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Abstract

Taking into account the constraints from LEP1 and lower energy experiments, we identify
the seven SU(2)×U(1) gauge invariant purely bosonic dim = 6 operators which provide
a quite general description of how New Physics could reflect in the bosonic world, if
it happens that all new degrees of freedom are too heavy to be directly produced in
the future colliders. Five of these operators are CP conserving and the remaining ones
are CP violating. We derive the unitarity constraints for the CP violating operators and
compare them with the already known constraints for the CP conserving ones. Dynamical
renormalizable models are also presented, which partly elucidate what the appearance of
each of these operators can teach us on the mechanism of spontaneous gauge symmetry
breaking.
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1 Introduction

The intense experimental effort to find traces of New Physics (NP) beyond the Standard
Model (SM) has so far given only very weak hints [1, 2]. No new particles, possibly associ-
ated with NP have ever been seen in our present accelerators. Moreover, the interactions
among the gauge bosons and the light fermions have been thoroughly scrutinized at LEP1
and lower energies, and were found to be fully consistent with the SM predictions. The
only slight experimental hints for something beyond the SM that exist at present consist
in the well known peculiarities observed in Z → bb̄ [1, 2], and the persisting indications
favouring the possibility of some non-vanishing neutrino masses and a huge amount of
dark matter in the Universe.

Thus, before the excitation of new particles will become possible, hopefully in one of
the contemplated future accelerators, it seems that our main hope to detect hints of NP
is by carefully searching for anomalies in interactions among the gauge bosons, the Higgs
and the quarks of the third family, since these interactions have not yet been tested to
the same level of accuracy as the light fermionic ones [1, 2, 3]. Of course, if the Higgs
particle turns out to be above the TeV scale, it will itself be part of NP, inducing new
strong interactions mainly among the longitudinal gauge bosons [4]. Although this is a
viable possibility, we assume below that it will not be the case in Nature, and that the
Higgs will be discovered some day in the mass range of the electroweak breaking scale
v = 1/(

√
2Gµ)

1/2.
We therefore contemplate an NP scenario according to which the usual SM Higgs

particle exists and is, in a sense, part of the “old” physics. Moreover, in this scenario the
NP scale ΛNP , which determines the masses of all new particles, is assumed to be very
large. Under such conditions, a quite general way of parametrizing NP is achieved by
establishing an effective Lagrangian containing contributions from all possible SU(3) ×
SU(2)×U(1) gauge invariant operators constructed from scalar and gauge bosons fields, as
well as the quarks of the third family (together with the gluons). Since the contributions
of these operators are scaled by inverse powers of ΛNP , it is plausible to expect that for
a sufficiently large NP scale, the dim = 6 operators should give in general an adequate
description [5]. Of course, it is quite possible that there exist NP aspects whose scale is not
really very large, such as the case of a moderately heavy vector boson which mixes with
W or Z [6, 7]. In such a case our approximation to retain only dim = 6 operators might
not be sufficient, and we would have to include in our expansion also higher dimensional
operators. In the following we will assume that this is not the case, though.

The complete list of purely bosonic such dim = 6 NP operators has been known
for some time1 [8, 9], and recently we have also established the CP invariant operators
containing the (t , b) quarks [3]. In the present paper we focus on the purely bosonic
operators though, eleven of which conserve the CP symmetry, while the remaining five
ones violate it. We next take into account the fact that seven of these purely bosonic
operators, (four CP conserving and three violating ones) are already excluded by LEP1
and low energy measurements [8, 10, 11], while another two are completely insensitive to

1 These operators involve only weak gauge bosons and Higgs.
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any conceivable experiments [8]. Discarding all these irrelevant interactions, we conclude
that it should be sufficient to describe the purely bosonic part of NP below ΛNP , in terms
of an effective Lagrangian which is a linear combination of the seven operators called OW ,
OWΦ, OBΦ, OUW , OUB, OUW , OUB. Presently existing LEP1 experiments put only very
moderate constraints on these operators [8, 10]. The general aim of the present paper
is to give an orientation on the magnitude of the couplings of these operators, based on
considerations on the unitarity constraints and on a class of dynamical scenarios.

