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1 Introduction

The each-other commuting space-time parameters can have unexpected generalized com-

mutation relations with further para-Grassmann parameters. We can consider for instance

space-time parameters x� and parameters �js; ���| _s ful�lling

[x�; x� ] = 0 ; �; � 2 f0; 1; 2; 3g;

[x0;�js] = 0 ; [x0; ���| _s] = 0 ; j 2 f1; 2; 3g ; s 2 f0; 1; 2; 3g; (1. 1)

[xj ;�js] = 0 ; [xj ; ���| _s] = 0 ; j 2 f1; 2; 3g ; s 2 f0; 1; 2; 3g

fxi;�js
g = 0 ; fxi; ���| _s

g = 0 ; i; j 2 f1; 2; 3g ; i 6= j ; s 2 f0; 1; 2; 3g: (1. 2)

The parameters �js; ���| _s ; j 2 f1; 2; 3g ; s 2 f0; 1; 2; 3g can ful�l between them generalized

commutation relations beyond commutation and anticommutation. Several consistent real-

izations of this idea have been constructed in [1]. On this observation lies a recent attempt

to construct graded extensions of the Poincar�e algebra beyond supersymmetry [2].

This possible nontrivial behaviour of the space-time parameters was not envisaged when

studying the most general form of the quantization relations between quantum �elds [3], and

the corresponding connection between spin and statistic [4]. The so-called Klein transfor-

mations and further equivalences among graded Lie algebras [5] should be further developed

in order to determine if the recently obtained graded extensions are actually inequivalent to

supersymmetric extensions [6]. This might constitute the basis for a new generalization [7]

of the no-go theorems of S. Coleman & J. Mandula [8] and of R. Haag, J. T.  Lopusza�nski &

M. F. Sohnius [9] about the symmetries of the S-matrix.

We study here the construction of concrete models that are invariant under the ZZ2 �

(ZZ4�ZZ4)-graded extension of the Poincar�e algebra introduced in [2]. Our results are of

relevance in order to determine which are the adequate algebraic structures allowing for a

nontrivial behaviour of the space-time parameters, and for meaningful physical models.

For a review of the de�nition of (I , q)-graded Lie algebras over an arbitrary commutative

(numeric) �eld IK, see Appendix A. In Appendix B we describe the single-grading model

used in [1] to determine concrete grading Abelian groups for IK = IC. In section 2 we review

the assumptions used to obtain particular graded extensions, the form of the corresponding

multiplets of generators, and the algebraic relations of a particular ZZ2 � (ZZ4�ZZ4)-graded

extension of the Poincar�e algebra. In section 3 we study the (I , q)-graded super�elds and

superspace formalism. In section 4 we brie
y discuss the �eld content of super�eld represen-

tations. In section 5 we brie
y discuss the covariant constraints. In section 6 we study spin-12
para-fermionic �elds. In section 7 the conclusions and open questions of the approach are

presented. Appendices C, D, E provide, respectively, the used momentum representations,

the operations with the superspace parameters, and some useful identities for spin-12 and

superspace calculations which are needed to reproduce the presented results.

2 Particular (I, q)-graded Lie algebraic extensions of the Poincar�e

Lie algebra

In a recent publication [1] some constraints on the grading groups suitable for the construction

of (I , q)-graded algebraic extensions of the Poincar�e Lie algebra have been determined. In

another publication [2], concrete (I , q)-graded Lie algebraic extensions of the Poincar�e Lie
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algebra have been obtained for which the following chain of assumptions have been adopted

(some assumptions imply the previous ones):

A�3 All the gradings are done with respect to an Abelian group II .

A�2 The structure constants associated with the algebraic extension are parameters with

trivial index ~�o (i.e. they are universally commutative, they are numbers), where ~�o is

the additive neutral element of II .

A�1 The algebraic extensions are formulated in terms of (I , q)-graded Lie algebras over a

commutative �eld IK (see appendix A for an introduction), which contain as a subal-

gebra the Poincar�e Lie algebra and for which I � II .

A The assignment of indices is made in such a way that the Hamel basis fM�� : �; � 2

f0; 1; 2; 3g and � < �g of so(3; 1) can be locally adopted for the proper Lorentz Lie

subalgebra.

