
ar
X

iv
:h

ep
-t

h/
95

02
07

2v
2 

 3
 M

ar
 1

99
5

CERN-TH 7547/94
POLFIS-TH. 01/95
UCLA 94/TEP/45

KUL-TF-95/4
hep-th/9502072

Duality Transformations in Supersymmetric
Yang–Mills Theories coupled to Supergravity

A. Ceresole1, R. D’Auria1, S. Ferrara2 and A. Van Proeyen3 ⋆

1Dipartimento di Fisica, Politecnico di Torino,

Corso Duca Degli Abruzzi 24, 10129 Torino, Italy

and

INFN, Sezione di Torino, Italy

2CERN, 1211 Geneva 23, Switzerland

3Instituut voor Theoretische Fysica, K.U. Leuven

Celestijnenlaan 200 D

B–3001 Leuven, Belgium

Abstract

We consider duality transformations in N = 2, d = 4 Yang–Mills theory
coupled to N = 2 supergravity. A symplectic and coordinate covariant
framework is established, which allows one to discuss stringy ‘classical and
quantum duality symmetries’ (monodromies), incorporating T and S dual-
ities. In particular, we shall be able to study theories (like N = 2 heterotic
strings) which are formulated in symplectic basis where a ‘holomorphic
prepotential’ F does not exist, and yet give general expressions for all rel-
evant physical quantities. Duality transformations and symmetries for the
N = 1 matter coupled Yang–Mills supergravity system are also exhibited.
The implications of duality symmetry on all N > 2 extended supergravi-
ties are briefly mentioned. We finally give the general form of the central
charge and the N = 2 semiclassical spectrum of the dyonic BPS saturated
states (as it comes by truncation of the N = 4 spectrum).

⋆ Supported in part by DOE grants DE-AC0381-ER50050 and DOE-AT03-88ER40384,Task E.

and by EEC Science Program SC1*CI92-0789.

⋆ Onderzoeksleider, NFWO, Belgium

February 1995

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25176576?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arXiv.org/abs/hep-th/9502072v2


1 Introduction

Recently, proposals for the quantum moduli space of N = 2 rigid Yang–Mills

theories [1] have been given in terms of particular classes of genus r Riemann surfaces

parametrized by r complex moduli[2], r being the rank for the gauge group G broken

to U(1)r for generic values of the moduli. The effective action for such theories, with

terms up to two derivatives, is described by N = 2 supersymmetric lagrangians of

r abelian massless vector multiplets[3], whose dynamics is encoded in a holomorphic

prepotential F (XA), function of the moduli coordinates XA (A = 1, . . . , r). Accord-

ing to Seiberg and Witten [1] this effective theory has classical, perturbative and

non perturbative duality symmetries which reflect on monodromy properties of cer-

tain holomorphic symplectic vectors (XA, FA(X)), eventually related to periods of

holomorphic one–forms[1]

ω = XAαA + FAβ
A , (1.1)

where αA, β
A is a basis for the 2r homology cycles of a genus r Riemann sur-

face. The Picard–Fuchs equations satisfied by the holomorphic vector one–form

Ui = (∂iX
A, ∂iFA) (i = 1, . . . , r) can be regarded as differential identities for “rigid

special geometry” [4]. To attach a particular algebraic curve to “rigid special geome-

try” is therefore equivalent to exactly compute the holomorphic data Ui, and thus to

exactly reconstruct the effective action for the self interaction of the r massless gauge

multiplets once the massive states, both perturbative and non perturbative, have been

integrated out. Indeed it is a virtue of N = 2 supersymmetry that all the couplings

in the effective Lagrangian, including 4–fermion terms, can be computed purely in

terms of the holomorphic data. Quite remarkably the quantum monodromies dictate

the monopole and dyon spectrum of the effective theory [1,2] which turns out to be

“dual” to non–perturbative instanton effects [5] in the original G–invariant micro-

scopic theory [6,7].

This paper considers several issues in order to extend the approach pursued in

the rigid case to the more challenging case of coupling an N = 2 Yang–Mills the-

ory to gravity. In particular we shall include in the N = 2 supergravity theory a

dilaton–axion vector multiplet which is an essential ingredient to describe effective

N = 2 theories which come from the low energy limit of N = 2 heterotic string

theories in four dimensions [8]. Another ingredient is the extension of the “classical

monodromies” to N = 2 local supersymmetry. For rigid theories the classical metric

is essentially the Cartan matrix of the group G and the classical monodromies are
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related to the Weyl group of the Cartan subalgebra of G [2]. For N = 2 supergrav-

ity theories coming from N = 2 heterotic strings, the classical metric of the moduli

space of the pure gauge sector is based on the homogeneous space O(2, r)/O(2)×O(r)

[3,8–10] and the classical monodromies are related to the T–duality group O(2, r; ZZ)

which in particular is an invariance of the massive charged states[11]. This state of

affair is quite analogous to the analysis performed by Sen and Schwarz[12] for the

N = 4 heterotic string compactifications, in which case an exact quantum duality

symmetry SL(2,ZZ)×O(6, r; ZZ) was conjectured [12–16] and a resulting spectrum for

BPS states with both electric and magnetic states was proposed. In the N = 4 theory

the SL(2,ZZ) × O(6, r; ZZ) symmetry, using general arguments [17,18], has a natural

embedding in Sp(2(6+r); ZZ), acting on the 6+r vector self–dual field strengths F+A
µν

and their “dual” defined through Gµν
+A ≡ −i δL

δF+A
µν

. In generic N = 2 theories, be-

cause of quantum corrections [19,20], we do not expect such factorized S − T duality

to occur anymore[4]. Indeed this can be argued with a pure supersymmetry argu-

ment, related to the fact that once the classical moduli space O(2, r)/O(2) × O(r)

is deformed by quantum corrections, then the factorized structure with the dilaton

degrees of freedom is lost and a non trivial moduli space, mixing the S and T de-

grees of freedom should emerge. This result is in fact a consequence of a theorem on

“special geometry” [21,22] which asserts that the only factorized special manifolds are

the SU(1,1)
U(1) × O(2,r)

O(2)×O(r) series, which precisely describe the “classical moduli space” of

S − T moduli. Because of the coupling to gravity, the symplectic structure and iden-

tification of periods, coming from special geometry, is also remarkably different from

rigid special geometry. Indeed the interpretation of (XΛ, FΛ), Λ = 0, 1, . . . , r + 1 as

periods of algebraic curves is no longer appropriate to genus r Riemann surfaces, as it

can be seen from the Picard–Fuchs equations [23,24] and from the form of the metric

gi = −∂i∂ log i(FAX
A−XA

FA) of the moduli space [23–29] . In fact special geome-

try is known to be appropriate to a particular class of complex manifolds (Calabi–Yau

manifolds or their mirrors) and to describe the deformations of the complex struc-

ture[23]. It is therefore tempting to argue that the quantum moduli space including

S − T duality and its monodromies is related to 3–manifolds (or their mirrors) with

h(2,1) = r + 1.

The paper is organized as follows: In chapter 2 we give a résumé of rigid theo-

ries, also discussing duality for the fermionic sector and the physical significance of

monodromies and geometrical data, such as the holomorphic tensor Cijk, related to

the gaugino anomalous magnetic moment. In chapter 3 we describe in detail the cou-

pling to gravity, the extension of duality to the fermionic sector and the existence of
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symplectic bases which do not admit a prepotential function F , as it occurs in certain

formulations of N = 2 supergravities coming from N = 2 heterotic strings. The gen-

eral form of duality transformations and symmetries as they occur in N = 1 locally

supersymmetric Yang–Mills theories coupled to matter is also described. In chapter

4 we use such a formulation where all the perturbative duality symmetries become

invariances of the action. Then, we discuss the implementation of duality symmetries

in N > 2 extended supergravities for the spectrum of dyonic states. In chapter 5 we

analyze classical and quantum duality symmetries and give generic formulae for the

spectrum of the BPS states and the “semiclassical formulae” when the non perturba-

tive spectrum is computed in terms of the “classical periods”. The explicit expression

for the r = 2 case is given as an example, and the special occurrence of enhanced

symmetry points is described. The paper ends with some concluding remarks.

2 Résumé of rigid special geometry

2.1 Basics

N = 2 supersymmetric gauge theory on a group G broken to U(1)r, with r = rank G,

corresponds to a particular case of the most general N = 1 coupling of r chiral

multiplets (XA, χA) to r N = 1 abelian vector multiplets (AA
µ , λ

A) in which the

Kähler potential K and the holomorphic kinetic term function fAB(XA) are given by

K = i(FAX
A − FAX

A
) , (FA = ∂AF )

fAB = ∂A∂BF ≡ FAB

(2.1)

in terms of the single prepotential F (X)[3]. One can show that the Kähler geometry

is constrained because the Riemann tensor satisfies the identity [26,4]

RABCD = −∂A∂C∂PF ∂B∂D∂QF gPQ , (2.2)

with

gPQ = ∂P∂QK = 2 Im ∂P ∂QF . (2.3)

The lagrangian has the form

L = gAB∂µX
A∂µX

B
+ (gABλ

IAσµDµλ
B

I + h.c.)

