
Po
st

Sc
ri

pt
〉  p

ro
ce

ss
ed

 b
y 

th
e 

SL
A

C
/D

E
SY

 L
ib

ra
ri

es
 o

n 
21

 F
eb

 1
99

5.
H

E
P-

T
H

-9
50

21
22

CERN-TH/95-39

hep-th/9502122

Dual Non-abelian Duality
and the Drinfeld Double

C. Klim�c��k
1

Theory Division CERN, CH-1211 Geneva 23, Switzerland

and

P. �Severa

Dept. of Theoretical Physics, Charles University,

V Hole�sovi�ck�ach 2, CZ-18000 Prague, Czech Republic

Abstract

The standard notion of the non-abelian duality in string theory

is generalized to the class of �-models admitting 'noncommutative

conserved charges'. Such �-models can be associated with every Lie

bialgebra (G; ~G) and they posses an isometry group i� the commutant

[ ~G; ~G] is not equal to ~G. Within the enlarged class of the backgrounds

the non-abelian duality is a duality transformation in the proper sense

of the word. It exchanges the roles of G and ~G and it can be inter-

preted as a symplectomorphism of the phase spaces of the mutually

dual theories. We give explicit formulas for the non-abelian dual-

ity transformation for any (G; ~G). The non-abelian analogue of the

abelian modular space O(d; d;Z) consists of all maximally isotropic

decompositions of the corresponding Drinfeld double.
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1 Introduction

Duality symmetry plays an important role in string theory as an important

tool for disentangling its full symmetry structure. It deepens our understand-

ing of the geometry of the spacetime from the string point of view, because it

relates apparently di�erent but still equivalent backgrounds in the �-model

approach. The abelian target space duality kept receiving attention of string

theorists in the past few years and much progress has been achieved in re-

vealing the consequences of the symmetry in string theory and in classifying

backgrounds related by the abelian duality group O(d; d;Z) [1, 2, 3, 4, 5, 6, 7].

From the �-model point of view the necessary condition to work out a dual

to some background was that the latter posses an abelian group of isome-

tries. Thus, the class of string backgrounds concerned was rather restricted
and many physically relevant classical string vacua were excluded from the
consideration.

An important materialization of the suspect that the duality symme-

tries should be associated also with the non-abelian isometries of the target
manifold was achieved by De la Ossa nad Quevedo [8]. They gauged the non-
abelian isometries of �-models and constrained the �eld strenth F to vanish.
The dual action was then obtained by integrating out the gauge �elds and
the Lagrange multipliers had become coordinates of the dual manifold. In

the series of subsequent investigations [9, 10, 11, 12, 13, 14, 15, 16, 17] other
relevant insights were obtained, still the notion of 'non-abelian duality' was
lacking some of the key features of its abelian counterpart. The non-abelian
isometry group of the dual space was always smaller and also a canonical
procedure was missing that would yield the original theory if one is given

only its non-abelian dual. For the above reasons it was somewhat considered
as a misnomer to call the non-abelian duality a duality transformation [5].

In this contribution we attempt to cure those drawbacks of the non-
abelian duality. The starting point of our considerations was the fact that

a non-abelian dual, even having no isometries, is still equivalent to an ap-

parently di�erent �-model. This made us believe that the relevant algebraic
structure for the tence of a non-abelian T-duality is not necessarily the exis-

tence a group of isometries of the background, but some other structure that
shows up only in special cases as an isometry group. We even show that what

is called the non-abelian duality in the present nomenclature, could be also
referred to as a sort of semi-abelian duality. Indeed, as a result of our anal-
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ysis, we are able to present a lot of examples of the full non-abelian duality,

when the duality is performed in both direction without the isometry.

In looking for an explicit criterion, when a given �-model is the non-

abelian dual of another one, it proved very useful the clear geometric under-

standing of the abelian duality, which we presented in our previous work [18].

In the formalism developed there the central role was played by the Noethe-

rian forms on the worldsheet associated with the abelian isometry group G0

of the target. Those forms were closed (hence integrable) on any extremal

string surface by virtue of the symmetry and their integrals turned out to be

the coordinates of the dual target. Both original M and the dual target ~M

were embedded into one manifold ME which turned out to have a natural

structure of a �bre bundle over M=G0 (or ~M= ~G0) with the �ber G0 � ~G0.