The first three of these operators, namely OW , OWΦ and OBΦ, are the only ones
involving triple gauge boson couplings. These operators are also CP symmetric, and are
the only ones to give anomalous contributions to the process e+e− → W+W−, which will
be studied at LEP2 and NLC [12, 13].

The remaining four operators only induce anomalous Hγγ, HγZ, HZZ and HWW
couplings, and contain no triple gauge boson vertices [9, 14]. The operators OUW and OUB

are CP symmetric, while OUW , OUB are CP violating. If H is within the LEP2 range,
these couplings could be studied there by carefully analysing Higgs-strahlung [9, 14, 15].
Thus, immediately after the “hoped for” discovery of the Higgs, the need to search for its
anomalous couplings will arise.

In order to study the NP signatures described by the above operators, it is very useful
to first establish the unitarity constraints on their couplings. Such unitarity constraints
give relations between the strength of these couplings and the energy scale where either
unitarity will be saturated, or (as happened in the old Fermi theory) some of the new
degrees of freedom of NP will start being excited. At the technical level such relations
are very helpful, since they roughly determine the energies and couplings for which the
perturbative results are reliable. In previous works we have established the unitarity
constraints for the five CP conserving operators [16]. The first aim of the present paper is
to complete this study by giving the unitarity constraints also for the CP violating ones
OUW , OUB. We then summarize the implications from the unitarity relations for all seven
operators. These are the “suggestions from Unitarity” alluded to in the title.

The second aim of the present work is to offer examples of dynamical models con-
taining new heavy degrees of freedom, which, after they are integrated out, lead to an
NP description in terms of the purely bosonic dim = 6 operators. These examples are
generalizations of previous ones given for the case of NP operators respecting custodial
SU(2)c symmetry [17]. The usefulness of such examples consists in the fact that they
provide a feeling on what type of anomalous interactions could be induced by various
kinds of new degrees of freedom. From these examples, we infer that Higgs dependent
operators OUW , OUB, OUW , OUB, if they happen to be created in the model, have their
couplings determined by the arbitrary Yukawa type interactions in new physics. Thus,
their couplings are not constrained by existing experiments and have a chance to be ob-
servable at LEP2 [9], [15]. On the contrary, the purely gauge dependent operator OW has
its strength determined exclusively by the group properties of the NP particles we have
integrated out. We would expect, therefore, that OW could only become appreciable if a
non-perturbative mechanism enhances it. The same is also true for the operators OUW

and OUB, which were never generated in these models.
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Disregarding all contributions which are either unobservable or are very strongly con-
strained by existing experiments, and restricting to dim = 6 operators [8, 10, 11], the
effective Lagrangian describing the purely bosonic part of NP at the scale ΛNP is given
by

LNP = λW
g

M2
W

OW +
fBg′
2M2

W

OBΦ +
fW g

2M2
W

OWΦ +

d OUW +
dB
4

OUB + d OUW +
dB
4

OUB , (1)

where

OWΦ = i (DµΦ)†−→τ · −→W µν
(DνΦ) , (2)

OBΦ = i (DµΦ)†Bµν(DνΦ) , (3)

OW =
1

3!

(−→
W

ν

µ ×−→
W

λ

ν

)
· −→W µ

λ (4)

induce anomalous triple gauge boson couplings, while2

OUW =
1

v2
(Φ†Φ − v2

2
)
−→
W

µν · −→W µν , (5)

OUB =
4

v2
(Φ†Φ − v2

2
)Bµν Bµν , (6)

OUW =
1

v2
(Φ†Φ − v2

2
)
−→
W

µν · −̃→W µν , (7)

OUB =
4

v2
(Φ†Φ − v2

2
)Bµν B̃µν (8)

create anomalous CP conserving and CP violating Higgs couplings. Note that

B̃µν =
1

2
ǫµνρσB

ρσ , (9)

and similarly for W̃µν .
Since the operators in (2)-(8) have a dimension higher than four, they will eventually

saturate unitarity at sufficiently high energies, unless their locality is tempered by the
excitation of new particles. The unitarity constraints for the CP conserving operators
shown in (2)-(6) have been derived in [16]. They are given by

|fB| ≤ 98
M2

W

s
, |fW | ≤ 31

M2
W

s
, (10)

|λW | <∼ 19
M2

W

s
, (11)

2In the definition of OUW and OUB we have subtracted a trivial contribution to the W and B kinetic

energy respectively.
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|d| <∼ 17.6
M2

W

s
+ 2.43

MW√
s

, (12)

− 236
M2

W

s
+ 1070

M3
W

s3/2
<∼ dB <∼ 192

M2
W

s
− 1123

M3
W

s3/2
, (13)

where s determines the square of the centre of mass energy of the four-boson amplitude
where unitarity is first reached.

