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Abstract:

We calculate the complete O(αs) corrections to the quark decay b → ccs taking full account
of the quark masses, but neglecting penguin contributions. For a c to the b quark mass
ratio mc/mb = 0.3 and a strange quark mass of 0.2 GeV, we find that the next-to-leading
order (NLO) corrections increase Γ(b → ccs) by (32 ± 15)% with respect to the leading
order expression, where the uncertainty is mostly due to scale- and scheme-dependences.
Combining this result with the known NLO and non-perturbative corrections to other B
meson decay channels we obtain an updated value for the semileptonic branching ratio of
B mesons, BSL, of (12.0 ± 1.4)% using pole quark masses and (11.2 ± 1.7)% using running
MS masses.
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1. Owing to the newly developed tool of expanding in the inverse heavy quark mass [1],
the theoretical description of weak inclusive decays of heavy mesons now rests on more solid
ground than ever. Since in such decays the energy release is large compared to the masses of
the final state particles, the process takes place essentially at small distances and, in leading
order in the heavy quark expansion (HQE), is described by the underlying quark decay.
Hadronic corrections only enter at second order in the HQE and should be ∼ 1 GeV2/m2

b ,
which is around 5% for B decays with a b quark mass mb ≈ 5 GeV. Thus the accuracy of
theoretical predictions for hadronic quantities like, say, the semileptonic branching ratio is
not so much limited by our necessarily incomplete knowledge of (non-perturbative) hadronic
matrix elements, but rather controlled by our knowledge of perturbative corrections to the
free quark decay.

This issue has recently attracted much attention in connection with the summation of
certain terms of the perturbative series, namely the asymptotically leading ones of order
αn+1

s βn
0 [2]. Although this program can straightforwardly be applied to semileptonic B

decays1 [4], there are severe problems (both technical and conceptual ones) with applying
it to nonleptonic channels, so that in this letter we only deal with the first order radiative
corrections.

Until recently, full O(αs) corrections were only known for the semileptonic decay b → ceν
[5, 6] and for b → cτν [5]. Although it is known that the exchange of gluons between
quarks of unequal masses can yield big effects (cf. the extreme case of an infinitely heavy
quark investigated in Ref. [7]), finite c quark mass effects in the O(αs) corrections to the
nonleptonic decay b → cud and a rough estimate2 of c quark mass effects in b → ccs have
only recently been obtained [8]. In Ref. [10] part of the effects of finite charm and strange
quark masses in the radiative corrections to b → ccs were taken into account, based on the
calculation done in Ref. [5]. In this letter, we complete the calculation of finite quark mass
effects in the O(αs) corrections to b → ccs, neglecting penguin corrections. We exploit this
result to give an updated prediction for the semileptonic branching ratio BSL of B mesons.

2. In calculating the decay rate Γ(b → ccs), we start from its representation as the
imaginary part of the relevant forward-scattering amplitude:

Γ(b → ccs) =
1

mb

Im i
∫

d4x 〈 b | T L∆C=2
W (x)L∆C=2

W (0) | b 〉. (1)

L∆C=2
W is the effective Lagrangian that describes the decay process in the limit of an infinite

W boson mass and to first order in the weak coupling. It can be written as

L∆C=2
W = − GF√

2
V ∗

cs Vcb

6
∑

i=1

ci(µ)Oi(µ). (2)

In this letter we conform to the notation of [11], where the operators O1 and O2 denote
current-current operators with a colour-non-singlet and colour-singlet structure, respec-
tively, whereas the remaining operators are due to the admixture of penguin contributions.

1Cf. [3] for an explicit calculation of the α2

s
β0 term in the decays b → ueν and b → ceν.