The canonical symplectic structure on G0 � ~G0 gave the di�erence between
the original and the dual action, or, in other words, Buscher's formula [1].

All relevant steps of the previous construction can be repeated for much
general class of targets, however. We again need the action of a (possibly non-

abelian) group G on the �-model target which gives rise to the Noetherian
forms. If G does not act as an isometry, the forms are not closed even on
the extremal surfaces. They can still be integrable, however! Imagine that
we organize the Noetherian forms �a (a = 1; 2; :::; dimG) into a Lie algebra
valued form � = �a ~T

a where ~T a are the generators of some (dual) Lie algebra
~G. Suppose that the target has the property that on the extremal string

surfaces the form � is a at connection, i.e. it satis�es the Maurer-Cartan
equation

d�a �
1

2
~c kl
a �k ^ �l = 0; (1)

where ~ckla are the structure constants of ~G. Then the form � is integrable

which means that there exists a map ~g(�; �) from the worldsheet to the dual
group ~G such that

� = d~g ~g�1 (2)

We call this property the non-commutative conservation law. If the group
G acts freely on the original target then we can choose a preferred system

of coordinates (y; g) where y's label the orbits of G in the target M and

g 2 G. We shall see that if the connection � is at, extremal strings live
naturally in an extended manifoldME having the structure of a �ber bundle

over M=G (or ~M= ~G) with the �ber being the Drinfeld double (G; ~G). The
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canonical symplectic structure on the double gives the di�erence between the

original and the dual action and, hence, the non-abelian Buscher's formula.

The group ~G acts naturally on the dual target ~M and the dual Noetherian

form can be organized in the G-valued form ~� = ~�aT
a. So the procedure can

be repeated, returning to the original target.

The analogue of the abelian modular space O(d; d;Z) is given by the

structure of the Drinfeld double, namely by the classi�cation of the decom-

positions of the algebra of the double in the pairs of maximally isotropic

subalgebras with respect to the ad-invariant bilinear form on the double.

Such decompositions can be constructed by means of the automorphisms of

the Drinfeld double which naturally form a subgroup of O(dimG; dim ~G;Z).

However, unlike in the abelian case, the automorphisms do not necessarilly

exhaust all possibilities.
The standard non-abelian duality of De la Ossa and Quevedo [8] is the

special case of our treatment. The dual group ~G is abelian and the cor-
responding Drinfeld double is the cotangent bundle of the group manifold

G with its canonical symplectic form. The abelian duality is described by
the double where both groups are abelian. It has the topology of a 2dimG-
dimensional torus and its group of automorphisms (preserving the invariant
bilinear form) is O(dimG; dim ~G;Z).

In section 2 of our note we give the explicit criterion when a given �-model
is the non-abelian dual of another one and a straightforward prescription how

to reconstruct the original model from its dual (or how to perform the non-
abelian duality in both directions). We emphasize that no relevant local
algebraic structure is lost upon performing the duality transformation. We
describe in detail the geometric structure of the non-abelian duality by means
of the lift of the dynamical characteristics of string to the Drinfeld double.

In section 3 we shall discuss the interpretation of the non-abelian duality
in terms of a canonical transformation. In section 4 we give explicite formulas
for the non-abelian duality transformations for a generic Lie bialgebra and

discuss their projective character.
In the concluding section 5 we describe what is the relevant structure of

the Drinfeld double which gives rise to the non-abelian analogue of the abelian
modular space O(d; d;Z), we discuss the dressing transformations and touch

the issue of integrability. We �nish with comments about quantization, in
particular about the conformal invariance, the dilaton and possible emergence

of the quantum group structure.
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2 Non-abelian duality and Lie bialgebras

In what follows we shall consider two-dimensional �-models described by a

metric Gij on the target manifold M and a globally de�ned two-form Bij on

M with the action

S =
Z
dzd�z(Gij(x) +Bij(x))@x

i�@xj �
Z
dzd�zEij@x

i�@xj (3)

Suppose that a group G acts freely on M . We can associate to this action

the Noetherian forms on the world sheet given by

Ja = via(x)Eij
�@xjd�z � via(x)Eji@x

jdz; (4)

where via(x) are the (left-invariant) vector �elds corresponding to the right
action of G on M . They can be de�ned also when G is not the isometry of
the target by varying the action with respect to the G transformations with
a world-sheet dependent parameters "a(z; �z), i.e.

