace it by
En or En .

VI. HELIUM

Because of the Pauli principle, helium is the only multi-
electron atom for which a symmetric spatial wave function is
physical. The nodeless state we construct is the ground state
of helium.

The Hamiltonian we study includes only the potential
terms representing the electric forces acting on electrons
moving around an immobile nucleus. The ground-state en-
ergy of the simplified Hamiltonian therefore differs slightly
from that of physical helium where magnetic, recoil, and
relativistic corrections are present. The Hamiltonian is

H52
1

2
~¹1

21¹2
2!2

2

r 1
2

2

r 2
1

1

ur12r2u
. ~6.1!

We use dimensionless coordinates, so the eigenvalues ofH
must be multiplied byme4/\2.
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A standard textbook variational computation with this
Hamiltonian assumes that the wave function is a product of
exponential~hydrogenic! factors@10#. The resulting energy,
^H&52(27/16)2522.848, is very close to the experimental
ground-state energy,22.90, and we adopt it as a standard
for the problem. Since we have the tools to deal with many-
body problems whenF is a quadratic form, we use

F52 1
2K0~r 1

21r 2
2!2K1r1•r2 . ~6.2!

Our choice ofF corresponds to a Gaussian first guess for the
helium wave function. We computeE0 , choosingK0 and
K1 to minimize it and find

E0522.324, K051.549, K15~0.092 38!K0 .
~6.3!

We obtain only 0.816 of the ‘‘standard’’ binding, which
means that the modified WKB correction is substantial. An
interesting feature of our result is thatK1 is so small. The
repulsion between electrons enhances the probability of find-
ing the electrons on opposite sides of the nucleus, but not by
much. In fact, if we setK150, the binding is decreased by
less than 1%, andE0522.301. We use this version ofF
when calculatingE1 because of the resulting simplifications.
The computation ofE1 now parallels that of Sec. V. The
main new feature is that the terms in the potential are Cou-
lomb, not polynomial. When we use generating function
I 2 , we integrate over parameters to generate the Coulomb
terms, using the relation

1

r
5

1

2p2E d3a

a2 exp@ ia•r #. ~6.4!

Summarizing our results:

E0522.301, E1522.707, ^H&522.848,
~6.5!

E0

^H&
50.808,

E1
^H&

50.951.

Note that the energiesE0 andE1 are closer tôH& than were
the corresponding energies in the case of the spherical square
well. This suggests that convergence for helium is good, and
thatE2 would differ from the ground-state energy of Hamil-
tonian ~6.1! by a fraction of a percent. Indeed,E2 could lie
below ^H& because the latter is a variational estimate.

VII. CONCLUSIONS

We have proposed an approximation for nodeless wave
functions in quantum mechanics and field theory that as-
sumes the relative importance of gradient and Laplacian
terms is the reverse of that in the WKB approximation. As
with any such scheme, usefulness is an important issue. We
have explored usefulness by applying the modified WKB
approximation to several problems. The examples of the
spherical square well and the helium atom provide interest-
ing numerical results. In these cases we chose a simple seed
F and found that the initial~variational! estimates of the
ground-state energy were incorrect by several tens of per-
cent. The first nontrivial modified WKB correction removed
three-quarters of the error, or more. Where we calculated the
second nontrivial modified WKB correction, the improve-
ment was compounded. For the case of the spherical square
well, the variational energyE2 was in error by 0.31%, start-
ing with F4 , which is manifestly inaccurate. (F4 has incor-
rect asymptotic behavior and a threshold potential strength
only slightly below the strength used in the computation.!

In practice, the WKB method is difficult to apply to prob-
lems with many degrees of freedom. The modified WKB
method does suffer from this fault. With a quadratic choice
for F we developed the formulas necessary for the treatment
of many-body problems, and we applied them to the rather
different problems off4 field theory and the helium atom.
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