2See also [9].
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The ci are perturbatively calculable short-distance coefficients that describe the physics be-
tween the scale of the W boson and the characteristic hadronic scale of the process, which
is of the order of the b quark mass. If we neglect the effects of strong interactions, then
only O2 has a non-vanishing Wilson-coefficient. In next-to-leading order (NLO), both the
coefficients ci and the operators Oi depend on the scheme used to deal with γ5. To that
accuracy, the decay rate Γ(b → ccs) can be written as

Γ(b → ccs) =
G2

F m5
b

64π3
|Vcb|2|Vcs|2 PH(xc, xc, xs)

6
∑

i=1

i
∑

j=1

fijci(µ)cj(µ)dij (3)

≡ G2
F m5

b

64π3
|Vcb|2|Vcs|2 PH(xc, xc, xs)κ(xc, xs, µ) K(xc, xs, µ), (4)

where dij ≡ 1 + rij [αs(mW ) − αs(µ)]/π + kij αs(µ)/π. The function κ is defined in such a
way as to contain the LO effects, whereas the product κK covers the complete NLO terms.
In Eq. (3) the ci denote the leading order Wilson-coefficients, so that both the rij and the
kij are scheme-independent. PH is the tree-level phase-space factor given by

PH(x1, x2, x3) = 12

(1−x1)2
∫

(x2+x3)2

ds

s
(s − x2

2 − x2
3)(1 + x2

1 − s)w(s, x2
2, x

2
3)w(s, x2

1, 1) (5)

with
w(a, b, c) = (a2 + b2 + c2 − 2ab − 2ac − 2bc)1/2. (6)

The arguments of the phase-space factor are ratios of the quark masses, xc = mc/mb and
xs = ms/mb. The weight functions fij are tabulated in Table 1; they depend on3

f =
1

PH(xc, xc, xs)

(1−xc)2
∫

(xc+xs)2

ds
6x2

c

s2
w(s, x2

c , x
2
s)w(1, s, x2

c)(s + x2
s − x2

c)(1 + s − x2
c). (7)

f describes the interference of operators with Dirac structure (V −A)⊗ (V +A) with those
of the form (V −A)⊗(V −A) and vanishes for zero final state quark masses. The coefficients
rij can be obtained from Ref. [11]. In particular, we find

2
∑

i=1

i
∑

j=1

fijci(µ)cj(µ)rij =

10863 − 1278nf + 80n2
f

162β2
0

[

αs(mW )

αs(µ)

]4/β0

−
15021 − 1530nf + 80n2

f

162β2
0

[

αs(mW )

αs(µ)

]−8/β0

, (8)

3Note that we have corrected a sign error in Ref. [10] in all the terms containing f . We are grateful to
G. Buchalla for pointing out this mistake.
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where β0 = 11− 2nf/3 is the lowest order coefficient of the QCD β-function; in our case we
have nf = 5 quark flavours. k11 and k22 were already given in Ref. [10]; k12 can be obtained
from the diagrams shown in Fig. 1 as4

k12 = k22+
2

3
(He+B) with He PH(xc, xc, xs) =

768π5

g2
sm

6
b

Im(VI+VIII+X+X†+XI+XI†). (9)

Here B is a scheme-dependent constant that removes the scheme-dependence of He; in näıve
dimensional regularization (see below) one finds B = 11 [11]. Note that He is independent
of the definition of the quark mass, which only affects k11 and k22 through the self-energy
diagrams.

3. In the following, we present our results in the limit of vanishing strange quark mass
(as will be discussed below, their dependence on this parameter is small); the full results
are available from the authors as a Mathematica file. We have checked that all formulæ
coincide with the corresponding ones in Ref. [8] when the appropriate limit is taken.5

Without going into too many details, we present first a short outline of the method of
calculation of He which is described at length in Ref. [8]. In calculating the imaginary parts
of the diagrams of Fig. 1, we use MS subtraction and control the ultraviolet divergences
through dimensional regularization with an anticommuting γ5, often referred to as näıve
dimensional regularization (NDR). NDR is applicable if one uses Fierz-transformations to
relate diagrams with closed fermion loops, which are ambiguous in NDR, to diagrams which
are well-defined in NDR. As shown in Ref. [12], Fierz-transformations are only valid diagram
by diagram with a correct choice of the so-called evanescent operators. We have verified that
in the limits mc, ms → 0 our procedure yields the same results as obtained in other schemes
[13]. Technically, we calculate the imaginary parts of the forward-scattering amplitudes by
applying Cutkosky rules. We regularize intermediate infra-red singularities by introducing
small quark and gluon masses, denoted by ρ and λ respectively, which allows phase-space
integration to be done in four dimensions.