+ Im (FABF−A
µν F−B

µν ) + LPauli + L4−fermi ,
(2.4)
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where A,B, . . . run on the adjoint representation of the gauge group G, I = 1, 2 and

F+A
µν = FA

µν − i
2 ǫµνρσFAρσ (and F−A

µν = F+A

µν ). As we shall see, also LPauli and

L4−Fermi contain the function F and its derivatives up to the fourth.

The previous formulation, derived from tensor calculus, is incomplete because it

is not coordinate covariant. It is written in a particular coordinate system (“special

coordinates”) which is not uniquely selected. In fact, eq.(2.1) is left invariant un-

der particular coordinate changes of the XA → X̃A with some new function F̃ (X̃)

described by

X̃A(X) = AA
BX

B +BABFB(X) + PA

F̃A(X̃A(X)) = CABX
B +D B

A FB(X) +QA ,
(2.5)

where

(
A B
C D

)
is an Sp(2r, IR) matrix

ATC − CTA = 0 , BTD −DTB = 0 , ATD − CTB = 1l , (2.6)

and PA, QA can be complex constants which from now on will be set to zero.

It can be shown that a function F̃ exists such that [3]

F̃A =
∂F̃

∂X̃A
, (2.7)

provided the mapping XA → X̃A is invertible.

It is well known that the equations of motion and the Bianchi identities [3][17][18]

∂µIm F−A
µν = 0 Bianchi identities

∂µIm Gµν
−A = 0 Equations of motion

(2.8)

transform covariantly under (2.5) (with PA = QA = 0), so that (F−A
µν , Gµν

−A) is a

symplectic vector. Here, Gµν
−A ≡ i δL

δF−A
µν

= NABF−B
µν + fermionic terms, where we

have set FAB = NAB in order to unify the notations to the gravitational case[3].

The transformations (2.5) leave invariant the whole lagrangian but the vector kinetic

term. Indeed, neglecting for the moment fermion terms (see section 2.2) and setting
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for simplicity F−A
µν = FA and Gµν

−A = GA the vector kinetic lagrangian transforms as

follows
Im FANABFB → Im F̃AG̃A =

= Im (FAGA + 2FA(CTB) B
A GB+

+ FA(CTA)ABFB +GA(DTB)ABGB) .

(2.9)

If C = B = 0 the lagrangian is invariant. If C 6= 0, B = 0 it is invariant up

to a four–divergence. In presence of a topologically non–trivial F−A
µν background,

(CTA)AB

∫
Im F−A

µν F−B
µν 6= 0, one sees that in the quantum theory duality transfor-

mations must be integral valued in Sp(2r,ZZ)[1] and transformations with B = 0 will

be called perturbative duality transformations.

If B 6= 0 the lagrangian is not invariant. As it is well known, then the du-

ality transformation is only a symmetry of the equations of motion and not of the

lagrangian.

Since G̃µν
−A = ÑABF̃−B

µν one also has

Ñ = (C +DN )(A+BN )−1 . (2.10)

A duality transformation will be a symmetry of the theory if Ñ (X̃) = N (X̃),

which implies F̃ (X̃) = F (X̃).

Note that B 6= 0 means that the coupling constant Ñ is inverted and symme-

try transformations with B 6= 0 will be called quantum non perturbative duality

symmetries.

The perturbative duality rotations are of the form

(
A 0
C (AT )−1

)
, A ⊂ GL(r) , ATC symmetric . (2.11)

In rigid supersymmetry the tree level symmetries are of the form

(
A 0
0 (AT )−1

)

while the quantum perturbative monodromy introduces a C 6= 0.

The general form of the central charge for BPS states in a generic N = 2 rigid

theory is given by [1]

| Z |= M =| nA
(m)FA − n

(e)
A XA | , (2.12)

where nA
(m) , n

(e)
A denote the values of magnetic and electric charges of the state of

mass M . The above expression is manifestly symplectic covariant provided the vector
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(nA
(m), n

(e)
A ) is also transformed under Sp(2r; ZZ). This equation shows again that a

duality symmetry can only be a (perturbative) symmetry if B = 0, otherwise the

vector subspace with nA
(m) = 0 cannot be left invariant.

If the original unbroken gauge group is G = SU(r + 1), then A ∈ Weyl group

and ATC is the Cartan matrix < αi|αj > of SU(r + 1)[2].

Eq. (2.10) shows that A+BN has to be invertible in order that the new tensor

Ñ exists. This is insured by the positive definiteness of Im N , which is the kinetic

matrix. Here A + BN = ∂X̃/∂X , so this implies the invertibility of the mapping

X → X̃. As explained in (2.7), this then also implies the existence of F̃ . We will see

that in local supersymmetry NAB 6= FAB, so that the existence of F̃ is not equivalent

to the invertibility of Im N , and F̃ not always exists.

Special coordinates do not give a coordinate independent description of the ef-

fective action. A coordinate independent description is obtained by introducing a

holomorphic symplectic bundle V = (XA(z), FA(z)) and holomorphic (1, 0) forms on

the Kähler manifold[4,1]

Ui ≡ ∂iV = (∂iX
A, ∂iFA) with i = 1, . . . , r . (2.13)

In rigid special geometry the Ui satisfy the constraints[4]

DiUj = iCijkg
klU l

∂iU  = 0 .
(2.14)

Taking then the metric

gi = ∂i∂K = i(∂FA∂iX
A − ∂X

A
∂iFA)

= i∂iX
A∂X

B
(NAB −NAB) ,

(2.15)

where we used

∂ıFA = NAB∂ıX
B
, (2.16)

one may derive the tensor Cijk

Cikp = ∂iX
ADk∂pFA − ∂iFADk∂pX

A

= ∂iX
B(∂k∂pFB − ∂k∂pX

ANAB) .
(2.17)
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The integrability conditions on (2.14) yields

Rijkl = −CikpCjlpg
pp . (2.18)

The Bianchi identities of (2.18) also imply that Cijk is a holomorphic completely

symmetric tensor obeying D[iCj]kl = 0.

Note that from (2.17) it also follows

Cijk = ∂iX
A∂jX

B∂kX
C∂A∂B∂CF , (2.19)

which in special coordinates reduces to

CABC = ∂A∂B∂CF . (2.20)

2.2 Symplectic transformations in the fermionic sector

In the total supersymmetric action, the vectors also couple to fermions by terms

linear in the field strength. We will first give the general features of the formulation of

symplectic transformations in the presence of a fermionic sector, which could even be

non–supersymmetric. Afterwards, we will specify the formulae for generic fermionic

terms which we encounter in N = 2 lagrangians.

The general form of the Lagrangian, deleting terms which are by themselves

symplectic invariant, is

L = − i
2
NABF−AµνF−B

µν − iF−AµνH−
Aµν + c.c.+ L4f , (2.21)

where H−
Aµν are quadratic in the fermions, and L4f are the quartic terms in fermions.

Then

G−
Aµν ≡ i

δL
δF−Aµν

= NABF−B
µν +H−

Aµν = G−
bAµν +H−

Aµν . (2.22)

As argued in ref [17], the point where the equations of motions (2.8) are satisfied is an

invariant point. Thus, the first term of the action is (omitting the obvious A indices)

LV ≡ − i
2NF−

µνF−µν + c.c.

= − i
2G

−
bµνFµν + c.c.

= i∂µG−
bµνA

ν + c.c.

= −i∂µH−
µνA

ν + c.c.− 2∂µIm G−
µνA

ν

= i
2H

−
µνF−µν + c.c.− 2∂µIm G−

µνA
ν .

(2.23)
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Therefore

L| δL
δA

=0 = − i
2H

−
µνF−µν + c.c.+ L4f ≡ Linv , (2.24)

which should thus be invariant. The Lagrangian (2.21) is then

L = − i
2F−AµνG−

Aµν + c.c.+ Linv . (2.25)

Now we suppose H−
Aµν to be of the form

H−
Aµν =

(
PAa −NABQ

B
a

)
T −a

µν , (2.26)

where a denotes a new index, whose meaning depends on the model. T −a
µν is a tensor

not transforming under the symplectic group. Then

Linv = − i
2
F−Aµν

(
PAa −NABQ

B
a

)
T −a

µν + c.c.+ L4f

= − i
2

(
F−AµνPAa −G−µν

bA QA
a

)
T −a

µν + c.c.+ L4f .
(2.27)

Invariance of Linv is then guaranteed if (QA, PA) is a symplectic vector, and L4f

is constructed as the completion of Gb to G in the above formula (plus possible

completely invariant terms). These completions are thus

L4f = i
2H

−µν
A QA

a T −a
µν + c.c.+ invariant terms . (2.28)

2.3 Fermions in N = 2 rigid Yang–Mills theory

The coordinate independent description of fermions is given by SU(2) doublets

(λiI , λı
I) where upper and lower SU(2) indices I mean positive and negative chiralities

respectively [3][26][27]. As such the spinors are symplectic invariant and contravariant

world vector fields. The antiselfdual field strength F−A
αβ and positive chiralities spinors

are in the same N = 2 multiplet, which is, in two component spinor notation,
⋆

(XA, ∂iX
AλiI

α ,F−A
αβ ) , (2.29)

with α, β ∈ SL(2, lC).