The restricted Poincar�e Lie subalgebra IP can thus be expressed in terms of the algebraic

relations

[M�� ;M��] = i(g��M�� + g��M�� � g��M�� � g��M��);

[M�� ; P�] = i(g��P� � g��P�);

[P�; P�] = 0;

IP = fP;Mg = fPg+� fMg; (2. 1)

where �; �; �; � 2 f0; 1; 2; 3g, fPg := GenfP� : � 2 f0; 1; 2; 3gg denotes the transla-

tion algebra, fMg := GenfM�� : �; � 2 f0; 1; 2; 3g and � < �g denotes the proper

orthochronous Lorentz algebra � so(3; 1), and the metric tensor is given by g :=

diag(1;�1;�1;�1).

Equivalently, we can write the above algebraic relations in the following form:

[Ji; Jj ] = i�k`�ijkJ`; [Ĵi; Jj] = i�k`�ijk Ĵ`;

[Ĵi; Ĵj] = �i�k`�ijkJ`;

[Ji; Pj ] = i�k`�ijkP`; [Ĵi; Pj] = �i�ijP0;

[Ji; P0] = 0; [Ĵi; P0] = �iPi;

[Pi; Pj] = [Pi; P0] = [P0; P0] = 0; (2. 2)

where i; j; k 2 f1; 2; 3g, and �ijk is the totally antisymmetric Levi-Civita tensor with

�123 = 1, and

Ji := 1
2�ijkM

jk; Ĵi := M0i: (2. 3)

B The assignment of indices is done in such a way that the following Hamel basis fTi : i 2

f1; 2; 3gg [ f �T i : i 2 f1; 2; 3gg can be locally adopted for the restricted Lorentz Lie

subalgebra fMg:

fMg �= Gen (fTi : i 2 f1; 2; 3gg[ f �T i : i 2 f1; 2; 3gg); (2. 4)

where

Ti := 1
2(Ji + iĴi); �Ti := 1

2(Ji � iĴi); (2. 5)

Hence, the restricted Lorentz Lie algebra is isomorphic to a direct sum of two su(2)

algebras:

[Ti; Tj] = i�k`�ijkT`;
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[Ti; �Tj] = 0;

[ �Ti; �Tj] = i�k`�ijk �T`;

fMg �= su(2)� su(2): (2. 6)

C The indices assigned to the generators of the Lorentz Lie algebra are not all ~�o.

D The index set I � II and the function q of the (I , q)-graded Lie algebraic extension are

obtained from a single-grading model with IK = IC (see Appendix B for an introduction).

E None of the indices assigned to the generatorsM12;M23;M13 of the rotation Lie subalgebra

are trivial.

F The index assigned to the generator P0 is trivial. We can associate just numbers to its

eigenvalues. Furthermore, the Casimir operators of the Poincar�e Lie algebra for massive

representations turn out to have also trivial indices.

G There exist involution operations (�), (�)?, and (�)� in IL, I , and IC respectively, such that

they act simultaneously producing

(�) : IL �! IL ; O~a 7! (O~a) =: �O~a? ; (2. 7)

(�)? : I �! I ; ~a = (a; a) 7! ~a? = �~a = (a;�a); (2. 8)

(�)� : IK �! IK ; y 7! y� complex conjugation; (2. 9)

and the operators of the Poincar�e Lie algebra transform under involution in the following

way

(Ti) = �Ti; ; (P�) = P�: (2. 10)

The involution corresponds to a Hermitic conjugation with respect to a Lorentz invari-

ant bilinear form (completation is understood).

Notice that the de�nition of (�)? in (2. 8) does not contradict the choice in (2. 10) since

(0; a�) = �(0; a�) ; � 2 f0; 1; 2; 3g.

Notice also that

&st(O~a) = (a; a) =) &st(O~a
�O~a?) = (a; a) + (a;�a) = (0; a0) = ~�o; (2. 11)

and hence, we can associate real eigenvalues to the self-adjoint operators O~a
�O~a? .

H The elements (generators) of the considered extensions IL can be arranged into multiplets

Za
z ;

�Za
�z that transform linearly under the action of the generators of the Lorentz Lie

subalgebra:

[[M�� ; Za
zs]] = �

1
2(�a��

z ) t
s Z

a
zt ; �; � 2 f0; 1; 2; 3g; (2. 12)

[[M�� ; �Za
�z _s]] = +1

2(��a��
�z )

_t
_s

�Za
�z _t ; �; � 2 f0; 1; 2; 3g; (2. 13)

where �a��
z and ��a��

�z are constant complex square matrices.