For the sake of compactness in displaying the formulæ, the square masses of the heavy
quarks, c, b, are denoted by c, b. In the same spirit, we define ∆ = (

√
b−√

c)2; w = w(b, c, t)
(or w = w(p2

1, p
2
2, l

2) in Eqs. (12), (13) below), where w was defined in Eq. (6), and similarly
v = w(c, c, t)/t. Finally, we omit the arguments of the functions. Our results are written
in terms of the functions A, B, C, B̃, K̃, which were defined in Ref. [8], Eqs. (A.1)–(A.4),
with M2 ≡ p2

1 and µ2 ≡ p2
2. Hence, throughout this letter we consider the external square

momenta p2
1, p2

2 and (p1 +p2)
2 to be the natural arguments of those functions. The integrals

can be computed following standard techniques and be expressed in terms of logarithmic
and dilogarithmic functions. The final analytic expressions for A, B, C, B̃, K̃ are rather
involved; we will give them elsewhere along with details of the calculation. The functions
Kj, j = 0, 1, . . . , 7, denote certain phase-space integrals defined as

(K0, . . . ,K7) =
∫

LIPS(p1, p2, k)

(

1,
1

2p1k + λ2
, p1k,

p2k

2p1k + λ2
,

1

λ2 − 2kl
,

p2k

λ2 − 2kl
,

4We use the same notations as in Ref. [8].
5Note a misprint in Eq. (C.9) in Ref. [8]: the factor (2m2

c
+ s) should read (m2

c
+ 2s).
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1

(λ2 − 2kl)(2p2k + λ2)
,

1

(2p1k + λ2)(2p2k + λ2)

)

, (10)

where l = p1 + p2 + k. K0,. . . , K5, can be obtained from the results given in Ref. [14],
whereas the calculation of K6 and K7 requires some effort. The prime symbol (′), as in C′

or K′
2 below, will always denote the replacement p1 ↔ p2. After a tedious calculation, one

finds

(K6,K7) =
π2

4l2
(−C, [C + C′]) , (11)

where C is given by

C = −2 ln
m1K+ + m2

m1
ln

K+l2

w(K+ − 1)
− 2L2

(

K+ − 1

K+ + m2/m1

)

− 2 ln
m1K− + m2

m1
ln

K+ − K−

1 − K−

+
5

2
L2

(

K− − K+

K− + m2/m1

)

− 2L2

(

K− − 1

K− + m2/m1

)

+ 2 ln
m2

m1

ln K+ − 2L2

(−m1K+

m2

)

+ 2L2

(−m1

m2

)

+ ln
l2

m2
1

ln
l2

l2 − (m1 + m2)2

+ L2

(

l2 − (m1 + m2)
2

l2

)

+ ln
K− + m2/m1

K+ + m2/m1

ln
λ√
l2

− 1

2
L2

(

K+ − K−

K+ + m2/m1

)

. (12)

In the above formula, we have introduced the obvious notation
√

p2
j = mj . The functions

K± are given by

K± =
l2 − p2

1 − p2
2 ± w

2m1m2
. (13)

Now that we have calculated the Ki phase-space integrals, we may give the imaginary parts
of the relevant diagrams, where we denote the sum of all j-particle cuts for a given diagram
by the superscript (j). To start with, we find for diagram VI

Im VI(j) =
1

8πb

∫ b

4c
dt (b − t)2

[

bρ
(j−1)
1 − 2ρ

(j−1)
2

]

, (14)

where the spectral densities ρ
(j)
1 and ρ

(j)
2 are given by

ρ
(2)
1 = Re

g2v

24π4t

{

(4c − t)[t(A + B) + 2(t + c)B̃] − 2(t + 2c)
(

C +
1

2

)