⋆ F−A
αβ is σµν

αβF
−A
µν .
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In our application of (2.26) only T is dependent on the fermions λiI , while P and

Q depend on the scalars XA. The index a is now replaced by ı, and we have

QA
ı = ∂ıX

A
; PAı = ∂ıFA

T ı
αβ = kgıjCjkpλ

kI
α λpJ

β ǫIJ ,
(2.30)

where k is a constant to be determined by supersymmetry. Then

Hαβ
−A = k∂ıX

B
(NBA −NBA)gıjCjkpλ

αkIλβpJǫIJ . (2.31)

This yields

LPauli = − i(N −N )AB∂ıX
AT ı

αβFBαβ + c.c.

L4f = i
2
∂ıX

A
∂X

B
(NAB −NAB)T ı

αβT αβ + c.c.+ invariant terms ,
(2.32)

in agreement with Cremmer et al. [30].

In special coordinates, setting λi1
α = χi

α, λ
i2
α = λi

α, the Pauli term reduces to

LPauli = −k ∂A∂B∂CF (χA
αλ

B
β − λA

αχ
B
β )F−Cαβ + c.c. , (2.33)

in agreement with the standard N = 1 supersymmetric action with fAB = FAB

[30]. We see from (2.32) that in rigid supersymmetry the physical meaning of Cijk is

that of an anomalous magnetic moment. Note that Cijk vanishes at tree–level and

it is ∼ 1
<X>

at one loop-level as it must be [19][20][1]. It is obviously singular at

< X >= 0. In the SU(2) quantum theory [1], the SU(2) symmetry is not restored

at X = 0, and then one rather expects such terms to behave as c0

Λ where c0 is

a dimensionless number. The vanishing at tree-level of both Pauli terms and the

corresponding four fermions terms is consistent with renormalizability arguments.

The other fermionic terms which are already duality invariant read

λiI
α λ

kJ
β ǫαβλ



α̇Iλ
l

β̇Jǫ
α̇β̇Rikl (2.34)

and

DiCjlmλ
iI
α λ

jK
β ǫαβλlJ

γ λ
mL
δ ǫγδǫIJ ǫKL . (2.35)

Note that, because of eq. (2.18), all couplings in the lagrangian are expressed

through the tensors Cijk.

From a tensor calculus point of view, all quartic terms but the last come from

the equations of motion of the Y i
IJ auxiliary field triplet[3].
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2.4 Positivity and monodromies

Let us consider a submanifold Mr of the moduli space of a Riemann surface of

genus r such that its tangent space is isomorphic to the Hodge bundle. In particular

the dimension of Mr is equal to the genus r of the Riemann surface Cr
†
. In this case,

decomposing an abelian differential in terms of the 2r harmonic forms dual to the

canonical basis of cycles, we have

ω = XA(zi)αA + FA(zi)βA A, i = 1, . . . , r
∫
αA ∧ βB = δ B

A ,

∫
αA ∧ αB =

∫
βA ∧ βB = 0 ,

(2.36)

where zi are coordinates on the moduli space submanifold, and

∂iω = ∂iX
AαA + ∂iFAβ

A . (2.37)

Then the metric, given by the norm

gıj = i

∫
∂iω ∧ ∂ω = i∂i∂

∫
ω ∧ ω (2.38)

is manifestly positive. Using eqs. (2.36), (2.37) we find

gi = i∂i∂(FAX
A −X

A
FA)

which coincides with the metric of N = 2 rigid special geometry (2.15) [1,4].

Formula (2.37) implies by supersymmetry a similar expansion for the full multi-

plet (2.29). For the upper component F−A
µν we get a self dual three form

w = FAαA +GAβ
A (2.39)

on IR4 × Cr when (2.8) hold. We observe that an N = 2, 4D abelian vector multiplet

can be obtained from dimensional reduction from six dimensions either of a vector

multiplet or of a tensor multiplet containing a self–dual field strength. This remarkable

coincidence actually suggests a physical picture for the characterization of this subclass

† We are aware of the fact that to find an intrinsic characterization of such an algebraic locus

is far from obvious. We thank D. Dubrovin, D. Franco, P. Fré and C. Reina for clarifying
discussions on this point.
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Cr of Riemann surfaces. Namely, they should appear in the compactification on IR4×Cr

of N = 1 six–dimensional theory of a self interacting tensor multiplet.

As shown in ref. [4], the Picard–Fuchs equations for Cr have a general form

dictated by the differential constraints of rigid special geometry. A general proposal

for Cr has been given in [2] and can be used to write down the Picard–Fuchs equations

for the periods and to determine their monodromies. Such proposal can be checked

by comparing the explicit form of the Picard–Fuchs equations with their general form

given by rigid special geometry.

In the one parameter case (G = SU(2)), where C1 is given by the elliptic curve of

ref. [1], the special geometry equations reduce to one ordinary second order equation

(
d

dz
+ Γ̂)C−1(

d

dz
− Γ̂)U = 0 (2.40)

where Γ̂ = d
dz log e, e = dX

dz and C is the 3–tensor appearing in (2.14). This agrees with

the Picard–Fuchs equations derived from C1. The general solution of this equation

is[4]

U = (e, e
d2F

dX2
) , (2.41)

with τ = d2F
dX2 being the uniformizing variable for which the differential equation

reduces to d2

dτ2 ( ) = 0.

3 Coupling to gravity

3.1 Special geometry and symplectic transformations

The coupling to gravity modifies the constraints of rigid special geometry because

of the introduction of a U(1) connection due to the U(1) Kähler –Hodge structure of

moduli space. For n vector multiplets one introduces 2(n+1) covariantly holomorphic

sections [26,23,27,29]

V = (LΛ,MΛ) (Λ = 0, . . . , n) , (3.1)

where 0 is the graviphoton index.
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The new differential constraints of special geometry are

Ui ≡ (DiL
Λ,DiMΛ) = (fΛ

i , hiΛ)

DiUj = iCijkg
klU l

DiU  = giV

DiV = 0 ,

(3.2)

where now Di is the covariant derivative with respect to the usual Levi-Civita con-

nection and the Kähler connection ∂iK. That is, under K → K+f+f a generic field

ψi which under U(1) transforms as ψi → e−( p
2

f+ p
2

f)ψi has the following covariant

derivative

Diψ
j = ∂iψ

j + Γj
ikψ

k +
p

2
∂iKψ

j , (3.3)

and analogously for Dı with p → p. This U(1) is related to the U(1) in the N = 2

superconformal group, and the weights for all the fields were determined in [31] (p =

c). In our notations, (LΛ,MΛ) have been given conventionally weights p = −p = 1.

Since LΛ,MΛ are covariantly holomorphic, it is convenient to introduce holomor-

phic sections XΛ = e−K/2LΛ, FΛ = e−K/2MΛ.

The Kähler potential is fixed by the condition[3][26]

i(L
Λ
MΛ − LΛMΛ) = 1 (3.4)

to be

K = − log i(X
Λ
FΛ −XΛFΛ) . (3.5)

As it is well known[3][32], the differential constraints (3.2) can in general be solved

in terms of a holomorphic function homogeneous of degree two F (X). However, as

we will see in the sequel, there exist particular symplectic sections for which such

prepotential F does not exist. In particular this is the case appearing in the effective

theory of the N = 2 heterotic string. For this reason it is convenient to have the fun-

damental formulas of special geometry written in a way independent of the existence

of F .

First of all we note that quite generally we may write

MΛ = NΛΣL
Σ ; hΛi = NΛΣf

Σ
i . (3.6)
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From (3.6) we can define the two (n+ 1) × (n+ 1) matrices

hΛI = (hΛ0 ≡MΛ, hΛı) , fΛ
I

= (fΛ
0
≡ LΛ, fΛ

ı ) (3.7)

to obtain an explicit expression for NΛΣ in terms of (LΛ,MΛ) as

NΛΣ = hΛI(f
−1)I

Σ . (3.8)

Note that hΛI , f
Σ
I

are invertible matrices and the above expression implies the trans-

formation law (2.10).

When F exists, NΛΣ has the form[3][27]

NΛΣ = FΛΣ + 2i
(Im FΛΓ)(Im FΣΠ)LΓLΠ

(Im FΞΩ) LΞLΩ
, (3.9)

which turns out to be the coupling matrix appearing in the kinetic term of the vector

fields. However, as we show below, (3.6) are symplectic covariant and therefore they

always hold even in some specific coordinate system in which F does not exist.

In the same way as in the rigid case, from eqs. (3.2) and (3.4) we find

gi = i(fΛ
i hΛ − hiΛf

Λ

 ) = i(NΛΣ −NΛΣ)fΛ
i f

Σ
 (3.10)

Cijk = fΛ
i DjhkΛ − hiΛDjf

Λ
k = fΛ

i ∂jNΛΣf
Σ
k , (3.11)

which are symplectic invariant. (Note that NΛΣ has zero Kähler weight).

Furthermore, the integrability conditions (3.2) give[3][26][25][23][29][27]

Rilk = giglk + gikgl − CilpCkpg
pp , (3.12)

replacing eq. (2.6).