I The grading Abelian group which turns out to have the general form II = ZZ2�(ZZ4��ZZ4�)�

IGre, with � 2 and IGre an Abelian group, is constrained to the particular case in which

� = 1 and the IGre-grading factor is trivial, i.e.

II = ZZ2 � (ZZ4�ZZ4): (2. 14)
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+ 0 1

0 0 1

1 1 0

Table 1: Addition table of the group (ZZ2 ; +).

+ a0 a1 a2 a3 a11
+

a11
�

a12
+

a12
�

a21
+

a21
�

a22
+

a22
�

a31
+

a31
�

a32
+

a32
�

a0 a0 a1 a2 a3 a11
+

a11
�

a12
+

a12
�

a21
+

a21
�

a22
+

a22
�

a31
+

a31
�

a32
+

a32
�

a1 a1 a0 a3 a2 a11
�

a11
+

a12
�

a12
+

a22
�

a22
+

a21
�

a21
+

a32
+

a32
�

a31
+

a31
�

a2 a2 a3 a0 a1 a12
+

a12
�

a11
+

a11
�

a21
�

a21
+

a22
�

a22
+

a32
�

a32
+

a31
�

a31
+

a3 a3 a2 a1 a0 a12
�

a12
+

a11
�

a11
+

a22
+

a22
�

a21
+

a21
�

a31
�

a31
+

a32
�

a32
+

a11
+

a11
+

a11
�

a12
+

a12
�

a1 a0 a3 a2 a31
�

a32
+

a31
+

a32
�

a21
�

a22
�

a22
+

a21
+

a11
�

a11
�

a11
+

a12
�

a12
+

a0 a1 a2 a3 a32
�

a31
+

a32
+

a31
�

a22
+

a21
+

a21
�

a22
�

a12
+

a12
+

a12
�

a11
+

a11
�

a3 a2 a1 a0 a32
+

a31
�

a32
�

a31
+

a21
+

a22
+

a22
�

a21
�

a12
�

a12
�

a12
+

a11
�

a11
+

a2 a3 a0 a1 a31
+

a32
�

a31
�

a32
+

a22
�

a21
�

a21
+

a22
+

a21
+

a21
+

a22
�

a21
�

a22
+

a31
�

a32
�

a32
+

a31
+

a2 a0 a1 a3 a11
�

a12
+

a11
+

a12
�

a21
�

a21
�

a22
+

a21
+

a22
�

a32
+

a31
+

a31
�

a32
�

a0 a2 a3 a1 a12
�

a11
+

a12
+

a11
�

a22
+

a22
+

a21
�

a22
�

a21
+

a31
+

a32
+

a32
�

a31
�

a1 a3 a2 a0 a12
+

a11
�

a12
�

a11
+

a22
�

a22
�

a21
+

a22
+

a21
�

a32
�

a31
�

a31
+

a32
+

a3 a1 a0 a2 a11
+

a12
�

a11
�

a12
+

a31
+

a31
+

a32
+

a32
�

a31
�

a21
�

a22
+

a21
+

a22
�

a11
�

a12
�

a12
+

a11
+

a3 a0 a2 a1

a31
�

a31
�

a32
�

a32
+

a31
+

a22
�

a21
+

a22
+

a21
�

a12
+

a11
+

a11
�

a12
�

a0 a3 a1 a2

a32
+

a32
+

a31
+

a31
�

a32
�

a22
+

a21
�

a22
�

a21
+

a11
+

a12
+

a12
�

a11
�

a2 a1 a3 a0

a32
�

a32
�

a31
�

a31
+

a32
+

a21
+

a22
�

a21
�

a22
+

a12
�

a11
�

a11
+

a12
+

a1 a2 a0 a3

Table 2: Addition table of the group (ZZ4�ZZ4 ; +).

We now discuss some of the results obtained from these assumptions [1] [2].

The (induced) addition associated to the grading group II

+ : II � II �! II ; ((a; a); (b;b)) 7! (a+ b; a+ b); (2. 15)

is given according to tables 1 and 2.

