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contents in a second, we might write OCR Output

simple string data type, defining the effective length of the string in one component and the string’s
In order to use an object of a derived-data type we must first define the form of the type. For a very

2.] Derived—dczta types

2. Features for ADTs

Fortran revision, due in the year 2000.

Fortran standards committees are giving very serious consideration to adding these to the next major
tional wisdom deems necessary for the full implementation of object-oriented programming. But the
final hurdle and incorporate the messaging and other features (inheritance, polymorphism) that conven

We shall conclude by noting that this round of standardization did not (and could not) take the

tures: pointers, recursion and dynamic memory allocation.
examine examples and include complex types such as linked lists that require other new language fea
how these, combined with function overloading, provide all we need for abstract data types. We shall
packaged into modules together with a set of defined operations on objects of the types. We shall see

In this paper we shall see how a derived-data type may be defined, and how such types can be

Fortran standardization committee, meeting in Vienna in 1982.
tran 90, following initial suggestions made by Lawrie Schonfelder of Liverpool University to the ISO
meanings of the operations associated with an object". This is just how they are implemented in For
representation—dependent specification", with attributes "that specify the names and define the abstract
types. An early paper [4] referred to an abstract data type as "a class of objects defined by a
developments, structured programming, and incorporates two others, data structures and abstract data
procedural languages have occurred. The most recent Fortran standard [2][3] consolidates one of these
level programming language but since then tremendous developments in programming techniques in
It is now forty years since work began on the Hrst Fortran compiler [l]. Fortran was the first high

1. Fortran and abstraction

withstand the OO onslaught.
the implementation of ADTs in Fortran and speculates on whether the language will
Fortran standard, but the newest wave is object orientation (OO). This paper describes
support one of these techniques, abstract data types (ADTs), is now part of the latest
certain time lag do these techniques become standardized. The functionality required to
techniques, each accompanied by miraculous claims from its proponents. Only after a
Progress in programming languages has been marked by successive waves of new
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We could also write the statement above as OCR Output

END INTERFACE

MODULE PROCEDURE string_concat

INTERFACE OPERATOR(//)

An example of an interface for this string concatenation is
The association between an operator and its corresponding function is made via an interface block.

function result. The function is of the same string type as its arguments.
that takes its two INTENT(IN) arguments as operands and returns the result of the operation as the

END FUNCTION string_concat

string_concat%length = sl%length + s2%length

s2%string_data(l:s2%length)

string_concat%string_data = sl%string_data(l:sl%length) // &

TYPE (string) string_concat

TYPE (string), INTENT(IN) zz sl, s2

FUNCTION string_concet(s1, s2)

tion like

requires us to define the exact meaning of the // symbol in this context, and this we do using a func
where we note the use of the intrinsic operator symbol // between two objects of derived type. This

must define operationstr3 = strl//str2

we might wish to write

TYPE(string) strl, str2, str3

CHARACTER cherl

define the meaning of the operator. Given
For an operation between derived—data types, or between a derived type and an intrinsic type, we must

2.2 Structure—valued functions

position in the constructor.
which is known as a structure constructor. Each component is assigned the value in the corresponding

str2 = string(7, 'Fortran’)

The form of a literal constant of a derived type is shown by

str1%length : 7

To select components of a derived type object, we use the % qualifier:

TYPE(string) strl, str2

Now we can create structures of that type;

END TYPE string

CHARACTER(80) string_data

INTEGER length

TYPE string
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of type string. OCR Output

we indicate to a compiler that a function string_len should be invoked wherever LEN has an argument

END INTERFACE

MODULE PROCEDURE string_len

INTERFACE LEN

Here also we are able to use overloading. By use of an interface block

length = LEN(str3)

stnng, as in

string type, so we might wish to use the name of the intrinsic function LEN to extract the length of a
Just as we overload the intrinsic operator symbol // to indicate concatenation of two objects of our

2.4 Intrinsic function overloading

END INTERFACE

MODULE PROCEDURE c_to_s_assign

INTERFACE assignment(=)

block:

The association between an assignment and its corresponding subroutine is also made via an interface

END SUBROUTINE c_to_s_assign

s%length = LEN(c)

s%string_data = c

CHARACTER(LEN=*), INTENT(IN) :: c

TYPE (string), INTENT(OUT) ;: s

SUBROUTINE c_to_s_assign(s, c)

other to the right—hand side of the assignment. This might be
we have to provide a subroutine with two arguments, one corresponding to the left—hand side and the

str3 = charl must define assignment

the assignment. For
derived—data type and an object of a different derived or intrinsic type, we must define the meaning of
on a component—by-—component basis (but can be overridden). However, between an object of one
For assignment between two objects of the same derived—data type, as shown so far, assignment applies

2.3 Assignment

the two expressions are equivalent only if the appropriate parentheses are added as shown.

vector3 = (matrix .times. vectorl) + vector2

vector3 = matrix * vectorl + vector2

highest as a unary operator or the lowest as a binary one. Thus, assuming the obvious definitions, in
token like //, the usual precedence rules apply, whereas for named operators their precedence is the
where we note the use of a named operator, .c0ncat. . A difference is that, for an intrinsic operator
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good abstraction: the details of operations and even types can be changed without user code being OCR Output
lic that are to be exposed to users. This high degree of information hiding is essential to achieve
or by making the whole contents of the module private by default, and making just those entities pub

PRIVATE string_len

vate, as in

the internal details of a module as possible, and we can do this by making parts of the module pri
to a procedure to gain access to its facilities. However, in general we would want to hide as much of

USE string_type

The user of this module simply has to add the statement

END MODULE string_type

END FUNCTION string_concat

FUNCTION string_concat(sl, $2)

END FUNCTION string_len

string_len = s%length

TYPE(stIing) ;: s

INTEGER string_len

FUNCTION string_len(s)

END SUBROUTINE s_to_c_assign

c = s%string_data(l:s%length)

CHARACTER(LEN=*), INTENT(OUT) :: c

TYPE (string), INTENT(IN) :: s

SUBROUTINE s_t0_c_assign(c, s)

END SUBROUTINE c_to_s_assign

SUBROUTINE c_to_s_assign(s, c)

CONTAINS

END INTERFACE

MODULE PROCEDURE string_concat

INTERFACE OPERATOR(//)

END INTERFACE

MODULE PROCEDURE string_len

INTERFACE LEN

END INTERFACE

MODULE PROCEDURE c_to_s_assign, s_to_c_assign

INTERFACE assignment(=)

END TYPE string

CHARACTER(LEN=80> zz string_data

INTEGER length

TYPE string

MODULE string_type

recovery, and serves only as an example of the basic principles.
As already stated, this is for a very simple suing type, of fixed maximum length and with no error
nition of string—to-character assignment, follows (with a : standing for code that has already appeared).

An example of a module containing the facilities we have so far introduced, as well as the defi

interface blocks.

assignments and overloaded function definitions in a module along with the type definition and all the
To make a full-blown abstract data type we have to place the procedures defining the operators,
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above to make value an array which, for each entry in the list, has a different, dynamically—defined OCR Output
pointer array can appear as a component of a derived—data type. We can thus modify the example
allocate space to arrays as long as they have the POINTER (or ALLOCATABLE) attribute, and such a

We have just met the statement to allocate space to a pointer. We can use this statement also to

IF (ASSOCIATED(first, chain)) THEN

pointer):

or whether association exists between a defined pointer and a defined target (which may, itself, be a

IF (AssOcIATED(chain)> THEN

The intrinsic function ASSOCIATED can test the association status of a defined pointer:

without NULLIFYing a pointer referring to it.
Some care has to be taken not to leave a pointer ’dangling’ by use of DEALLOCATE on a target

NULLIFY (first) for setting to ’null'

DEALLOCATE (chain) for returning storage

• disassociated:

first => chain pointer assignment

ALLOCATE(chain) space allocation to pointer

• associated (after allocation or a pointer assignment):