�S = S(x+ "ava)� S(x) =
Z
"aLva(L) +

Z
d"a ^ Ja: (5)

If the Lie derivative of the Lagrangian Lva(L) vanishes then the forms Ja are

closed on the extremal surfaces xi(z; �z). We shall look for a condition on Eij

which would guarantee that the forms Ja on the extremal surfaces satisfy

dJa =
1

2
~c kl
a Jk ^ Jl: (6)

Here ~c kl
a are the structure constants of some Lie algebra ~G. From Eq.(3) it

follows that

Lva(L) =
1

2
~c kl
a Jk ^ Jl (7)

or, in other words,

Lva(Eij) = ~c kl
a vmk v

n
l EmiEjn: (8)

If the condition (8) holds we may associate to each extremal surface xi(z; �z)

a mapping ~g(z; �z) from the world sheet into the dual group ~G such that

Ja = d~g ~g�1 (9)
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or

~g = P exp
Z

Ja ~T

a; (10)

where P means the path ordered exponential. We shall refer to the La-

grangians ful�lling (8) as to the �-models admitting non-commutative con-

servation laws.

Note from (10) that ~g is de�ned up to the homotopy class of the curve

. If, for instance, we integrate around a closed non-contractible loop on the

world sheet of the closed string the integral (10) gives a �xed element of the

dual group ~G which we refer to as a `charge'. However, this charge is not a

number but a non-commutative object. If we run around the loop twice we

have to multiple charges rather than add them.

The condition (8) in fact requires that a certain compatibility requirement
should be imposed on the structure constants of the original and dual Lie
algebras. This requirement is the integrability condition of the set of the
�rst-order di�erential equations (8). It is easy to see that the condition
reads

~c ac
k cl fa � ~c ac

f cl ka � ~c lc
a cafk = 0: (11)

Amazingly, this is the standard relation which must be obeyed by the struc-
ture constants of the Lie bialgebra (G; ~G) [19, 20, 21]! This condition is
manifestly dual hence we expect that there exists an equivalent dual �-model

where the role of G and ~G is exchanged. Obviously, the dual model ~Eij should
ful�l

L~va( ~Eij) = c kl
a ~vmk ~v

n
l
~Emi

~Ejn: (12)

For the sake of clarity we shall �rst discuss the case in which the group G acts

on the target transitively (and freely), i.e. the target itself can be identi�ed
with the group manifold. Then there is a very easy and beautiful way of
solving the equations (8) and (12), using the concept of the Drinfeld double
D [19, 20, 21]. The latter is the connected group corresponding to the Lie
algebra double D and containing both groups G and ~G. The double D is

equal to G + G� as the vector space with the Lie bracket2

[X + v; Y + w] � [X;Y ] + [v;w]�� ad�Xw + ad�Y v + ad�wX � ad�vY: (13)

Here ad�X is the usual ad�-operator for the Lie algebra G acting on G�. The
symbol ad�w corresponds to the coadjoint action of the Lie algebra G� on its

2 ~G is identi�ed with the dual space G� of G.
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dual space G. Note that both groups G and ~G are embedded into D. The

algebras G and ~G form the maximally isotropic subspaces of D with respect

to the ad-invariant non-degenerate bilinear form

(X + v; Y + w) �< X;w > + < Y; v > : (14)

The symbol < :; : > means the canonical pairing between the algebra G and

its dual G�.