The corresponding grading contributions to the function q,

q : II � II �! C1;

((a; a); (b;b)) 7! q(a;a);(b;b) = qZZ2a;b q
ZZ4�ZZ4
a;b ; (2. 16)

are shown in tables 3 and 4.

We naturally adopt the following multiplets for the generators of the Poincar�e Lie subal-

gebra IP :

T :=

2
64 T1
T2
T3

3
75 ; �T :=

2
64

�T1
�T2
�T3

3
75 ; P :=

2
6664
P0
P1
P2
P3

3
7775 : (2. 17)
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qZZ2 0 1

0 1 1

1 1 �1

Table 3: Function qZZ2: Symmetric phase contribution to the function q.

qZZ4�ZZ4 a0 a1 a2 a3 a11
+

a11
�

a12
+

a12
�

a21
+

a21
�

a22
+

a22
�

a31
+

a31
�

a32
+

a32
�

(0; 0) = a0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(2; 0) = a1 1 1 1 1 1 1 1 1 �1 �1 �1 �1 �1 �1 �1 �1

(0; 2) = a2 1 1 1 1 �1 �1 �1 �1 1 1 1 1 �1 �1 �1 �1

(2; 2) = a3 1 1 1 1 �1 �1 �1 �1 �1 �1 �1 �1 1 1 1 1

(1; 0) = a11
+

1 1�1�1 1 1 �1 �1 i �i �i i �i i �i i

(3; 0) = a11
�

1 1�1�1 1 1 �1 �1 �i i i �i i �i i �i

(1; 2) = a12
+

1 1�1�1 �1 �1 1 1 i �i �i i i �i i �i

(3; 2) = a12
�

1 1�1�1 �1 �1 1 1 �i i i �i �i i �i i

(0; 1) = a21
+

1 �1 1�1 �i i �i i 1 1 �1 �1 i �i �i i

(0; 3) = a21
�

1 �1 1�1 i �i i �i 1 1 �1 �1 �i i i �i

(2; 3) = a22
+

1 �1 1�1 i �i i �i �1 �1 1 1 i �i �i i

(2; 1) = a22
�

1 �1 1�1 �i i �i i �1 �1 1 1 �i i i �i

(3; 3) = a31
+

1 �1�1 1 i �i �i i �i i �i i 1 1 �1 �1

(1; 1) = a31
�

1 �1�1 1 �i i i �i i �i i �i 1 1 �1 �1

(1; 3) = a32
+

1 �1�1 1 i �i �i i i �i i �i �1 �1 1 1

(3; 1) = a32
�

1 �1�1 1 �i i i �i �i i �i i �1 �1 1 1

Table 4: Function qZZ4�ZZ4, the non-symmetric phase contribution to the function q.

According to the assumptions B;F, and I the assignment of indices to the generators of

the restricted Poincar�e Lie algebra is given by

&st(Ji) = &st(Ĵi) = &st(Ti) = &st( �Ti) = &st(Pi) = (0; ai) ; i 2 f1; 2; 3g; (2. 18)

&st(P0) = (0; a0) = ~�o: (2. 19)

From the addition table 2 we recognize that there are at least four main classes of non-

scalar multiplets under Lorentz transformations:

� The 0-class have multiplets whose elements have indices with (ZZ4�ZZ4)-factors of the

set fa0; a1; a2; a3g.

� The i-class; i 2 f1; 2; 3g have multiplets whose elements have indices with (ZZ4�ZZ4)-

factors of the set fai1
+

; ai1
�

; ai2
+

; ai2
�

g ; i 2 f1; 2; 3g respectively.

In each one of these four classes we can distinguish two types of multiplets: multiplets with

self-bosonic components and multiplets with self-fermionic components. Accordingly, the

multiplets of generators of the algebraic extension IL build up multiplets of the following

types:
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� Multiplet types of the i-classes, i 2 f1; 2; 3g: para-bosonic multiplets W!
i and para-

fermionic multiplets V �
i ,

W!
is =

2
6664
W!

i0

W!
i1

W!
i2

W!
i3

3
7775 ; V �

is =

2
6664
V �
i0

V �
i1

V �
i2

V �
i3

3
7775 ; (2. 20)

where ! 2 IW ; � 2 IV ; i 2 f1; 2; 3g:

After involution in G the multiplets of W - and V -type become:

�W!
�{ _s =

2
666664

�W!
�{ _0

�W!
�{ _1

�W!
�{ _2

�W!
�{ _3

3
777775 ;

�V �
�{ _s =

2
666664

�V �
�{_0

�V �
�{_1

�V �
�{_2

�V �
�{_3

3
777775 ; (2. 21)

where ! 2 IW ; � 2 IV ; �{ 2 f�1; �2; �3g:

According to the assumption G, the indices assigned to the multiplet components are

given by

&st(W
!
i0) = &st( �W!