• undefined (initial state);

A pointer has an association status that is one of:

in the list.

but we would normally define additional pointers to point at, for instance, the first and current entries

chain%next chain%next%next

chain%value chain%next%value

After suitable allocations and definitions, the first two entries could be addressed as

TYPE(entry), POINTER :: chain

point to the next entry in a linked list. We can define the beginning of a linked list of such entries:
where the type definition defines a data component, value, and a pointer component, next, that can

END TYPE entry

TYPE(entry). POINTER :: next

REAL value

TYPE entry

component of a derived type;
It is possible in Fortran 90 to give an object the POINTER attribute, and such a pointer can be a

2.6 Pointers and dynamic allocation

ference during execution (remember those awful COMMON variables!).
affected, and the internal state of the module is protected from deliberate or inadvertent outside inter
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giving access to the corresponding function in a module: OCR Output

END INTERFACE

MODULE PROCEDURE add_intervals

INTERFACE OPERATOR(+)

and we can define the interface for the addition operator as

END TYPE interval

REAL lower, upper

TYPE interval

arithmetic, in which the type contains the absolute bounds on any given calculation. The basic type is
An example using an arithmetic type is given in outline in [3]. This is for a data type for interval

3.] Interval arithmetic

electron configurations and their angular momentum couplings has been given by Scott et al. [8].
a derived-data type [7]. A completely implemented example concerned with the construction of sets of
1991 discussed how a histogramming package might be implemented in Fortran 90, with a histogram as
and a model implementation makes use of all the features so far described. A paper published in
module [5]. Indeed, this proposal has since been developed and formally published as a standard [6],
ADT was that for a varying character—string type proposed by him to become a standard Fortran 90
Given the original initiative of Schonfelder, it came as no surprise that one of the first examples of an

3. Examples

and trees.

We now have all the elements we require to manipulate quite general data st:ructures such as lists

RECURSIVE FUNCTION finishttreel

RECURSIVE keyword to the procedure header line:
procedure be able to call itself recursively. This too is possible in Fortran 90, by adding the
In an example we shall meet in the next Section, the traversal of a data structure will require that a

2.7 Recursion

ALLOCATE(chain%value(n>) n is a variable

and for a given entry named chain we can allocate space to value thus:

END TYPE entry

nextTYPE(entry> , POINTER

REAL, DIMENsION< : ), POINTER :: value

TYPE entry

length. The data type becomes
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• an index number supplied by the user, OCR Output

as far as the user is concerned:

ment is present in the call to new_n0de, based on the basic node definition. At each node are stored,
Intemally, the module allocates a node, and allocates data at that node if the corresponding argu

nodes each connected to a set of daughter nodes.
pointed at by a single higher node is referred to as a layer. This is thus a standard tree of mother
next lower level, and point back to exactly one node at the next higher level. The set of nodes
some nonzero number of nodes at the second level. All other nodes point at zero or more nodes at the
tree data structure consists of a set of connected nodes, arranged in levels. The top node points to
eagle and its use in a physics experiment has been reported in [9]. For the purposes of this paper, a
many of the facilities required to support and manipulate tree structures has been written. It is called
As a second example we take that of a tree structure where, as an experiment, a module providing

3.2 Tree structure

like SIN and COS.

Such a module might be further extended to provide, for instance, overloaded mathematical functions
operands. In a similar fashion, elemental versions of defined assignments must be provided explicitly.
where, once again, the appropriate function is selected by the compiler depending on the rank of the

END MODULE interval_addition

END FUNCTION addll

addl1%upper = a%upper + b%upper assigmnente.

addll%lower = a%lower + b%lower These are whole array

TYPE (interval), DIMENSION(SIZE(a)), INTENT(IN) :: b

TYPE (interval), DIMENSION(SIZE(a)) addll

TYPE (interval) , DIMENSION( : ) , INTENT(IN)

FUNCTION addll (A, B)

END FUNCTION addOO

addOO%upper = a%upper + b%upper allow for roundoff.