Consider the tangent space TeD �= D at the unit element e 2 D. (Of

course, e is the unit of both G and ~G at the same time.) In TeD we can take

a d-dimensional subspace E which is the graph3 of a nondegenerate linear

mapping E : G ! ~G. The subspace E � TeD can be transferred to every

point g 2 G(,! D) by the right action of G itself. At the point g 2 G again

TgD �= D and its decomposition into G + ~G is given by the left action of
g on TeD. Hence, we have de�ned at every g 2 G a nondegenerate linear
mapping Eg : G ! ~G with the graph Eg. Since ~G is canonically identi�ed

with G� we have obtained a matrix Eab(g). It is straightforward to check that
Eab(g) solves Eq.(8)

4. Obviously, the solution of Eq.(12) can be obtained in
the same way by transferring a subspace ~E � TeD into whole ~G by the right
action of ~G itself. It is natural (and also supported by the abelian duality
case [18]) to conjecture that the mutually dual �-models are obtained by

taking ~E = E. In other words, we transfer the same subspace E � TeD onto
G and ~G.

Now we have to prove that the �-models Eg and ~E~g are equivalent. First
of all we map every solution g(z; �z) of the original model into a solution
~h(z; �z) of the dual one. Following Eq.(9), g(z; �z) can be considered as a

surface
f(z; �z) = g(z; �z)~g(z; �z) (15)

in the Drinfeld double D, where the multiplication is taken in D. It is known
[20] that the following two decompositions are applicable for every f 2 D

f(z; �z) = g(z; �z)~g(z; �z) = ~h(z; �z)h(z; �z): (16)

We show that ~h(z; �z) 2 ~G de�ned by Eq.(16) is indeed a solution of the dual

model ~E~g and h(z; �z) is associated to it by the dual analogue of Eq.(9). The

3By the graph we mean the set ft 2 G; t+ E(t; :)g � G + ~G.
4In fact, it is the general solution, E playing the role of the initial value for the �rst

order equation (8).
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easiest way to show it constitutes in �nding a condition when a surface l(z; �z)

inD can be obtained by lifting an extremal solution of the model Eg via (15).

The conditions read

�@l l�1 2 E; @l l�1 2 E?; (17)

where the orthogonal complement is taken with respect to the bilinear form

(14). Before proving the statement note that the conditions (17) do the right

job because they do not depend in any way on the choice of the group G

or ~G in the double D. Thus the existence of the extremal ~h(z; �z) with the

associated h(z; �z) is obvious since only the extremal surfaces are liftable. The

choice ~E = E is crucial for the statement, of course.

The proof that the conditions of `liftability' are given by the relations
(17) requires a little geometry. Suppose that an element g 2 G(,! D) lies
on the surface l(z; �z) in D. A vector @g = "ava at g on an extremal surface

in G is lifted into TgD via Eq.(9), i.e. it becomes

@f = "ava + "aJa = "ava � E(:; "ava): (18)

The last equality follows from the de�nition (4) of the currents. In a similar
way

�@f = �@g + E(�@g; :): (19)

Clearly, if l(z; �z) is the liftable surface, @l and �@l have to obey Eqs.(18) and
(19). In other words

�@l 2 El; @l 2 E?l : (20)

Because El was obtained from E by the right action of l the conditions (17)
follow. If we are at a point l(z; �z) which does not lie at G we may transfer it
there by the right action of ~G, because the lift of the extremal surface in G

via Eq.(9) is de�ned up to the right action of ~G.

3 Non-abelian duality as a symplectomorphism

So far we have constructed the mapping between the phase spaces of the
original and the dual �-model. This mapping has a constructive character

because it guarantees that solving the original �-model we can also solve the

apparently di�erent �-model. In this sense both theories are equivalent. We

7



shall show, however, that the equivalence of the models can be understood in

much stronger way, namely the mapping between the phase spaces preserves

the natural symplectic structure of them5. To demonstrate that we have to

extend our so far local analysis by the discussion of the boundary conditions.