�{_1
) = (0; ai1

+

) ; &st(V
�
i0) = &st( �V �

�{_1
) = (1; ai1

+

);

&st(W
!
i1) = &st( �W!

�{_0
) = (0; ai1

�

) ; &st(V
�
i1) = &st( �V �

�{_0
) = (1; ai1

�

);

&st(W
!
i2) = &st( �W!

�{_3
) = (0; ai2

+

) ; &st(V
�
i2) = &st( �V �

�{_3
) = (1; ai2

+

);

&st(W
!
i3) = &st( �W!

�{_2
) = (0; ai2

�

) ; &st(V
�
i3) = &st( �V �

�{_2
) = (1; ai2

�

): (2. 22)

Observe that the multiplets of W -type, i.e. W!
i ;

�W!
�{ ; � � �, have self-bosonic compo-

nents, while the multiplets of V -type, i.e. V �
i ;

�V �
�{ ; � � �, have self-fermionic components.

� Multiplet types of the 0-class: bosonic multiplets Bb
o and fermionic multiplets F f

o ,

Bb
os =

2
66664
Bb
o0

Bb
o1

Bb
o2

Bb
o3

3
77775 ; F f

os =

2
666664

F
f
o0

F
f
o1

F
f
o2

F
f
o3

3
777775 ; (2. 23)

where b 2 IB ; f 2 IF :

After involution the multiplets of B- and F -type become:

�Bb
�o _s =

2
666664

�Bb
�o _0

�Bb
�o _1

�Bb
�o _2

�Bb
�o _3

3
777775 ;

�F f
�o _s =

2
6666664

�F f

�o _0

�F f

�o _1

�F
f

�o _2

�F f

�o _3

3
7777775
; (2. 24)

where b 2 IB ; f 2 IF :
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The indices assigned to the multiplet components are given by

&st(B
b
os) = &st( �Bb

�o _s) = (0; as) ; s 2 f0; 1; 2; 3g

&st(F
f
os) = &st( �F

f
�o _s) = (1; as) ; s 2 f0; 1; 2; 3g: (2. 25)

Observe that the multiplets of B-type have self-bosonic components, while the multi-

plets of F -type have self-fermionic components. Observe also that the multiplets T; �T ,

and P can be seen as particular cases of multiplets of B-type.

We adopt from now on the following convention about indices:

� The following indices belong to particular index sets:

i; j; k; `;m 2 f1; 2; 3g ; space indices, class indices;

�{; �|; �k; �̀; �m 2 f�1; �2; �3g ; class indices after involution in G;

�; �; �; �; � 2 f0; 1; 2; 3g ; space-time indices;

r; s; t; u 2 f0; 1; 2; 3g ; multiplet-component indices;

_r; _s; _t; _u 2 f _0; _1; _2; _3g ; adjoint-multiplet-component indices;

!; !0; !00 2 IW ; �; �0; �00 2 IV ;

b; b0; b00 2 IB ; f; f 0; f 00 2 IF : ; dummy class indices: (2. 26)

� If in the same monomial an index appears both as subindex and as superindex, then

summation over its corresponding index set is understood.

We call a momentum representation graded-irreducible if the corresponding matrices are

not reducible to a common multiple block-diagonal texture by a unitary transformation al-

lowed by the graded symmetry.

Since the (I , q)-graded Lie algebraic structure �xes the texture of momentum repre-

sentations, there are graded-irreducible representations which are reducible (by breaking

the graded symmetry) through a unitary transformation. This is the case for the spin-1
2

graded-irreducible representations of extensions we are considering. The graded-irreducible

representations of spin-12 are quadruplets, instead of the irreducible spin-12 doublets.