Here Cilp is a covariantly holomorphic tensor of weight p = −p = 2,

DlCijk = ∂lCijk − ∂lKCijk = 0 , (3.13)

which implies ∂lWijk = 0 with Cijk = eKWijk.

Some additional consequences of the previous formulae are the following: from

DiFΛ = NΛΣDiX
Σ, applying D to both sides we also find

DDiFΛ = ∂NΛΣDiX
Σ + NΛΣDDiX

Σ , (3.14)
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which implies, using the third line of (3.2),

(FΛ −NΛΣX
Σ)gi = ∂NΛΣDiX

Σ . (3.15)

Note that the left–hand side of (3.15) defines the graviphoton projector

TΛ = MΛ −NΛΣL
Σ . (3.16)

From the first of equations (3.6) it also follows that

∂ıNΛΣL
Σ = 0 , hiΛ = NΛΣf

Σ
i + ∂iNΛΣL

Σ (3.17)

and therefore

∂iNΛΣL
Σ = (NΛΣ −NΛΣ)fΣ

i (3.18)

by contraction with fΛ
 we get

fΛ
 ∂iNΛΣL

Σ = igi . (3.19)

Taking the complex conjugate of (3.19) and using (3.15) it follows that

TΛL
Λ

= −i . (3.20)

which is nothing but (3.4). An alternative form for the Kähler potential is

K = − log i(NΛΣ −NΛΣ)XΛX
Σ
. (3.21)

Duality transformations are now in Sp(2n + 2,ZZ) and act on XΛ, FΛ as in the

rigid case. The symplectic action on (LΛ,MΛ) (or (XΛ, FΛ)) is

(
L
M

)′
=

(
A B
C D

) (
L
M

)
= S

(
L
M

)
S ∈ Sp(2n+ 2,ZZ) . (3.22)

Then it follows, because of eq. (3.2) and (3.6),

(
fΛ

i

hiΛ

)′
=

(
A BN
C DN

) (
fΛ

i

fΛ
i

)
, (3.23)

which implies again (2.10). These two transformations laws imply the covariance of

(3.6).
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The symplectic action on F+Λ
µν , G

µν
+Λ is the same as on (LΛ,MΛ), so eq. (2.8)

is unchanged. Therefore the discussion of the previous section on perturbative and

non perturbative duality transformations in the rigid case remains unchanged when

gravity is turned on.

When the sections (XΛ, FΛ) are chosen in such a way that a function F exists
⋆
,

from (3.4) and the degree two homogeneity of F it follows that [26][27]

ImFΛΣ LΛf
Σ

ı = 0 , (3.24)

so that the second of eq. (3.6) becomes hiΛ = FΛΣf
Σi. Furthermore from (3.11) and

(3.24) it also follows

eK/2Cijk = fΛ
i f

Γ
j f

Σ
k FΛΓΣ . (3.25)

By the same token, we have

(
fΛ

i

hiΛ

)′
=

(
A BF
C DF

) (
fΛ

i

fΛ
i

)
, (3.26)

where F = FΛΣ. Note that in these cases

2F̃ (X̃) = F̃ΛX̃
Λ =

2F + 2XΛ(CTB)ΣΛFΣ +XΛ(CTA)ΛΣX
Σ + FΛ(DTB)ΛΣFΣ .

(3.27)

Note also that the homogeneity of F implies

X̃ = (A+BF)X , (3.28)

where F = FΛΣ and

F̃ = (C +DF)X . (3.29)

Special coordinates in supergravity are defined by tΛ = XΛ/X0 since we now have

a set of n + 1 homogeneous coordinates. If we assume that Di(
XΛ

X0 ) is an invertible

matrix, then we may choose a frame for which ∂i(
XΛ

X0 ) = δΛi . This is possible only

if XΛ are unconstrained variables and so FΛ = FΛ(X), which implies FΛ = ∂ΛF (X)

with F homogeneous of degree 2.

⋆ A résumé of the duality transformations for this case, including the supergravity corrections
has been given in appendix C of [32].
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We now discuss the possible non-existence of F (X). If we start with some special

coordinatesXΛ, FΛ(X), it is possible that in the new basis the X̃Λ are not good special

coordinates in the sense that the mapping X → X̃ is not invertible. This happens

whenever the (n + 1) × (n + 1) matrix A + BF is not invertible (its determinant

vanishes). This does not mean that X̃, F̃ are not good symplectic sections since the

symplectic matrix S =

(
A B
C D

)
is always invertible. It simply means that F̃Λ 6=

F̃Λ(X̃) and therefore a prepotential F̃ (X̃) does not exist. However our formulation

of special geometry never explicitly used the fact that FΛ be a functional of the X ’s

and indeed the quantities (XΛ, FΛ), (fΛ
i , hiΛ), NΛΣ and Cijk, gi are well defined for

any choice of the symplectic sections (XΛ, FΛ) since they are symplectic invariant or

covariant. For example, to compute the “gauge coupling” Ñ in such a basis (X̃Λ, F̃Λ)

one uses the formula

Ñ (X̃, F̃ ) = (C +DN (X))(A+BN (X))−1 , (3.30)

and expresses the X = X(X̃, F̃ ) by using the fact that the symplectic mapping can

be inverted. All other quantities can be computed in this way.

We will see the relevance of this observation in the sequel, while discussing low

energy effective action of N = 2 heterotic string. A simple example is the following.

Consider F = iX0X1, leading to

N =

(
iX1

X0 0

0 iX0

X1

)
. (3.31)

This appears in the N = 2 reduction of pure N = 4 supergravity in the so–called

SO(4) formulation [33]. Consider now the symplectic mapping defined by

A = D =

(
1 0
0 0

)
; C = −B =

(
0 0
0 1

)
. (3.32)

Then the transformation is

X̃0 = X0 X̃1 = −F1

F̃0 = F0 F̃1 = X1 .
(3.33)

Using in the first line F1 = iX0 would lead to a non–invertible mapping X → X̃, and

using (3.27) would lead to F̃ = 0. One observes also that A +BF is non–invertible.

However, A + BN is invertible, and one obtains Ñ = iX1(X0)−11l = iF̃1(X̃
0)−11l.

This form appears in the N = 2 reduction of the SU(4) formulation of pure N = 4

supergravity [34]. These two forms of the N = 2 reduced action and the duality

transformation have been studied in [35] to relate electric and magnetic charges of

black holes.
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3.2 The fermionic sector

As far as the fermions are concerned, the vector N = 2 multiplet is now

(LΛ, fΛ
i λ

iI
α ,F−Λ

αβ ) . (3.34)

The tensor T ı
αβ is still the same as in (2.30), and

QΛ
ı = DıL

Λ
; PΛı = DıMΛ . (3.35)

Correspondingly, the gaugino Pauli terms have the form

i(DıL
Λ
Gαβ

b−Λ −DıMΛF−Λαβ)T ı
αβ , (3.36)

quite analogous to eq. (2.32).

Gravitino Pauli and quartic terms [3][30][27] are defined by the formulas (2.21)

and (2.28) with
⋆

QΛ = LΛ ; PΛ = MΛ

T µν = k1ψ
I

ρψ
J
σ ǫIJ ǫ

µνρσ
(3.37)

for the purely gravitino terms, in which case the index a of the general treatment is

obsolete. For the mixed gaugino–gravitino Pauli terms we use

QΛ
ı = DıL

Λ
; PΛı = DıMΛ

T ı
αβ = k2λ

ı

IγρψσJǫ
IJǫµνρσ ,

(3.38)

and the index ı plays again the role of a. The constants k, k1 and k2 should also

be fixed by supersymmetry. So, as before, the unique quartic terms are generated by

requiring duality invariance of the action. Of course many of these terms are absent in

N = 1 [30] theories because of the absence of the second gravitino. This is one of the

differences between rigid supersymmetry and local supersymmetry. What happens is

that in N = 2 supergravity, one introduces an extra ( 3
2 , 1) multiplet, with respect to

the N = 1 case. This has the effect of having extra auxiliary fields in the supergravity

multiplet[36]

VI
Jµ , Aµ , T−

µν , D (3.39)

⋆ The Kähler weights of the fermions are p = −p = 1

2
for ψµI , and p = −p = − 1

2
for λiI . The

scalars and the fermions of the hypermultiplets, not discussed here, have respectively Kähler
weights p = p = 0 and p = −p = − 1

2
.
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other than the matter auxiliary field of the vector multiplet Y iIJ (traceless, real,

symmetric in IJ), i, j = 1, 2, i.e. a real SU(2) triplet. The meaning of the auxiliary

fields is straightforward. The Y ’s correspond to the three auxiliary fields of a N = 1

vector multiplet and a chiral multiplet. The D auxiliary field gives the equation (3.4)

(i.e (3.5)), T−
µν is the graviphoton (symplectic invariant) combination of the gauge

fields T−
µν = TΛF−Λ

µν , and VI
Jµ , Aµ are the composite SU(2) and U(1) connections

of the quaternionic manifold and Kähler–Hodge manifold respectively. Note that

comparison between N = 1 and N = 2 theories shows that the spinors χi of the

scalar multiplet and λΣ of the vector multiplet of the N = 1 theory are related to the

doublet λiI of the N = 2 theory by

χi = λi1 , λΣ = fΣ
i λ

i2 . (3.40)