+ (t2 − 4c2)K̃
}

,

ρ
(2)
2 = Re

g2v

48π4

{

2(t − c)[t(A + B) + 2C + 1 − (t − 2c)K̃] + (4t2 − 15ct + 2c2)B̃
}

,

ρ
(3)
1 =

g2

6π6t2

{

t(t2 − 4c2)K7 − 2t(t + c)K1 − 2tK0 + 8cK3 + 8K2

}

,

ρ
(3)
2 =

g2

12π6t

{

− 2t(t − c)(t − 2c)K7 + 2t(2t − c)K1 + tK0 − 4cK3 − 4K2

}

. (15)
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The external momenta in A, B, C, B̃, K̃ satisfy p2
1 = p2

2 = c, (p1 + p2)
2 = t, whereas in ρ

(3)
i ,

t ≡ (p1 + p2 + k)2. For the remaining diagrams, we obtain:

Im VIII(3) = Re
−g2

32π5b

∫ ∆

c

dt

t
(c − t)2(t − c − b)w

×
{

2tA + 2tB − 2(c − t)B̃ + 8
(

C +
1

16

)

+ (c − t)K̃
}

, (16)

Im VIII(4) =
g2

8π7b

∫ ∆

c
dt (t − c − b)w

{

K0 − (t − c)K1 − tK′
1 + (t − c)2K7

}

, (17)

Im [X + X†](3) =
g2

32π5b

∫ ∆

c

dt

t
(t − c)2w

{

(b + c − t)
[

2t(A + B) + 8C +
1

2

+(b + c − t)K̃
]

− 2(t2 − 2tc − 2tb + c2 + b2)B̃
}

, (18)

Im [X + X†](4) =
g2

8π7

∫ ∆

c

dt

t
(t − c)2

{

(t − c − b)2K6 + K0 − (t − b)K1 − (t − c)K4

}

,

(19)

Im [XI + XI†](3) =
g2

192π5b

∫ b

4c

dt

t
(b − t)2v

{

(t + 2c)b
[

t(A + 4B) + (t + 2b)B̃

− 2C − 1 − (b − t)K̃
]

− 2t(t − c)
[

(t + b)(A + B) − (b − t)(2B̃ − K̃) + 2C + 1
]}

, (20)

Im [XI + XI†](4) =
g2

48π7

∫ b

4c

dt

t
v
{

(t + 2c)
[

tK0 + b(t − b)K1 + 2K′
2 + b2K4 − 2bK5

− b(t − b)2K6

]

+ 2t(t − c)
[

(t − b)K1 + tK4 − (t − b)2K6

]}

. (21)

In Eq. (16), the arguments of A, B, C, B̃, K̃ satisfy p2
1 = c, p2

2 = ρ2 → 0. As mentioned
above, ρ (and also λ) regularizes the infra-red singularities arising in intermediate steps of
the calculation. They cancel upon addition of the 3- and 4-particle cut contributions to
each diagram. In Eq. (18), we set p2

1 = c, p2
2 = b. Finally, in Eq. (20), we have p2

1 = ρ2 → 0,
p2

2 = b, and in all three equations (p1 +p2)
2 = t. In Eq. (17), the arguments of the functions

Kj are p2
1 = ρ2 → 0, p2

2 = c and l2 = t. In Eq. (19), p2
1 = c, p2

2 = t and l2 = b. Finally, in
Eq. (21), p2

1 = ρ2 → 0, p2
2 = t and l2 = b.

The numerical results of our calculation are presented in Table 2, namely k12 as a function
of the charm quark mass for zero strange quark mass and ms = 0.2 GeV, respectively. For
comparison and completeness we likewise give the coefficients k11 and k22 referring to the
on-shell definition of quark masses. The table shows also the leading order correction κ and
the ratio ΓNLO/ΓLO = K. In the latter quantity, we have estimated the unknown NLO
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penguin contributions very conservatively by assuming 0 < dij < 2, which corresponds to
|kij| < 15 for αs = 0.2. The other input parameters are given in the table caption. The effect
of a finite value of the strange quark mass is tiny for the rate (though appreciable for the
NLO corrections after dividing out the phase-space factor), and less than 5% for xc ≤ 0.4,
which is less than the estimated uncertainty from the unknown NLO penguin contributions.
Using pole masses and a renormalization scale µ = mb, we thus observe that Γ(b → ccs)
increases by (32 ± 7)% through NLO corrections for a reasonable choice of quark masses
xc = 0.3. If we allow the renormalization scale to vary in the range6 mb/2 < µ < 2mb and
take the uncertainty in xc to be ±0.05, we obtain ΓNLO/ΓLO = 1.32 ± 0.15.