The classi�cation of the graded-irreducible representations is given according to the eigen-

values with respect to the Casimir operators of the su(2)� su(2) algebra

CT := �ijTiTj ; C �T := �ij �Ti �Tj : (2. 27)

These graded-irreducible representations are thus characterized by the spin function &sp:

&sp : Irep(M) �! 1
2IN

�
�

1
2IN

� ; O 7! &sp(O) = (nO; mO); (2. 28)

where nO(nO + 1) and mO(mO + 1) are respectively the eigenvalues of O under CT and C �T ,

and 1
2IN

� := f0; 12 ; 1;
3
2 ; � � �g.

Observe that under involution (�) in IL we have:

&sp(O) = (nO; mO) =) &sp( �O) = (mO; nO): (2. 29)

We now adopt two further assumptions:
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R The Hilbert space has a positive-de�nite metric and the involution adopted for the genera-

tors of the extended algebra corresponds to the adjunction when considered as operators

acting on the Hilbert space.

S The multiplets transforming under half-integer spin representations have self-fermionic

components, the multiplets transforming under integer spin representations have self-

bosonic components.

Using all the above assumptions, it has been determined in [2] the most general non-trivial

extension IL of the Poincar�e algebra IP involving only spin-12 multiplets of F - and V -type

besides the multiplets of generators of IP . The algebraic relations of this algebraic extension

are:

[M�� ;M��] = i(g��M�� + g��M�� � g��M�� � g��M��); (2. 30)

[M�� ; P�] = i(g��P� � g��P�); (2. 31)

[P�; P�] = 0; (2. 32)

[[F f
os;

�F
f 0

�o _t
]] = 2�̂ff 0(o�

o�o )s _tP�; (2. 33)

[[F f
os; F

f 0

ot ]] = 0; [[ �F f 0

�o _t
; �F f

�o _s]] = 0; (2. 34)

[[F f
os; P�]] = 0; [[P�; �F f

�o _s]] = 0; (2. 35)

[[M�� ; F f
os]] = �

1
2(�f ��

o ) t
s F

f
ot; [[M�� ; �F

f
�o _s]] = +1

2(��f ��
�o )

_t
_s

�F
f

�o _t
; (2. 36)

&sp(F f
o ) = (12 ; 0); &sp( �F f

o ) = (0; 12); (2. 37)

[[V �
is ;

�V �0

�{_t
]] = 2
̂��

0

(o�
i�{ )s _tP�; (2. 38)

[[V �
is ; V

�0

it ]] = 0; [[ �V �0

�{_t
; �V �

�{_s ]] = 0; (2. 39)

[[P�; V
�
is]] = 0; [[P�; �V �

�{_s ]] = 0; (2. 40)

[[M�� ; V �
is]] = �1

2(�� ��
i ) t

s V
�
it ; [[M�� ; �V �

�{ _s ]] = +1
2(��� ��

�{ )
_t

_s
�V �
�{ _t
; (2. 41)

&sp(V �
i ) = (12 ; 0); &sp( �V �

�{ ) = (0; 12): (2. 42)

[[F f
os; V

�
it ]] = 0; [[ �V �

�{_t
; �F f

o _s]] = 0; (2. 43)

[[F f
os;

�V �
�{_t

]] = 0; [[V �
it ;

�F f
�o _s]] = 0; (2. 44)

[[V �
is ; V

�0

jt ]] = 0; [[ �V �0

�| _t ;
�V �
�{_s ]] = 0 ; i 6= j; (2. 45)

[[V �
is ;

�V �0

�| _t ]] = 0; [[V �0

jt ;
�V �
�{_s ]] = 0 ; i 6= j; (2. 46)

where the conventions in (2. 26) hold. The spin-12 graded-irreducible representations to be

used here are presented in Appendix C. The �̂- and 
̂-matrices are presented in Appendix

E.

The algebra in (2. 30)-(2. 46) provides an extension of the Poincar�e Lie algebra that

seems to widen the possibilities given by supersymmetry: Both relations (2. 33) and (2. 38)

can assure positive-de�nite energy eigenvalues.

If all the multiplets of V -type belong to one single i-class, then the extension might be

more properly understood [2] as an (I , q)-graded Lie algebra with I � ZZ2 � (ZZ2�ZZ4). If
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the extension has multiplets of V -type of several classes, then the smallest group generated

by the addition operation among the elements of the set I is ZZ2 � (ZZ4�ZZ4).