According to the comments after Eq.(10), the integration of the original

Maurer-Cartan form (4) around the noncontractible loop on the world sheet

of the closed string gives the non-commutative charge belonging to the dual

group. We shall restrict the phase spaces of the models to the con�gurations

having the unit charge otherwise the lifting of the string into the Drinfeld

double does not give a closed loop. Such restriction renders degenerate the

natural symplectic form 
Ph coming from the action. To cure the problem

we have to perform a generalized Marsden-Weinstein reduction. As it was

already mentioned, the lift g(z; �z)~g(z; �z) of an extremal surface into the dou-
ble is de�ned up to the right multiplication by a constant element ~g0 2 ~G.
All such lifts we identify in the dual phase space and similarly we proceed
in the dual case. Only applying this procedure the mapping between (the

reduced) phase spaces becomes one-to-one and, moreover, the restricted form

Ph becomes nondegenerate. Now we prove that the non-abelian duality is
a symplectomorphism of the (reduced) phase spaces.

Let LG be the loop space of the target G. As usual, we obtain the phase
space from the cotangent bundle T �LG, on which there is the canonical
symplectic form 
Ph = d�Ph. Namely, we identify some submanifold in T �LG

and then factorize it appropriately6. The construction goes as follows: if we
have a string worldsheet F and a loop l on it, then we de�ne a corresponding
element lF 2 T �l LG. To describe how lF acts on a vector u 2 TlLG, �rst
realize that u can be thought of as a family of vectors u(X) 2 TXM where
X runs along l. Then

lF (u) �
I
l
Jau

a(X): (21)

If we take all lF 's for all possible F 's we obtain the mentioned submanifold

of T �LG. Now we identify all lF 's coming from the same extremal F and

obtain the (unreduced) phase space.
Let H be a surface (i.e. a 2-parametric family of on-shell strings) in the

5For the special case of the non-abelian duality between the SU (2) group and its

coalgebra the statement has been proved in [22].
6We proceed conceptually as in the case of a relativistic particle in a background; in

the �-model case the submanifold is de�ned by the Virasoro constraints.
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unreduced phase space of the original model such that all strings have the

unit charge. Let also on each F 2 H be a loop l(F ). Then by (21)Z
H

Ph =

I
@H

�Ph =
I

S
F2@H

l(F )

J (22)

Here J is understood as a two-form on the two-dimensional closed surfaceS
F2@H l(F ) in the target G. The form Ja on the world-sheet is to be saturated

by the vectors on the surface tangent to the loops l(F ) and the index a is

saturated by the vectors connecting the in�nitesimaly close loops l(F ). Now

we lift the family H into a family HD of surfaces in D. HD is de�ned up to

an independent shift by the right action by a constant element from ~G on

each surface in HD. The family HD we project into ~G according Eq.(16),

thus obtaining the family ~H of extremal surfaces in ~G. We have to prove
that I

S
F2@H

l(F )

J =
I

S
~F2@ ~H

l( ~F )

~J: (23)

We stress that this relation holds in spite of the ambiguity in the de�nition of
~H. This means that the symplectic form ~
Ph is well de�ned on the reduced
dual phase space. The dual statement holds, too.

We shall compare the two expressions in Eq.(23) using the common lifted
family HD. We demonstrate that if tD and uD are vectors at a point P of a

lifted surface FD, tD tangent to FD and uD arbitrary, then

~Ja(~t)~u
a
� Ja(t)u

a = 
D(tD ^ uD); (24)

where ~t; ~u 2 T ~G; t; u 2 TG are given by the projections (inverse lifts) and 
D

is the canonical symplectic form on D [20] to be written explicitly in what
follows. Consider the subspaces SR(L) and ~SR(L) obtained by the right (left)

action of P on G + ~G embedded in TeD. Now we de�ne a linear mapping
�R ~R in TDP as the projection on S ~R with the kernel SR and accordingly for
the other combinations of the indices. By de�nition, ~Ja(~t)~u

a = (tD;�L ~RuD)

and Ja(t)u
a = (tD;�~LRuD), where the round bracket is the invariant bilinear

form (14) in the double. According to Ref.[20]7


D(tD; uD) = (tD; (�R ~R ��~LL)
�1uD): (25)

7We are much indebted to B.Jur�co for pointing out to us the existence of the symplectic

structure 
D, which we had badly looked for.
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Thus we have to prove that

(�R ~R ��~LL)(�L ~R ��~LR) = 1: (26)

We do it easily

(�R ~R ��~LL)(�L ~R ��~LR) =

= �R ~R�L ~R ��~LL�L ~R +�~LL�~LR = �L ~R ��~LL�L ~R +�~LL =

= (�L ~R +� ~RL) + (�~LL �� ~RL ��~LL�L ~R) = 1 + 0: (27)

Now from Eq.(24) we can conclude
I

S
~F2@ ~H

l( ~F )

~J �
I

S
F2@H

l(F )

J =
I

S
F�2@H�

l(F �)


D = 0 (28)

because 
D is closed and the closed surface over which we integrate is a

boundary.