Here we give the corresponding constraints for the CP violating operators OUW and
OUB. As in the previous cases, the most important ones arise from the j = 0 partial
wave amplitudes with vanishing total charge in the s-channel. For the OUB case, the nine
channels participating in the transition matrix are (|γγ±±〉, |γZ±±〉, |ZZ±±〉, |ZZLL〉,
|W−W+LL〉, |HH〉), while for the OUW case there are two additional channels given by
|W−W+ ±±〉. The whole procedure for OUB and OUW is in close analogy to the cases of
the operators OUB and OUW treated in [16], but this time the tree level amplitudes are
complex. For the couplings defined in (1), we find

|d| <∼ 18.7
M2

W

s
+ 3.04

MW√
s

, (14)

|dB| <∼ 176
M2

W

s
− 889

MW√
s

. (15)

Applying (10)-(15) for s = 1 TeV 2, we get |fB| <∼ 0.6, |fW | <∼ 0.2, |λW | <∼ 0.12, |d| <∼ 0.3,
|dB| <∼ 0.7, |d| <∼ 0.3, |dB| <∼ 0.7. There are two remarks to be made concerning these
relations. The first is that the constraints for the CP conserving and the CP violating
Higgs interactions, derived from (OUW , OUB) and (OUW , OUB) respectively, are quite

similar to each other. The second remark is that the unitarity constraints for the
−→
W µν

involving operators (OWΦ, OW , OUW , OUW ), are a factor of 2 to 3 stronger than the
corresponding ones for the Bµν involving operators. This means that for similar NP
couplings, the new physics forces in the WW channel are considerably stronger than the
forces in the ZZ one. A similar situation is known to be valid also for the SM interactions.

To get a feeling of what kind of NP couplings one might expect to appear in (1), we
now turn to specific dynamical models. The only requirement in these models is that they
always respect SU(2)×U(1) gauge symmetry and renormalizability. As in the usual SM
Lagrangian, no additional discrete symmetry like e.g. CP invariance is imposed.

Model A:
In this model, we assume that NP is determined by a complex scalar field Ψ, which

has isospin I and hypercharge Y under the SU(2)× U(1) gauge group. Since Ψ acquires
its mass before the electroweak spontaneous breaking, this mass must be large, i.e. M ≡
ΛNP ≫ v. The Ψ may also have a hyper-colour Ñc. The basic renormalizable Lagrangian
will then be the sum of the usual SM Lagrangian LSM and the Lagrangian

Lψ = DµΨ
† DµΨ−Λ2

NPΨ†Ψ+2gψ1(Ψ
†Ψ)(Φ†Φ)+gψ2

[
(Ψ†Φ̃)(Φ̃†Ψ) − (Ψ†Φ)(Φ†Ψ)

]
, (16)
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describing the interactions of the Ψ field. In writing (16) we have omitted irrelevant
(Ψ†Ψ)2 terms and we have also taken I 6= 0 and (Y 6= 1/6, 7/6, −5/6 , ...), so that to
exclude a direct (Ψ - Φ) mixing and a possible coupling of a single Ψ with either the scalar
or the fermion fields of the SM.