3.3 The three–form cohomology

We recall that special geometry in N = 2 supergravity, unlike rigid special ge-

ometry, is suitable for three–form cohomology for Calabi–Yau manifolds. Let’s define

a holomorphic three–form [25,23]

Ω = XΛαΛ + FΛβ
Λ (3.41)

where αΛ, β
Λ is a 2n+ 2 dimensional cohomology basis dual to the 2n+ 2 homology

cycles (n = h21). Ω is a holomorphic section of a line bundle. Then it follows that if

one defines

e−K = i

∫
Ω ∧ Ω > 0 (3.42)

then

gi =
−i

∫
DiΩ ∧ DΩ

i
∫

Ω ∧ Ω
= −∂i∂ log i

∫
Ω ∧ Ω > 0 . (3.43)

The (2n + 2) three–forms DiΩ,DiΩ,Ω,Ω with the cohomology basis (αΛ, β
Λ) corre-

spond to the decomposition

H3(IR) = H(2,1)(lC) +H(1,2)(lC) +H(3,0)(lC) +H(0,3)(lC) . (3.44)

Note that since Ω = (XΛ, FΛ), then DiΩ = (DiX
Λ,DiFΛ), with fΛ

i = e
K
2 DiX

Λ, hiΛ =

e
K
2 DiFΛ. The relations ∫

Ω ∧ Ω =

∫
Ω ∧ DiΩ = 0 (3.45)
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are obvious since DiΩ = ∂iΩ − 1

(Ω,Ω)
(∂iΩ,Ω)Ω. However the relation

∫
Ω ∧ DiΩ = 0 , (3.46)

which is suitable for three–form cohomology, implies

∫
Ω ∧ ∂iΩ = 0 , (3.47)

i.e.

∂iX
ΛFΛ − ∂iFΛX

Λ = 0 (3.48)

for any choice of the symplectic section. Eq. (3.48) is equivalent to

XΛDiFΛ −DiX
ΛFΛ = 0 . (3.49)

3.4 Duality transformations in N = 1 locally supersymmetric Yang–Mills

theories

In N = 1 super Yang–Mills theories coupled to supergravity [30], duality trans-

formations are implemented as follows. Define the symplectic Sp(2r) vectors

V = (F−A
µν , G−µν

A = i
∂L

∂F−A
µν

)

Uα = (λA
α , fAB(z)λB

α )

(3.50)

where (λA,F−A
µν ) is the vector field strength multiplet and fAB(z) is the holomorphic

coupling introduced in [30]
⋆
, which depends on the scalars of chiral multiplets, and

which plays here the role of NAB in the general treatment of sections 2.1 and 2.2. Then

the N = 1 supergravity lagrangian is invariant under the symplectic transformations

V → SV , U → SU , f → (C +Df)(A+Bf)−1 , S ∈ Sp(2, r; IR) . (3.51)

This is best seen using the N = 1 tensor calculus (or superfield) notation of ref. [30].

The part of the action which contains the field strength chiral multiplet

WA
α = T (DαV

A) , (3.52)

⋆ We replaced the f in [30] by 2if .
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where T is the generalisation of to local supersymmetry of the chiral projection DD

(similar to the operation obtaining kinetic multiplets introduced in [37]), can be writ-

ten in first order form by introducing an unconstrained chiral multiplet WA
α and a

(vector) real lagrangian multiplier UA (fAB is a chiral superfield)

4Im WA
α DβUAǫ

αβ |D +ifAB(z)WA
α W

B
β ǫ

αβ |F . (3.53)

Variation with respect to UA yields the Bianchi identity

DαWA
α = Dα̇W

α̇A
, (3.54)

which is solved by

WA
α = T (DαV

A) , (3.55)

which leads to the original form of the action. The dual form of the theory is obtained,

in a manner analogous to the rigid case [1], by varying the same lagrangian with

respect to WA
α . Defining W

(D)
αA ≡ T (DαUA), and using the fact that the first term in

(3.53) can also be written as −2iWA
α W

(D)
βB ǫαβ |F , yields

WA
α = (f−1)ABW

(D)
αB , (3.56)

which implies the Bianchi identity also for W (D). The dual lagrangian is

LD = −i(f−1)ABW
(D)
αA W

(D)
βB ǫαβ |F . (3.57)

This realises the symplectic transformation of (3.51) with B = −C = 1l and A = D =

0.

A duality rotation is a symmetry if for some coordinate changes z → z̃ (z is the

first component of a chiral multiplet)

f̃AB(z̃) = fAB(z̃) (3.58)

and the superpotential W is a symplectic invariant section of a Hodge bundle, i.e.

‖ W̃ (z̃) ‖2=‖W (z̃) ‖2 , (3.59)
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where ‖ W (z) ‖2=| W (z) |2 eK ≡ eG. In component form, we can exhibit the

symplectic invariance of the gaugino kinetic term and the Pauli terms by noticing

that they can be written as

e−1Lkin(λ, λ) = iUαΩ(σµ)
αα̇DµU α̇

e−1LPauli(ψ, λ) = Im (U α̇Ω(σµ)α̇βVbβγψ
γ
µ)

e−1LPauli(χ, λ) = Im (∂ifABλ
A
αχ

i
βF−Bαβ)

(3.60)

where Ω is the symplectic metric

(
0 1
−1 0

)
(such that ST ΩS = Ω) and Vb is the bare

V (only bosonic part).

The (ψ, λ) Pauli term can be written in the form as in (2.21) and we identify in

(2.26) the symplectic vector (Q,P ) with U α̇, and

T α̇
βγ = −1

2(σµ)α̇
βψµγ .

The last Pauli term, e−1LPauli(χ, λ), has the form (2.21), with

HAαβ = 1
2
∂ifABλ

B
αχ

i
β .

This we rewrite in the form (2.26)using the following identifications (note that

(Im f)AB is the matrix of the kinetic terms of the vectors, and is thus invertible)

QA
iα ≡ (Im f)−1 AB∂ifBCλ

C
α ; PAiα ≡ fABQ

B
iα

T iα
βγ = i

4
δα
(βχ

i
γ) .

To prove that these (Q,P ) form a symplectic vector, one uses the following relations

(which are in general true for fAB replaced by NAB):

f̃ = (C +Df)(A+Bf)−1 = (AT + fBT )−1(CT + fDT )

∂if̃ = D∂if(A+Bf)−1 − (C +Df)(A+Bf)−1B∂if(A+Bf)−1

= (AT + fBT )−1∂if(A+Bf)−1

Im f̃ = (AT + fBT )−1(Im f)(A+Bf)−1

λ̃ = (A+Bf)λ

. (3.61)

These formulas then give automatically quartic fermionic terms as discussed in sec-

tion 2.

We observe that the requirements for having symplectic transformations, (3.58)

and (3.59), are in principle weaker than what is necessary to have an N = 2 theory.
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4 Duality symmetries

4.1 The facts

Duality transformations in generic N = 2 supergravity theories are a different

choice of the symplectic representative (XΛ, FΛ) of the underlying special geometry.

If the fields F+Λ
µν , G

+
Λµν have no electric or magnetic sources these dualities are sim-

ply a different equivalent choice of sections (XΛ, FΛ) since they are defined up to a

symplectic transformation[3][18]. However if the gauge fields are coupled to (abelian)

sources then duality transformations map theories into different theories with a du-

ality transformed source. Since the matrix NΛΣ plays the role of a coupling constant

it is clear that in perturbation theory the only possible duality transformations are

those with B = 0 and have a lower triangular block form

S =

(
A 0
C AT−1

)
. (4.1)

Under such change, the action changes in a total derivative which, up to fermion

terms, is

L′(A,C) = L + Im F−Λ(CTA)ΛΣF−Σ . (4.2)

So the lagrangian is invariant up to a surface term. A duality transformation is a

symmetry if

Ñ (X̃, F̃ ) = N (X̃, F̃ ) . (4.3)

If FΛ = FΛ(X) this implies

F̃ (X̃) = F (X̃) . (4.4)

Then using (3.27) we should have [3][38]

2F [(A+BF)X ] = 2F + 2XΛ(CTB)Λ
ΣFΣ

+XΛ(CTA)ΛΣX
Σ + FΛ(DTB)ΛΣFΣ ,

(4.5)

which is a functional relation for F given A,B,C,D. Note that because of (3.27) it

may happen that F̃ (X̃) = 0. This is so when ∂X̃Λ

∂XΣ is not an invertible matrix.
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4.2 Heterotic N = 2 superstring theories

In N = 2 heterotic string theories, as the one obtained by the fermionic construc-

tion or by compactification on T2 ×K3, one often encounters classical moduli spaces

which are locally of the form[39][40][19][41][10][42]

O(2, nv)

O(2) ×O(nv)
× O(4, nh)

O(4) ×O(nh)
, (4.6)

where nv and nh are respectively the number of the moduli in vector and hypermulti-

plets. If there are no charged massless hypermultiplets with respect to the gauge group

U(1)r, with r = nv, we may avoid holomorphic anomalies [43–46] and the situation

for this theory may be similar to the rigid Yang–Mills theory coupled to supergravity

with an additional dilaton axion multiplet. According to the previous discussion, all

perturbative duality symmetries are those for which the previous formula holds for a

subgroup of lower triangular matrices

(
A 0
C AT−1

)
(4.7)

with ATC symmetric.