addOO%lower = a%lower + b%lower Production code would

TYPE (interval), intent(in) :: a, b

TYPE (interval) addOO

FUNCTION addOO (a, b)

CONTAINS

END INTERFACE

MODULE PROCEDURE addOO, addll

INTERFACE OPERATOR(+)

END TYPE interval

REAL lower, upper

TYPE interval

MODULE interval_addition

and rank—one arrays of intervals:
pair of ranks for which it is needed. For example, the module below provides summation for scalars
This shows addition for two scalars. In the general case, a function must be provided for each rank or

END FUNCTION add_intervals

add_intervals%upper = a%upper + b%upper E allow for roundoff.

add_intervals%lower = a%lower + b%Iower E Production code would

TYPE(interval), INTENT(IN) z: a, b

TYPE(interval) add_intervals

FUNCTION add_intervals(a,b)
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previous retrieves the data in the mother node of the most recent node accessed. OCR Output

next_in_layer like next, for the next node in the current layer.

next like retrieve, for the node with the next following running index number.

the pointers to any daughter nodes.
retrieve retrieves a specified node; the data arrays (if present) are accessed via pointers, as are

in subsequent calls.
argument, and sets up pointers to all the specified daughter nodes that will be stored

new_node stores the data provided at the node whose index number is supplied as a second

that tree.

start must be called to initialise a tree immediately before the first call to new_n0de for

The user interfaces are:

node. A reference pointer is one between any two nodes and is not part of the tree structure as such.
A single reference pointer to another node (even in a different tree) may also be stored at each

neously.
The module supports an arbitrary number of independent trees; they may be manipulated simulta

that the internal structure of the type is inaccessible outside the module.
where the pointer array p holds the dynamically defined pointers actually required at each node. Note

END TYPE data

TYPE(st:ate) , POINTER; own_state

TYPE(dat;a), POINTER :: back

TYPE (ptr) , POINTER :: p( :)

REAL, POINTER y( : )

INTEGER, POINTER : : j (: ) , liz‘zk( : )

CHARACTER (max_char) header

INTEGER index, amc>unt(3), rurmi.ng_index

PRIVATE

TYPE, PUBLIC :2 data

and secondly for the basic node data type:

END TYPE ptr

TYPE(dat:a), pointer :: pp

TYPE ptr

pointer array:

module. The corresponding type definitions are firstly for a pointer data type for use to create a
The node contains also various internal variables, such a running index number maintained by the

• and the optional pointers to nodes with specified index numbers (the daughter nodes).

• an optional real array,

• an optional integer array,

• an optional fixed character component,

• a pointer to its mother node,
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further validation and navigation facilities. The existing code is available on request to the author. OCR Output
ponent; allow an error exit if insufficient storage is available for allocation for dynamic memory; and

Future plans might be to add the following features: replace a node; add a node; extend a com

END SUBROUTINE finish

DEALLOCATE (tree)

DEALLOCATE(tree%j, tree%y, tree%p, tree%linl<)

END DO

CALL finish (tree%p(loop)%pp) 1 delete all their subtrees

DO loop = 1, size(tree%p) loop over children

INTEGER loop

TYPE(data), POINTER :: tree

Traverse a complete tree or subtree, deallocating all storage

RECURSIVE SUBROUTINE finish (tree)

example, the complete code to traverse a tree deallocating all its associated storage is simply:
features of the language — the succinct way in which it can be used to express algorithms. As an

The code consists of less than 800 lines of Fortran 90. This demonstrates one of the remarkable

and retrieved data can be referred to directly, say as j(l6).
optional integer data, real data or pointers stored at that node. These names are chosen by the user,
where back is the index of the mother of the node index, and j, y, and link are pointers to any

CALL retrieve(tree_name, index, back, name, j, y, link)

and to retrieve data we write

integer_data = (/ (i, i = l, 10) /), links = (/ 2, 3, 5/))