A remarkable feature of the algebraic extensions IL thus obtained is that the generators of

the Lorentz Lie algebra can act with commutators or with anticommutators on further gen-

erators of the algebraic extension. Accordingly, the parameters associated with the Lorentz

transformations can commute or anticommute with the parameters of further transforma-

tions. The parameters associated to the actual algebraic extension can have among them

generalized commutative behaviour beyond commutativity and anticommutativity.

3 (I, q)-graded super�elds and superspace formalism

We want to represent the algebra in (2. 30)-(2. 46) on super�elds �. This means that we

look for di�erential operators �G for each generator G of the algebraic extension IL, such that

i[[G;�]] = �G�: (3. 1)

The reiterated application of these transformations corresponds to the application of a single

transformation. For an algebraic relation of the form

[[G1; G2]] = iG3 (3. 2)

we obtain the relation

�G3
= [[�G2

; �G2
]]; (3. 3)

independently of the super�eld � on which the operators act.

In order to obtain the desired representation of the action of the algebra generators on the

super�elds, we use the Lie algebra and the Lie group associated with the (I , q)-graded Lie

algebra [13]. In fact, the usage of a suitable set of parameters "compensating" the statistic

behaviour of the algebra generators allows for the construction of Lie group elements in a way

quite analogous to what is done for ZZ2-graded algebras in [11] (See [12] for an introduction

to this subject). We associate parameters �r to each generator Gr of the algebra, in such a

way that the product �rGr has trivial (statistic) index. Hence,

&st(�
r) = �&st(Gr): (3. 4)

We introduce then parameters x�, �os
f , ���o _s

f , �is
� , ���{ _s

� :

&st(x
�) = (0; a�) ; � 2 f0; 1; 2; 3g;

&st(�
os
f ) = &st(���o _s

f ) = (1; as) ; s 2 f0; 1; 2; 3g ; _s 2 f _0; _1; _2; _3g;

&st(�
i0
f ) = &st(���{�1

f ) = (1; ai1
�

) ; i 2 f1; 2; 3g ; �{ 2 f�1; �2; �3g;

&st(�
i1
f ) = &st(���{�0

f ) = (1; ai1
+

) ; i 2 f1; 2; 3g ; �{ 2 f�1; �2; �3g;

&st(�
i2
f ) = &st(���{�3

f ) = (1; ai2
�

) ; i 2 f1; 2; 3g ; �{ 2 f�1; �2; �3g;

&st(�
i3
f ) = &st(���{�2

f ) = (1; ai2
+

) ; i 2 f1; 2; 3g ; �{ 2 f�1; �2; �3g: (3. 5)

where x� are the space-time (vector) parameters, �os
f and ���o _s

f are spinorial (Grassmann)

parameters, �is
� and ���{ _s

� are para-spinorial (para-Grassmann) parameters.
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We remain close to the little group approach and study �rst group elements associated

with generators of translations (i.e. inhomogeneous transformations in the corresponding

superspace). Such group elements are obtained through the exponential map:

g(x0;�0o
f ;

��0�o
f ;�

0i
� ;

��0�{
�) =

= exp ifx0P + �0o
f F

f
o + �F

f
�o

��0�o
f + �0i

�V
�
i + �V �

�{
��0�{
�g: (3. 6)

In Appendix C we show the corresponding spin-12 representations, the rules for the lowering

and rising of component indices and their summation conventions.

The action from the left of a group element g(x0;�0o
f ;

��0�o
f ;�

0i
� ;

��0�{
�) on g(x;�o

f ;
���o
f ;�

i
�;

���{
�)

can be calculated using the Hausdorf formula (since the compounds �rGr ful�l a Lie algebra),

expfAg expfBg = expfA+ B + 1
2
[A;B]g; (3. 7)

as well as the generalized Jacobi associativity, the algebraic relations (2. 30)-(2. 46), and the

de�nition

[�rGr;�
uGu] := �u�r[[Gr; Gu]]: (3. 8)

We obtain:

g(x0;�0o
f ;

��0�o
f ;�

0i
� ;

��0�{
�) g(x;�o

f;
���o
f ;�

i
�;