So far we have used the on-shell definition of the quark mass. However, far from being
compulsory, this definition most likely introduces artificially large higher order perturbative
corrections (cf. [4]). It is therefore most instructive to eliminate the pole mass in favour of
an off-shell renormalized mass, such as, e.g. the MS mass. As discussed in Ref. [15], this
amounts to the replacement

m5
b PH(xc, xc, 0) −→ m̄5

b PH(x̄c, x̄c, 0)

{

1 +
αs

π

(

20

3
− 5 ln

m̄2
b

µ2
− 2x̄c ln x̄c

d ln PH(x̄c, x̄c, 0)

dx̄c

)}

(22)
in the decay rate, where x̄ denotes a running quantity evaluated at the scale µ. We then
obtain7 ΓNLO/ΓLO = 1.2±0.4, which indicates that the uncertainty due to unknown higher
order corrections is appreciable. We shall come back to this point in the next section.

4. With the results for Γ(b → ccs) in hand, we are ready to give an updated value for
the semileptonic branching ratio BSL of B mesons defined as

BSL ≡ Γ(B → Xeν)
∑

ℓ=e, µ, τΓ(B → Xℓνℓ) + Γ(B → Xc) + Γ(B → Xcc̄) + Γ(rare decays)
. (23)

Performing an expansion in the inverse b quark mass, it is possible to show [1] that the
inclusive decay rate of a B meson into a final state X coincides with that of the underlying
b quark decay up to corrections of order 1/mn

b (n ≥ 2):

Γ(B → X) = Γ(b → x)
(

1 + O(1/m2
b)
)

. (24)

The power-suppressed correction terms to the total inclusive widths of both semi– and
nonleptonic decays were calculated in Refs. [1, 16]. They depend on two hadronic matrix
elements, λ1 and λ2. While the latter is related to the squared mass difference of the B and
the B∗ meson,

λ2 ≈
1

4
(m2

B∗ − m2
B) = 0.12 GeV2, (25)

6We conform here to the conservative choice of “characteristic scales” that is preferred if one follows
standard renormalization group improvement arguments, where large logarithms of type lnm2

b
/µ2 are to

be avoided. The results obtained from summing the asymptotically leading part of the perturbative series
seem, however, to indicate a lower scale, at least in semileptonic decays, cf. [2, 3, 4]. It remains to be seen
if those scales necessarily have to coincide or not.

7Note that xc = 0.30 ± 0.05 translates to x̄c(µ = mb) = 0.28 ± 0.05.

– 6 –



the former, λ1, is difficult to measure; in this letter we use λ1 = −(0.6 ± 0.1) GeV2 as
determined from QCD sum rules [17].

The one-loop corrections to the partial decay widths in Eq. (23) can be found tabulated
in Ref. [10] except for Γ(b → ccs), which was a rough estimate. In Table 2 we give the
corrections to this partial width. As in Ref. [10], we neglect the rare decays in the present
analysis because of their smallness. Using the same input parameters as in the last section,
we find

BSL = 12.0 ± 0.9+0.9
−1.3, B̄SL = 11.2 ± 1.0+1.0

−2.2. (26)

Here the first error comes from the uncertainty in the input parameters xc, λ1 and Γ(b → ccs)
(in which the effect of the penguin operators has been estimated), whereas the second one
indicates the variation of the result with the renormalization scale µ. Both results are in
agreement with the most recent experimental data and the particle data group world average
BSL = (10.43±0.24)% [18]. Nevertheless, we observe a nonnegligible scheme-dependence of
the two results. Although at the considered order in αs it is difficult to judge which scheme
is “best”, we remark that at least for the semileptonic width one can sum up a certain
class of terms, which are of order βn