The (r+ 2)× (r+ 2) block A contains the target space T duality and C contains

the Peccei–Quinn axion symmetry [12] (for the definition of S in the N = 2 context,

see below)

S → S + 1 . (4.8)

These are the tree level stringy symmetries of the massive states with M = |Z| where

Z is the central charge of the N = 2 supersymmetry algebra. If the number of

T–moduli is r then the duality symmetries are in Sp(2r + 4; ZZ).

An important point is that we would like to make the tree level (string) symmetry

manifest. This means that the gauge fields

AΛ
µ = (Gµ, Bµ,AA

µ ) A = 2, . . . , r + 1 (4.9)

(Gµ is the graviphoton and the Bµ is the vector of the dilaton–axion multiplet) should

transform in the 2 + r dimensional (vector) representation of the target space duality

symmetry

A′ = AA ; AT ηA = η ; ηΛΣ = Diag(1, 1,−1,−1, . . .) , (4.10)
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with A ∈ O(2, r; ZZ). Under the axion Peccei–Quinn symmetry S → S + 1

AΛ′
= AΛ , GΛµν → GΛµν + ηΛΣFΣ

µν , (4.11)

where

NΛΣ(S + 1) = NΛΣ(S) + ηΛΣ . (4.12)

This formulation is directly obtained by N = 2 reduction of the standard form

of the N = 4 supergravity action[12][8] with a moduli space of the type

O(6, r)/O(6) × O(r)/Γ and duality group Γ = O(6, r; ZZ). However to get this in

a standard N = 2 supergravity form, one must introduce 2 + r symplectic sections

(XΛ, FΛ) (Λ = 0, 1, . . . , r + 1) for which O(2, r) is block diagonal and the S → S + 1

shift is lower triangular. This formulation can be obtained by making a symplectic

rotation, with S given by

S =
1√
2

(
1l −1l
1l 1l

)
, (4.13)

from a representation in which only O(2) ×O(r) is block diagonal [47], namely

O(2, r) :

(
A 0
0 ηAη

)
= SA1S−1

S → S + 1 :

(
1l 0
η 1l

)
= SA2S−1 ,

(4.14)

where A1, A2 are the matrices given in ref. [47]. The new sections are given explicitly

by eqs. (3.28),(3.29),

X̂Λ =
1√
2
(δΛΣ − FΛΣ)XΣ

F̂Λ =
1√
2
(δΛΣ + FΛΣ)XΣ ,

(4.15)

where the function

F = −
√
X2

i

√
X2

α i = 0, 1; α = 2, . . . , r + 1 (4.16)

was obtained in ref. [47]. From (4.15),(4.16) one can verify that the X̂Λ, F̂Λ satisfy

the constraints X̂ΛηΛΣX̂
Σ = F̂Λη

ΛΣF̂Σ = X̂ΛF̂Λ = 0. In particular, the new variables

X̂Λ are not independent. The previous constraints imply that we may set

F̂Λ = SηΛΣX̂
Σ (4.17)
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and from eq. (3.27) we find F̂ (X̂) = 0. Note that this is precisely the case for which

F̂Λ = F̂Λ(X̂Λ) does not hold.

Since O(2, r) is block diagonal, the new sections (X̂Λ, F̂Λ) are O(2, r) vectors.

Recalling that the manifold O(2,r)
O(2)×O(r) can be described by the following equations

ηΛΣΦΛΦΣ = 0

ηΛΣΦΛΦ
Σ

= 1
(4.18)

where ΦΛ are coordinates in CP (1, r), we may actually set

ΦΛ =
X̂Λ

√
X̂ΣηΣΠX̂Π

. (4.19)

The Kähler potential is

K = − log i(X̂ΛF̂Λ − X̂
Λ

F̂Λ) = − log i(S − S) − log X̂ΛηΛΣX̂
Σ

. (4.20)

Under S → S + 1
X̂Λ → X̂Λ

F̂Λ → F̂Λ + ηΛΣX̂
Σ .

(4.21)

In the same basis the (non–perturbative) inversion S → − 1
S is given by the symplectic

matrix

(
0 η
−η 0

)
. This element, together with the one corresponding to S → S + 1

generates an Sl(2,ZZ) commuting with the O(2r,ZZ) in Sp(2r + 4,ZZ). The inversion

is actually the only symmetry generator with B 6= 0. It leaves invariant (4.20) up

to a Kähler transformation and it will be a symmetry of the classical spectrum (as

it comes by truncation of the N = 4 spectrum [12]) of electrically and magnetically

charged states discussed in chapter 5 .

The holomorphic sections X̂Λ can be written as [8]

X̂Λ = (
1

2
(1 + y2

α),
i

2
(1 − y2

α), yα) , (4.22)

where the yα are coordinates of the O(2, r)/O(2)×O(r) manifold. In terms of the Φ

variables the kinetic matrix N̂ΛΣ turns out to be [8][10][12]

N̂ΛΣ(X̂) = (S − S)(ΦΛΦΣ + ΦΛΦΣ) + SηΛΣ , (4.23)
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where ΦΛ = ηΛΣΦΣ, and we will also further raise or lower indices with η.

Notice that (4.23) cannot be computed directly from (3.9) since in the new basis

the denominator identically vanishes. On the other hand, one can use the formula

(2.10), which in our case becomes

N̂ (X̂, F̂ ) = (1l + N (X))(1l−N (X))−1 (4.24)

and substitute for XΛ the right hand side of the inverse transformations of (4.15)

XΛ =
1√
2
(δΛΣ + SηΛΣ)X̂Σ

FΛ =
1√
2
(−δΛΣ + SηΛΣ)X̂Σ .

(4.25)

Formula (4.23) is precisely what is obtained from N = 4 supergravity. Because

of target space duality we expect that also the X̂Λ, F̂Λ become, because of one loop

corrections, a lower triangular representation of Sp(2r + 4,ZZ)

(
X̂Λ

F̂Λ

)
→

(
A 0

AT−1C AT−1

) (
XΛ

FΛ

)
, (4.26)

where the matrix C comes from the monodromy of the one–loop term [1,2].

It is interesting to compute explicitly the coupling of the dilaton to the vector

fields. The vector kinetic term is

Im NΛΣF−Λ
µν F−Σµν = −2Im NΛΣFΛ

µνFΣµν + Re NΛΣFΛµνF̃Σ
µν . (4.27)

and, in particular, setting in (4.22) yα = 0, it becomes

−2Im S(F0F0 + F1F1 + FαFα) + Re S(F0F̃0 + F1F̃1 −FαF̃α) . (4.28)

We see that the dilaton couples in a universal way to the vectors while in the topo-

logical term we have a coupling with lorentzian signature.
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4.3 Duality symmetries in N > 2 supergravities

The general considerations of section 2 about duality symmetries will apply to

any higher N > 2 extended supergravity theory. Therefore, it is worth to briefly

mention the implications of duality symmetries for some non–perturbative properties

that these theories may exhibit. The important fact about N > 2 theories is that the

scalar field space is (at least locally) a homogeneous symmetric space G/H, where

G is some non compact subgroup of Sp(2n) (n is the total number of vector fields

existing in the theory). H is its maximal compact subgroup, as it must be for the

kinetic matrix of the scalar field space to be positive definite.

On general grounds, we also know that the fields (F−A, G−
A) must belong to a

linear representation ofG which is given by the decomposition of the (2n–dimensional)

vector representation of Sp(2n) under G. Thus, it is obvious that if this representation

remains irreducible in G, the duality symmetry will necessarily mix electrically and

magnetically charged states, since the Sp(2n) vector (nA
(m) = 0, n

(e)
A ) cannot be an

invariant vector of G.

It is now a fact of life that the full duality (continuous) symmetry G of any N > 2

theory has a 2n dimensional representation which remains irreducible under Sp(2n)

(see table below [48]). This immediately implies that, if we assume, as conjectured in

ref. [49], that the full G(ZZ) is a symmetry of the dyonic states, then G(ZZ) must be

non–perturbative since the matrix B (see eq. (2.5)) in G(ZZ) will not be vanishing.

N = 3, 5, 6 supergravities can be obtained as low energy limits of d = 4 string models

[50].

Another implication of this conjecture, for the case of N = 4 theories, is that,

as pointed out in ref. [49], the spectrum of the BPS states of the ten dimensional

heterotic string compactified on T6 should be identical to the spectrum of the same

states for type II strings compactified on K3×T2, since the full N = 4 BPS spectrum,

invariant under Sl(2; ZZ)×SO(6, n−6; ZZ) is completely fixed by supersymmetry. This

has the striking effect that at the non–perturbative level the type II theory should

exhibit enhanced gauge symmetries equivalent to the N = 4 heterotic string
⋆
.