4 Projective transformations

In this section we give explicit formulas for the non-abelian duality trans-
formations for a generic Lie bialgebra (G; ~G). They easily follow from the

general discussion at section 2. When the group G acts transitively on the
target the explicite formula for the �-model Eg is given by

Et
g = d(g)Et

0(a(g) + b(g)Et
0)
�1; (29)

where t means the transposition of matrices and the functions a; b; d are the
components of the adjoint action of g on D = G + ~G. In other words

g�1
�
X

v

�
g �

�
a(g) b(g)

0 d(g)

��
X

v

�
; (30)

where X 2 G and v 2 ~G. The dual �-model is obtained by

~Et
~g =

~d(~g)Et
0

�1
(~a(~g) + ~b(~g)Et

0

�1
)�1: (31)

Note that the constant matrix Et
0 in (29) was replaced by its inverse in (31)

because the subspace E in TeD is the graph of the inverse of Et
0 from the

dual point of view.
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We may illustrate the content of the formulas (29) and (31) for the case

of the non-abelian duality of De la Ossa and Quevedo [8]. The double D

is simply the cotangent bundle T �G with the structure of the semi-direct

product of G and the abelian group R
dimG. For simplicity we take E0 = Id.

Then Eq.(29) gives

Eg = Id (32)

and Eq.(31)

( ~E�1
� )ab = �ab + �kcabk ; (33)

where �k are coordinates on the �ber. The corresponding Lagrangians are

respectively

L = Tr(g�1@gg�1 �@g) (34)

and
~L = ~Eab(�)@�

a�@�b: (35)

Now we present the analogues of the Buscher formula for the abelian

duality. We consider the case in which G does not act transitively. The coor-
dinates labeling the orbits of G in the target M we denote y�(� = 1; : : : ; n).
The matrix of the �-model Eij has both types of indices corresponding to y�

and g. The Lagrangian reads

L = E��(y)@y
��@y� + E�b(y; g)@y

�(g�1 �@g)b+
+Ea�(y; g)(g

�1@g)a �@y� + Eab(y; g)(g
�1@g)a(g�1 �@g)b: (36)

Note that the dependence of Eij on g is �xed by the condition (8). Explicitely

Et(y; g) = D(g)Et(y; e)(A(g) +B(g)Et(y; e))�1; (37)

where e is the unit element of G, E(y; e) can be chosen arbitrary and A(g)
is the (n+ dimG)� (n+ dimG) matrix

A(g) �
�
Id 0

0 a(g)

�
; B(g) �

�
0 0

0 b(g)

�
(38)

and D(g) is given in terms of d(g) in the same way as A(g) in terms of a(g).
Needless to say, a(g); b(g) and d(g) are the same as in Eq.(29). As far as the
dual model ~E is concerned

~Et(y; ~g) = ~D(~g) ~Et(y; e)( ~A(~g) + ~B(~g) ~Et(y; e))�1: (39)
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Here
~Et(y; e) = (C +DEt(y; e))(A+BEt(y; e))�1; (40)

where

A = D =

�
Id 0

0 0

�
; B = C =

�
0 0

0 Id

�
: (41)

5 Non-abelian modular space and conclusions

Even without having the clear abelian motivation, the natural question to

ask is what is the modular spaceM of the �-models equivalent by the (G; ~G)

duality. By the equivalence we mean that solving one �-model in the modular

spaceM, the solutions of all other models inM follow. It certainly does not

come as a surprise that M is given by the structure of the Drinfeld double

D. Suppose that D can be decomposed di�erently, say in (K; ~K), in such
a way that both algebras K and ~K are maximally isotropic subspaces of D
with respect to the ad-invariant bilinear form (14). A (K; ~K) �-model can
be obtained by the right action of the group K on the subspace E � TeD