The standard techniques may now be used to obtain the effective Lagrangian describing
the electroweak interactions at a scale just below ΛNP . This is achieved by integrating
out, at the one-loop order, the heavy field Ψ. Thus, by employing the Seeley–DeWitt
expansion of the relevant determinant, we obtain the following NP contribution to the
electroweak interactions at this scale:

LNP =
(2I + 1)Ñc

(4π)2

{
− 2gψ1Λ

2

NP

(
1

ǫ
+ 1

)
(Φ†Φ) +

2

ǫ

(
g2

ψ1 + g2

ψ2

I(I + 1)

3

)
(Φ†Φ)2

− 1

12

(
1

ǫ
+

gψ1v
2

Λ2
NP

)[
g2I(I + 1)

3

−→
W µν

−→
W

µν
+ Y 2g′2 BµνB

µν

]

+
8

6Λ2
NP

(g3

ψ1 + gψ1g
2

ψ2I(I + 1))(Φ†Φ)3

+
1

3Λ2
NP

(
g2

ψ1 + g2

ψ2

I(I + 1)

3

)
∂µ(Φ

†Φ)∂µ(Φ†Φ)

+ g2

ψ2

4I(I + 1)

9Λ2
NP

[
(Φ†Φ)(DµΦ

†DµΦ) − (DµΦ
†Φ)(Φ†DµΦ)

]

− g2I(I + 1)

90Λ2
NP

[
gOW +

1

4
ODW + 5v2gψ1OUW

]

+
g′Y
Λ2
NP

[
2I(I + 1)

9
ggψ2OBW − g′gψ1Y

v2

24
OUB − g′Y

120
ODB

]}
, (17)

where ǫ = 2 − n/2 (with n the number of dimensions) is the usual dimensional regular-
ization parameter, and (4)-(6) are used together with the definitions

ODW = 2 (Dµ
−→
W

µρ
)(Dν−→W νρ) , (18)

ODB = (∂µBνρ)(∂
µBνρ) , (19)

OBW =
1

2
Φ†Bµν

−→τ · −→W µν
Φ . (20)

The first three terms in LNP just renormalize scalar and gauge boson terms already
existing in LSM , while the next two indicate an example of how the NP can generate the
two unobservable operators (Φ†Φ)3 and ∂µ(Φ

†Φ)∂µ(Φ†Φ) mentioned in the introduction.
The operator (Φ†Φ)(DµΦ

†DµΦ) − (DµΦ
†Φ)(Φ†DµΦ), as well as the ODW , ODB, OBW ,

given in (18)-(20), should be negligible, according to LEP1 experiments. For reasonable
Ψ isospin and hypercharge, this is easily understood for the operators ODW and ODB,
whose couplings are proportional to g2 and g′2 respectively. The negligible strength of the
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other two operators just mentioned can be accommodated if we assume that gψ2 (defined
in (16)) is negligible.

The interesting thing about Model A is that there is nothing that prohibits gψ1 (also
defined in (16)) to be large. And if this does happen, then the operators OUW and OUB

will be proportionally enhanced by NP. Unfortunately, an analogous enhancement for
OW is not so easy. The OW coupling expected perturbatively satisfies λW ∼ g2, and it
should therefore be similar to the coupling of the strongly constrained operator ODW (see
(18)). Only if OW is somehow non-perturbatively enhanced with respect to ODW , by a
mechanism like the one discussed in [17], we could hope that it would become observable.

Therefore, out of the seven operators appearing in (1), Model A favours only OUW and
OUB, and to a lesser extent OW . The couplings of the Higgs involving operators OUW and
OUB depend on the unknown physics of the scalar sector. Thus, these two later operators
really teach us something about the mechanism that breaks spontaneously the gauge
symmetry. On the contrary the purely gauge dependent operator OW seems naturally
suppressed at the perturbative level, by the small coupling g. Nevertheless, it is at least
generated in this model. Note that if Ψ had Y = 0, then only the custodially SU(2)c
invariant operators OUW and OW would have appeared3 [17].

Model B:
We now turn to Model B where NP is determined instead by a fermion field F whose

left and right component have the same isospin I and hypercharge Y . Because of the
vectorial character of the model, there are no anomalies and F acquires its mass before
the spontaneous electroweak breaking takes place. Hence, we can assume that F has
a very large mass ΛNP and possibly also a hyper-colour Ñc. To construct the basic
renormalizable Lagrangian we should now add to LSM the term

LF = iF (/∂ + ig
−→
/W · −→t + ig′Y /B)F − ΛNPFF , (21)

with
−→
t denoting the isospin I matrices. In writing (21) we have excluded a discrete set of

hypercharge and isospin values which would allow a coupling of F with the SM fermions
and possibly also with the standard Higgs.