⋆ We acknowledge discussions with C. Hull on this point.
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N G repr.
3 SU(3, n− 3) (nc)
4 SU(1, 1)× SO(6, n− 6) (2, n)
5 SU(5, 1) (20)
6 SO∗(12) (32)
8 E7(7) (56)

Table: Representations of G for (F−Λ, G−
Λ )Λ=1,...,n in extended supergravities

5 On monodromies in string effective field theories

5.1 Classical and quantum monodromies

We have just seen that the tree–level values of the symplectic sections

(XΛ(z), FΛ(z)) are given by

XΛ ≡ XΛ
tree , FΛ = SηΛΣX

Σ
tree . (5.1)

The target space duality group O(2, r; ZZ) acts non–trivially on them

Γcl :

(
XΛ

FΛ

)

tree

→
(
A 0
0 ηAη

) (
XΛ

FΛ

)

tree

, (5.2)

generalizing the action of the Weyl group of the rigid case [2].

At the one loop level, one expects that F tree
Λ is changed to [46]

F tree
Λ → SXΣηΛΣ + fΛ(X) (5.3)

where fΛ(X) is a modular covariant structure.

The associated perturbative monodromy can be obtained assuming, according

to ref. [1], that the rigid perturbative monodromy does not affect the gravitational

sector X0, X1, F0, F1. Thus the perturbative lower triangular monodromy matrix is

ΓclT , where[1][2]

T =

(
1l 0
C 1l

)
(5.4)
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and C is an (r+2)×(r+2) symmetric matrix with non–vanishing entries on the r×r
block

C =




0 0
0 0

. . . 0

. . . 0
0 0
...

...
0 0

Cij




i, j = 1, . . . , r . (5.5)

Indeed, we may think of decomposing Sp(4 + 2r) into Sp(4) × Sp(2r) and simply

assume that the rigid monodromy Γr ∈ Sp(2r) commute with the gravitational Sp(4)

sector. This argument should at least apply when the vectors of the Cartan subalgebra

of the enhanced gauge symmetry belong to the compact O(r) in O(2, r).

In string theory, the classical stringy moduli space corresponds to the broken

phase U(1)r of several gauge groups with the same rank. For instance, for r = 2,

O(2, 2; ZZ) interpolates between SU(2)×U(1), SU(2)× SU(2) and SU(3)[51]. In the

N = 4 theory the O(6; 22) moduli space corresponds to broken phases of several gauge

groups of rank 22 such as, U(1)6 ×E8 × E8 or SO(32) × U(1)6 or SO(44) which are

not subgroups one of the other [39].

It is obvious that generically this means that the one loop β–function term [19][20]

should have non–trivial monodromies at the points where some higher symmetry is

restored. For instance, for r = 2 we may expect non trivial monodromies around t = u

(SU(2) × U(1) symmetry restored) and t = u = i, t = u = e2iπ/3 (SU(2) × SU(2) or

SU(3) symmetry restored) , t, u being the parameters defined below.

This means that in supergravity theories derived from strings, because of target

space T–duality, the enhanced symmetry points are richer than in the rigid case. Since

different enhancement points are consequence of O(2, r; ZZ) duality, we expect that a

modular invariant treatment of quantum monodromies will automatically ensure non

trivial monodromy at the enhanced symmetry points.

In the sequel we shall discuss in some more detail the classical and perturbative

monodromies in the r = 1 case (O(2, 1; ZZ)) and the classical monodromies for r = 2

(O(2, 2; ZZ)).

Consider the tree level prepotential F in the so–called cubic form [3] for
SU(1,1)

U(1) × O(2,1)
O(2) :

F =
1

2
(X0)2st2 , (5.6)
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where s = X1

X0 is the dilaton coordinate and t = X2

X0 is the single modulus of the

classical target space duality. We parametrize the O(2, 1; ZZ) vector as follows

X0 =
1

2
(1 − t2)

X1 = −t (X0)2 + (X1)2 − (X2)2 = 0

X2 = −1

2
(1 + t2)

(5.7)

The symplectic transformation relating (XΛ, FΛ), (Λ = 0, 1, 2) to the (X̂Λ, F̂Λ) where

O(2, 1) is linearly realized is easily found to be

(
X̂Λ

F̂Λ

)
=

(
P −2R
R P ′

)(
XΛ

FΛ

)
, (5.8)

where

P =




1
2 0 0
0 0 −1
−1

2 0 0


 ; P ′ =




1 0 0
0 0 −1
−1 0 0


 ; R =




0 1
2 0

0 0 0
0 1

2 0


 . (5.9)

Let us now implement the t-modulus Sl(2,ZZ) transformations t → −1
t
, t → t + n

(note that while t → −1
t corresponds to the SU(2) Weyl transformation of the rigid

theory, t→ t+n has no counterpart in the rigid case, being of stringy nature). Using

the parametrization (5.7) we find

t→ −1

t
:




−1 0 0
0 −1 0
0 0 1


 ≡ −η ∈ O(2, 1; ZZ)

t→ t+ n :




1 − n2

2 n n2

2
−n 1 n
−n2

2 n 1 + n2

2


 ≡ V (n) ∈ O(2, 1; ZZ) .

(5.10)

Note that (5.10) implies n ∈ 2ZZ, i.e. the subgroup Γ(0)(2) of SL(2,ZZ). Actually

this gives a projective representation in the subgroup in O(2, 1; ZZ) of the matrices

congruent to the identity mod 2.

It follows that Γcl is generated by (Γ1,Γ2) where

Γ1 =

(
−η 0
0 −η

)
∈ Sp(6,ZZ)

Γ2 =

(
V (2) 0

0 ηV (2)η

)
∈ Sp(6,ZZ) .

(5.11)
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On the other hand it is possible to go to a stringy basis with a new metric X2
0 +X2

1 −
X2

2 = X̃2
1 + 2XY such that SL(2,ZZ) is integral valued in O(2, 1; ZZ).

The O(2, 1; ZZ) generators corresponding to translation and inversion are respec-

tively given by: 


1 −2n 0
0 1 0
n −n2 1


 ;




−1 0 0
0 0 −1
0 −1 0


 . (5.12)

To make contact with the rigid theory it is convenient to define the inversion

generator in O(2, 1; ZZ) with the opposite sign with respect to the previous definition.

Let us now examine the perturbative monodromy matrices T . If we assume as

before that the t→ −1
t

pertaining to the rigid theory does not affect the gravitational

sector (X0, X1, F0, F1), then we have

T =

(
η 0
C η

)
, C =




0 0 0
0 0 0
0 0 2


 (5.13)

corresponding to the embedding of the Sp(2,ZZ) rigid transformations acting on the

rigid section (X2, F2) in Sp(6,ZZ). Furthermore, considering the transformation of

the NΛΣ matrix and setting D = A = η , B = 0 we find

N̂22 = −2 + N22 (5.14)

for all other entries N̂ΛΣ = NΛΣ. This is exactly the rigid result[1]. However conju-

gating the T matrix with Γ2 one gets

CΛΣ =




8 −8 −12
−8 8 12
−12 12 18


 (5.15)

which shows that O(2, 1; ZZ) introduces non–trivial perturbative monodromies for all

couplings. The other perturbative lower diagonal monodromy is the dilaton shift

(4.14) which commutes with O(2, 1; ZZ).
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Analogous considerations hold for O(2, n; ZZ), n > 1. We limit ourselves to write

down the generators of Γcl for the O(2, 2; ZZ) case. We use the parametrization of

O(2, 2)/O(2)×O(2) given by

X0 =
1

2
(1 − tu)

X1 = −1

2
(t+ u)

X2 = −1

2
(1 + tu)

X3 =
1

2
(t− u) (X0)2 + (X1)2 − (X2)2 − (X3)2 = 0 ,

(5.16)

where t, u are the moduli appearing in the F function F = (X0)2 stu. In the same

way as for the r = 1 case it is easy to find the symplectic transformations relating the

sections of the cubic parametrization to the XΛ defined in (5.16). They are given by
(
X
F

)
→

(
A B
−B A

) (
X
F

)
, (5.17)

with

X = (X0, X1, X2, X3)T , F = (F0, F1, F2, F3)
T

A =
1√
2




1 0 0 0
0 0 −1 −1
−1 0 0 0
0 0 1 −1


 , B =

1√
2




0 −1 0 0
0 0 0 0
0 −1 0 0
0 0 0 0


 .

(5.18)

It is convenient to use the string basis where the metric η takes the form[12]

η =

(
0 1l2×2

1l2×2 0

)
, (5.19)

corresponding to the basis 1√
2
(X0 ∓X2), 1√

2
(X1 ∓X3). Then one finds the following

O(2, 2; ZZ) representation

ut→ +
1

ut
:

(
0 −1l
−1l 0

)
= γut

t→ −1

t
:

(
ǫ 0
0 ǫ

)
= γt

u→ − 1

u
:

(
0 ǫ
ǫ 0

)
= γu

t→ t+ n :

(
Nt(−n) 0

0 N(n)

)
= γn

t→ u :

(
a b
b a

)
= γ ; a =

(
1 0
0 0

)
; b =

(
0 0
0 1

)

(5.20)
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where ǫ =

(
0 −1
1 0

)
and N(n) =

(
1 n
0 1

)
.