(see section 2). If the subspace E is the same as the corresponding subspace

de�ning the (G; ~G) model then two models are necessarilly equivalent. Indeed,
the condition (17) when a surface l(z; �z) 2 D can be obtained by lifting an
extremal solution from G or K is the same, depending just on the subspace
E 2 TeD. The explicit form of the solution k(z; �z) associated to a solution
g(z; �z) is found by using the decomposition (16) from the point of view of

(K; ~K), i.e.
g(z; �z)~g(z; �z) = k(z; �z)~k(z; �z): (42)

It seems to be an interesting problem to �nd all maximally isotropic decompo-
sitions for a generic double D. We did not attempt to do that but we should
remark that the modular space M is not, in general, exhausted just by the
automorphisms of the double8. Indeed, the pure Z2-duality (G; ~G) ! ( ~G;G)

is not an automorphism of the double if the algebras G and ~G have a di�erent

structure.
Though we can relate two theories in the modular spaceM without actu-

ally solving them it would be interesting to know whether the rich algebraic
structure underlying the models can help to do that. Answering this question

8It is so in the purely abelian case where the modular space O(d; d;Z) is just the group

of the automorphisms of the abelian double.
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is somewhat indirectly related to the issues discussed in this note, neverthe-

less, we should probably mention how the lifting of the extremal surfaces

into the double D leads naturally to a sort of the dressing transformation

[23, 24, 25, 26] generating new solutions from a known one. The key point

is to realize that the condition (17), when a surface l(z; �z) in D is the lift of

some extremal solution from G (or ~G), is invariant with respect to the right

multiplication of l(z; �z) by an arbitrary constant element of D. Suppose that

g(z; �z) is an extremal surface in G. Its lift into D is given by g(z; �z)~g(z; �z).

Now g(z; �z)~g(z; �z)g0 is also the lift of some extremal surface from G, i.e.

g(z; �z)~g(z; �z)g0 = g1(z; �z)~g1(z; �z); (43)

where g1(z; �z) is determined from g(z; �z); ~g(z; �z) and the constant element

g0 2 G. In other words, though the group G does not act on the target G
as the isometry of the �-model its action on the double D via Eq.(43) does
yield new solutions of the model from a known one.

So far our discussion was purely classical. It is obviously of utmost in-

terest whether the described non-abelian dualities relate conformal �eld the-
ories (CFT) or can be even interpreted as exact symmetries of the CFT.
Some interesting results were obtained in [14] where it was shown that some
gauged WZNW models based on the non-semi-simple algebras are equiva-
lent to the non-abelian duality transformations of the WZNW actions. It is
tempting to conjecture that some gauged G=H WZNW models could possess

the bialgebra structure. Since extracting the classical geometry of the target
is somewhat involved procedure [27] it may be di�cult to see immediately
whether they admit the non-commutative conservation laws. After all, a real
understanding in which sense the non-abelian duality is the symmetry of the
CFT requires to carry out in detail the operator mapping between a given

theory and its non-abelian dual. As a prerequisite for such investigations,
we need the derivation of the (G; ~G) non-abelian duality by a sort of path in-
tegral manipulations. Though we have made some progress in this direction
which we do not present here, it is still not su�cient to yield the complete

solution of the problem. It is certainly one of the most important open issues

which have to be settled in order to proceed further with the CFT applica-
tion, with the problem of dilaton which we have completely ignored and with

a sort of the Ro�cek and Verlinde description of the abelian duality [3]. An-
other interesting problem would constitute in understanding the non-abelian

duality when the groups do not act freely. Let us conclude in an optimistic

13



way: we believe that the rich algebraic structure of the presented models

may demonstrate itself as su�cient for performing a consistent quantization

of the theories involved, hopefully yielding also some nontrivial CFT. It is

clear that in that case we may expect new and deep applications of quantum

groups in string theory.
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