0 αn+1
s . One observes that both, the explicit coefficients

multiplying βn
0 αn+1

s with n not too big (say n < 5), and the resummed all-order expression
are smaller in the MS than in the on-shell scheme ([4], see also [2]). Interpreting this result
with due caution, since the evidence that these terms are dominant already in low orders
comes from empirical observation (of quantities with known complete α2

s corrections) rather
than from a theoretical principle, we still feel that it favours the MS scheme. Any further
discussion would require the knowledge of complete α2

s or even higher order terms, whose
calculation is a formidable task.

Finally, we would like to discuss shortly the average charm quark content of B decays,
which is defined by

〈nc 〉 = 1 +
Γ(B → Xcc̄)

Γtot
. (27)

We obtain (using again the same input parameters as in the last section):

〈nc 〉 = 1.27 ± 0.07, 〈 n̄c 〉 = 1.35 ± 0.19, (28)

which has to be compared with the experimental result 〈nc 〉exp = 1.04 ± 0.07 [18]. The
experimental and the theoretical numbers differ by 3 standard deviations. Unfortunately, we
do not see any natural theoretical explanation for that fact, unless xc were much smaller than
we assumed, which is however in conflict with the results obtained from the phenomenology
of charmed particles.
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Figure

Figure 1: The diagrams contributing to the forward–scattering amplitude Eq. (1) up to
order αs without penguins. The crossed circles denote insertions of any of the operators Oi.
Of the three internal quark lines, the upper one denotes the c quark, the lower one the s
quark, and the middle one the c antiquark.
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Tables

fij 1 2 3 4 5 6

1 1

2 2
3

1

3 2 2
3

1

4 2
3

2 2
3

1

5 2f 2
3
f 2f 2

3
f 1

6 2
3
f 2f 2

3
f 2f 2

3
1

Table 1: Coefficients fij defined in Eq. (3).

xc κ(xc, 0 , mb) k11 k12(µ = mb) k22 K(xc, 0 , mb) κ K PH

0 1.054 −1.34 −7.75 −1.41 1.01 ± 0.05 1.065 ± 0.059

0.1 1.052 −0.14 −6.31 −0.53 1.07 ± 0.06 0.959 ± 0.052

0.2 1.047 2.40 −3.50 0.99 1.17 ± 0.06 0.634 ± 0.035

0.3 1.040 6.44 0.82 2.99 1.29 ± 0.07 0.263 ± 0.015

0.4 1.032 14.76 9.50 5.83 1.45 ± 0.08 0.039 ± 0.002

xc κ(xc, xs, mb) k11 k12(µ = mb) k22 K(xc, xs, mb) κ K PH

0 1.054 −1.33 −7.63 −1.26 1.02 ± 0.05 1.062 ± 0.058

0.1 1.052 −0.05 −6.20 −0.35 1.08 ± 0.06 0.956 ± 0.052

0.2 1.047 2.53 −3.36 1.23 1.18 ± 0.06 0.631 ± 0.034

0.3 1.040 6.69 1.08 3.41 1.32 ± 0.07 0.259 ± 0.014

0.4 1.032 15.68 10.43 7.09 1.54 ± 0.08 0.037 ± 0.002

Table 2: The LO and NLO corrections to the nonleptonic decay b → ccs as a function of
xc = mc/mb. The penultimate column gives the increase of the decay rate Γ(b → ccs) in
NLO if we include finite c and s quark effects in the radiative corrections. In the upper table
we have put ms = 0. The errors in K represent a conservative estimate of the unknown
parts of the NLO penguin contributions. The input parameters are µ = mb = 4.8 GeV,
xs = 0.04 and Λ

(4)

MS
= 312 MeV, which corresponds to αs(mZ) = 0.117. A comparison of the

last column in both tables shows that the effect of the strange quark mass is negligible and
actually below 5% for all values of xc.
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