Γcl is then generated by the matrices:

Γut =

(
γut 0
0 γut

)
; Γt =

(
γt 0
0 γt

)
; Γu =

(
γu 0
0 γu

)
; Γn =

(
γn 0
0 γT

−n

)
.

(5.21)

We note that the points t = u; t = u = i; t = u = e
2πi
3 are enhanced symmetry

points corresponding to SU(2) × U(1), SU(2) × SU(2), and SU(3) respectively [51].

Therefore we expect non–trivial quantum monodromies at these points according to

the previous discussion.

5.2 The BPS mass formula

The classical and one loop monodromies are of course reflected in symmetries of

the electrically charged massive states belonging to O(2, n; ZZ) lorentzian lattice[39].

The BPS mass formula [52] in the gravitational case is

M = |Z| = |n(e)
Λ LΛ − nΛ

(m)MΛ| = eK/2|n(e)
Λ XΛ − nΛ

(m)FΛ| . (5.22)

Note that the central charge Z has definite U(1) weight

Z → e(f−f)/2Z , (5.23)

while the mass M is Kähler invariant. The symplectic invariance of M also implies

that (nΛ
(m), n

(e)
Λ ) transforms as (XΛ, FΛ)

(
nΛ

(m)

n
(e)
Λ

)
→

(
A B
C D

) (
nΛ

(m)

n
(e)
Λ

)
, (5.24)

where according to our previous discussion the perturbative symmetries have B = 0.

Note that nΛ
(m), n

(e)
Λ must satisfy a lattice condition. In the tree level approximation

we may write

M = |(n(e)
Λ − nΣ

(m)ηΛΣS)XΛ|eK/2 (5.25)

which is invariant under the tree level symmetry S → S + 1, but also under the

non–perturbative inversion S → − 1
S [34][13][12][14][15] taking into account that

K = − log i(S − S) − log
XΛX

Σ

M2
Pl

ηΛΣ . (5.26)
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Formula (5.25) is therefore invariant under the S − T duality symmetry Sl(2; ZZ) ×
O(2, r; ZZ) ⊂ Sp(2r + 4; ZZ).

The electric mass spectrum can be written as

M2
(e) = |Z|2 =

M2
Pl

2i(S − S)
QΛΣn

(e)
Λ n

(e)
Σ , (5.27)

where i(S − S) = 8π
g2 > 0 and QΛΣ = ΦΛΦ

Σ
+ Φ

Λ
ΦΣ. Formula (5.27) has exactly the

same form as the analogous one obtained in N = 4 (see ref [12]). When also magnetic

charges are present, then

M2 =
M2

Pl

i(S − S)
(ne

Λ − Snm
Λ )(

1

2
QΛΣ − i

2
Q̂ΛΣ)(ne

Σ − Snm
Σ )

=
M2

Pl

4
(nm, ne)(MQ+ LQ̂)

(
nm

ne

)
,

(5.28)

where M = 1
Im S

(
SS −Re S

−Re S 1

)
, L =

(
0 −1l
1l 0

)
and Q̂ = i

(
ΦΛΦ

Σ − Φ
Λ
ΦΣ

)
.

Recalling that QΛΣ = 1
2
(ηΛΣ + Im NΛΣ

Im S
), this becomes

M2 =
M2

Pl

i(S − S)
(ne

Λ − Snm
Λ )[

1

4
(
Im NΛΣ

Im S
+ ηΛΣ) − i

2
Q̂ΛΣ](ne

Σ − Snm
Σ )

=
1

4
M2

Pl(nm, ne)[
1

2
M(

Im N
Im S

+ η) + LQ̂]

(
nm

ne

)
.

(5.29)

From this expression one can see that the antisymmetric term Q̂ vanishes if

n
(e)
Λ = m1nΛ , nΛ

(m) = m2nΣη
ΛΣ , (5.30)

or, as it happens for the perturbative string, if no magnetic states are present (nm
Λ =

0 , ne
Λ ≡ nΛ). In such case eq. (5.28) becomes

M2 =
M2

Pl

8Im S
|m1 − Sm2|2[nΛnΣ(2QΛΣ − ηΛΣ) + nΛnΣη

ΛΣ] . (5.31)

and since Im NΛΣ, being the vector kinetic matrix, is always positive definite,

M2 = 0 ⇐⇒ nΛnΣηΛΣ < 0 (nΛ 6= 0) . (5.32)
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As an example, take O(2, 2; ZZ) and look for solutions of (5.32) corresponding to the

string condition nΛnΛ = −2 . Using the parametrization (5.16) we have

nΛX
Λ = n0X

0 + n1X
1 − n2X

2 − n3X
3

=
1

2
[(n0 + n2) − (n1 + n3)t− (n1 − n3)u− (n0 − n2)tu]

(5.33)

Setting

n0 + n2 = −p2

√
2

n1 + n3 = q1
√

2

n1 − n3 = −p1

√
2

n0 − n2 = q2
√

2

nΛnΛ = (n0 + n2)(n0 − n2) + (n1 + n3)(n1 − n3) = −2(p2q2 + p1q1) = −2

→ p2q2 + p1q1 = 1
(5.34)

we have

nΛX
Λ =

1√
2
(−p2 − q1t+ p1u− q2tu) . (5.35)

Let us verify that at the three enhancement points we get the correct number of

massless states. If we take t = u (X2 = 0) we find

nΛX
Λ(t = u) =

1√
2
[−p2 − (q1 − p1)t− q2t

2]

→ q2 = p2 = 0 q1 = p1 = ±1 ,

yielding the two massless states (q1, q2) = (±1, 0). In particular, for t = u = i we

have the solutions

nΛX
Λ(t = u = i) =

1√
2
[−p2 + q2 − (q1 − p1)i]

→ p2 = q2 , q1 = p1 , q21 + q22 = 1

(5.36)

yielding the four states (q1, q2) = (±1, 0), (0,±1). Taking instead t = u = e2πi/3 (such

that t2 = t), we get

nΛX
Λ(t = u = e2πi/3) = 0

→ +
1

2
(q1 + q2 − p1) − p2 = 0 , q1 − q2 − p1 = 0

→ p1 = q1 − q2 , p2 = q2 → q21 + q22 − q1q2 = 1

(5.37)
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yielding the six states (q1, q2) = (±1,±1), (±1, 0), (0,±1). As expected, these massless

states together with the two original (0, 0) states, fill the adjoint representation of

SU(2) ⊗ U(1) (t = u), SU(2) ⊗ SU(2) (t = u = i), SU(3) (t = u = e2πi/3).

Unlike in N = 4 theories, in N = 2 theories the quantum spectrum will not coin-

cide with the classical spectrum. It will be found by substituting FΛtree ≡ SηΛΣX
Σ →

FΛtree + quantum corrections in (5.22).

6 Conclusions

In this paper we have formulated electromagnetic duality transformations in

generic D = 4 , N = 2 supergravities theories in a form suitable to investigate

non–perturbative phaenomena. Our formulation is manifestly duality covariant for

the full Lagrangian, including fermionic terms, which unlike the rigid case, cannot be

retrieved from the N = 1 formulation, nor from the N = 2 tensor calculus approach.

Particular attention has been given to classical T -duality symmetries which actually

occur in string compactifications and whose linear action on the gauge potential fields

do not allow for the existence of a prepotential function F for the N = 2 special ge-

ometry. As examples we described the “classical” electric and monopole spectrum for

T–duality symmetries of the type O(2, r; ZZ), with particular details for the r = 1, 2

cases, by using the N = 2 formalism.

For “classical” monodromies this spectrum is of course related to the spectrum of

N = 4 theories studied by Sen and Schwarz [12]. Possible extensions of duality sym-

metries to type II strings have been conjectured by Hull and Townsend [49] and also

discussed in [2]. In the present context of N = 2 heterotic strings the corresponding

type II theories, having N = 2 space–time supersymmetry would correspond to (2, 2)

superconformal field theories, i.e. quantum Calabi–Yau manifolds.

Due to the non–compact symmetries the BPS saturated states with non–

vanishing central charges have a spectrum quite different from the rigid case. Indeed

in rigid theories the “classical” central charge Z(cl) vanishes at the enhanced symme-

try points where the original gauge group is restored since there is no dimensional

scale other than the Higgs v.e.v.. On the contrary, in the supergravity theory the BPS

spectrum at these particular points corresponds in general to electrically and mag-

netically charged states with Planckian mass (black holes, gravitational monopoles

and dyons) [53,12,54–57]. The only charged states which become massless at the

enhanced symmetric point are those with ηΛΣn
(e)
Λ n

(e)
Σ < 0.
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We also discussed perturbative monodromies and their possible relations with

the rigid case. Non perturbative duality symmetries are more difficult to guess, but

it is tempting to conjecture that a quantum monodromy consistent with positivity

of the metric and special geometry may be originated by a 3-dimensional Calabi-Yau

manifold or its mirror image. If this is the case this manifold should embed in some

sense the class of Riemann surfaces studied[1][2] in connection with the moduli space

of N = 2 rigid supersymmetric Yang-Mills theories.
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