CALL new_node(tree_name, index, node_name,

ers to three daughter nodes, we write, for example,
These interfaces are simple. To add a new node to a tree, with a name, some integer data, and point

deallocates all the storage occupied by a complete tree.finish

the specified node.
get_reference like retrieve, but for the data at the node that is the target of the reference pointer at

another tree.

set_reference establishes a reference pointer between a node of one tree and a node of the same or

restore_tree reads a complete tree from a specified unit.

dump_tree writes a complete tree to a specified unit.
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this be one of the standards community’s most important tasks for the next decade? OCR Output
both procedures and I/O, enabling numerical code in Fortran to be used via interfaces in C+—+. Could
be most helpful to users would be a standardized method of communication between languages, for
resist inroads from C++ because that language is seen to be larger still. In the meantime, what would
succeed only time can tell, but the final irony may be that Fortran 90, once criticized for its size, will
vital to compete with OO languages, and especially C++, on their home ground. Whether this plan will
features to the next major language version, Fortran 2000, but also to add the OO features deemed
The Fortran committees, X3J3 and WG5, have set themselves the task not only to add similar powerful
High-Performance Fortran, has been established by a consortium of academia and industry [13][14].
large-scale computations still seem to be performed in Fortran, and here a supplementary standard,
group comp.lang.c++ in 1994 failed, however, to tum up many finished products.) On the other hand,
grams, are investigating the use of C++ for all their work. (A survey I conducted on the Internet news
entists, whose work requires not only numerical calculations but also suitable interfaces to their pro
produce an agreed document (as does Jones too). However, despite these formal obstacles, many sci
reports on the difficulties that the C++ standards committees, X3} 16 and WG21, face in trying to
thing that writers of non-trivial applications are beginning to find a disadvantage. De Morgan [12]
cially those based on windowing, but still does not benefit from having a recognised standard, some

C++, available widely also on PCs, has begun to dominate many programming applications, espe

90).

the precedence of defined operators in both languages (but note the module as an advantage for Fortran
(as opposed to numerical features), Woodyard and Mills regret the absence of a method for specifying
en the existence of the array as a first—class object in Fortran 90, although with respect to abstraction
for the support of object-oriented programming seem unnecessary". This might be even more true giv
them, there appears to be hardly any scope for more than data abstraction and the facilities needed
oriented programming. For other areas, such as classical arithmetic types and computations based upon
[ll], writes "In some areas, such as interactive graphics, there is clearly enormous scope for object
come into their own. But as a numerical language, Stroustrup himself, quoted by Woodyard and Mills
cially strong on those features required to handle effectively graphical interfaces, where objects really
C++ is getting too complicated and will fall apart under its own weight. As a language, C++ is espe
existing (and future) C and C++ standards are beginning to emerge. He quotes also an opinion that
this is not the case, and Jones points out that potential problems of a lack of compatibility between the

C++, with its fully fledged OO features is widely viewed as a proper superset of C, but in fact

Fortran’s.

are apparently making little headway (Jones [10]). Its standard lays less stress on portability than does
computing community, although attempts to incorporate meaningful numerical features into the language
gramming. Its simplicity has meant also that it has made inroads into Fortran’s traditional numerical
Smalltalk. C came as a part of most UNIX systems and is widely used for all levels of systems pro
been further developed by Bjarne Stroustrup into C++, an object-oriented language influenced by

UNIX brought with it the now highly-successful general-purpose language C. This language has

end of that decade.

and this trend was certainly accentuated by the uncertainty that surrounded the new standard at the
ments did begin seriously to affect Fortran’s predominance in this field - UNIX and object orientation
it ploughed on as the workhorse of scientific computing. However, in the late 1980s, two develop
safety) and ADA (with its ADTs) caused Fortran proponents some concern in the 1980s. Meanwhile,
PL/1 was expected to replace Fortran (and COBOL). ALGOL’s successors Pascal (with its emphasis on
block-structured language ALGOL was regarded as superior to Fortran. In the 1970s the more powerful
Fortran has always had a slightly (sometimes even decidedly) old-fashioned image. In the 1960s, the
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