Integrating the fermion loop as before [18], we get at the scale ΛNP :

LNP =
(2I + 1)Ñc

(4π)2

{
− g2I(I + 1)

9ǫ

−→
W µν

−→
W

µν − Y 2g′2
3ǫ

BµνB
µν

+
g2I(I + 1)

45Λ2
NP

[
gOW − ODW

]
− g′2Y 2

15Λ2
NP

ODB

}
. (22)

The only interesting operator generated in this case is OW , about which though (as
well as about the unwanted operators ODW and ODB), the same remarks apply as in
Model A. It seems that if NP only includes fermionic new degrees of freedom, we cannot
learn much about the scalar sector by studying the anomalous bosonic couplings. To
reiterate on this we thus turn to Model B′.

3 Provided of course that we still keep the assumption gψ2 ∼ 0.
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Model B′ :
To the preceding NP spectrum we just add a heavy (Ms ≫ v) scalar field S0 with

vanishing isospin and hypercharge. Then the most general renormalizable interaction to
be added to LSM becomes

LFS = iF/DF − ΛNPFF + gfS
0FF + igf ′S0Fγ5F

gφMsS
0Φ†Φ +

1

2
(∂S)2 − M2

s

2
(S0)2 , (23)

where irrelevant (S0)
3

and (S0)
4

terms have been omitted. Integrating out first the heavy
F field, and then substituting S0 to gφΦ

†Φ/MS, we find that NP generates, in addition
to the terms appearing in (22), contributions also from all four purely Higgs operators
shown in (1), i.e. OUW , OUB, OUW , OUB. Restricting for simplicity to I = 1/2 for the
isospin of the F fermion, the couplings of the CP conserving operators are expressed as

d = −
(

g2v2Ñc

48π2ΛNPMs

)
gfgφ , (24)

dB = −
(

g′2v2Y 2Ñc

48π2ΛNPMs

)
gfgφ , (25)

while those of the CP violating ones satisfy

d

d
=

dB
dB

= − gf ′
gf

. (26)

Note that for vanishing hypercharge Y for the F fermion, only the custodially SU(2)c
invariant operators OUW and OUW would be generated [17]. Since the gf and gf ′ couplings
in (23) are a priori on the same footing, we conclude that in this model all four operators
OUW , OUB, OUW , OUB can be generated with appreciable couplings. We also note that
if the scalar boson S were chosen instead to be isovector, then the model would have
generated the operator OBW and its CP violating analogue. Since the last two operators
are very strongly constrained from existing experiments, we would conclude that such a
situation is disfavoured.

The above considerations lead to the conclusion that the question whether one of
the operators (OUW , OUB, OUW , OUB) will be generated or not is intimately connected
with the nature of the mechanism responsible for the spontaneous breaking of the gauge
symmetry. The experimental search for such an operator will teach us something on how
the spontaneous symmetry breaking works. Our models imply also that, to a lesser extent,
OW can also be generated by NP; but this operator seems to be rather independent of the
scalar sector. Finally the other two operators in (1), namely OWΦ and OBΦ, were never
generated in our models.

It is unnecessary to state that we take these models only as indicative. The laws of
New Physics are certainly much more elaborate than our toy models suggest. It could also
be that the residual interactions below the NP scale ΛNP not only involve weak bosons

8



but also heavy quarks, i.e. the third family. In [3] we have established the list of 28
dim = 6 operators involving the third family, 14 of them involving the tR field (which
in SM is associated to the top mass generation) and we showed that some of them could
also be at the origin of the departure of Zbb̄ from SM predictions.

In any case an active experimental search at LEP2 and at higher energy colliders
should be made in order to identify any of the operators we have discussed. Once any
of them is found, then (as in the old Fermi theory), the unitarity constraints presented
above may help deciding how far we are from the energy region where some new degrees
of freedom should start being excited.

Acknowledgements: We would like to thank Jacques Layssac for his help in the deriva-
tion of the numerical expressions of the unitarity bounds.
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