���{
�) =

= g(x� + x0� + i�0o
f 0�̂

f 0f(o�
o�o )���o

f � i�o
f �̂ff 0(o�

o�o )��0�o
f 0 +

+ i(2��o + 2��i � 1)�0i
�0
̂

�0�
(o�
i�{ )���{

� � i(2��o + 2��i � 1)�i
�
̂

��0
(o�
i�{ )��0�{

�0 ;

�o
f + �0o

f ;
���o
f + �0�o

f ;�
i
� + �0i

� ;
���{
� + ��0�{

�): (3. 9)

Hence, the multiplication by a group element from the left has caused a translation in the

parameter space:

x� 7! x� + x0� + i�0o
f 0�̂

f 0f (o�
o�o )���o

f � i�o
f �̂ff 0(o�

o�o )��0�o
f 0 +

+ i(2��o + 2��i � 1)�0i
�0
̂

�0�
(o�
i�{ )���{

� � i(2��o + 2��i � 1)�i
�
̂

��0
(o�
i�{ )��0�{

�0 ;

�o
f 7! �o

f + �0o
f ;

���o
f 7! ���o

f + �0�o
f ;

�i
� 7! �i

� + �0i
� ;

���{
� 7! ���{

� + TB0�{
� : (3. 10)

This motion can be reproduced by di�erential operators acting from the left on the functions

� de�ned in the parameter space,

� = �(x;�o
f ;

���o
f ;�

i
�;

���{
�): (3. 11)

These di�erential operators have the form:

i[[P�;�]] := �P�� = @��; (3. 12)

i[[F f
os;�]] := �

F
f
os

� = (@�os
f

+ i�̂ff 0(o�
o�o )s _t

���o _t
f 0@�)�; (3. 13)

i[[ �F f

�o _t
;�]] := � �F f

�o _t

� = (�@���o _t
f

� i�os
f 0 �̂

f 0f (o�
o�o )s _t@�)�; (3. 14)

i[[V �
is ;�]] := �V �

is
� = (@�is

�
+ i(2��o + �

�
i � 1)
̂��

0

(o�
i�{ )s _t

���{ _t
�0@�)�; (3. 15)

i[[ �V �
�{ _t
;�]] := ��V �

�{ _t

� = (�@���{ _t
�
� i�is

�0 
̂
�0�

(o�
i�{ )s _t@�)�: (3. 16)
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In Appendix D we describe the di�erential operations for Grassmann and para-Grassmann

variables. The above di�erential operations generate the motion:

g(x0;�0o
f ;

��0�o
f ;�

0i
� ;

��0�{
�) �(x;�o

f ;
���o
f ;�

i
�;

���{
�) g

�1(x0;�0o
f ;

��0�o
f ;�

0i
� ;

��0�{
�) =

= �(x� + x0� + i�0o
f 0�̂

f 0f (o�
o�o

)���o
f � i�o

f 0�̂
ff 0(o�

o�o
)��0�o

f 0 +

+i(2��o + �
�
i � 1)�0i

�0
̂
�0�

(o�
i�{

)���{
� � i(2��o + �

�
i � 1)�i

�
̂
��0

(o�
i�{

)��0�{
�0 ;

�o
f + �0o

f ;
���o
f + �0�o

f ;�
i
� + �0i

� ;
���{
� + ��0�{

�) ; (3. 17)

and provide a representation of the algebra on the super�elds,

[[�
F
f
os
; � �F f 0

�o _t

]] = �2i�̂ff 0(o�
o�o

)s _t@�;

[[�V �
is
; ��V �0

�{ _t

]] = �2i
̂��0
(o�
i�{

)s _t@�: (3. 18)

The further generalized commutators among �P� ; �F f
os
; � �F f

�o _t

; �V �
is
; ��V �

�{ _t

vanish.

The Lorentz transformations will be carried out by di�erential operators:

i[[M�� ;�]] = �M��� =

= (X�@� �X�@� +

�
i

2
�os
f (�f ��

o ) t
s @�os

f
+

i

2
���o
f _s(��f ��

�o ) _s _t@���o

f _t

+

�
i

2
(2��i + 2��o � 1)(2��i + 2��o � 1)�is

� (�� ��
i ) t

s @�is
�

+

+
i

2
(2��i + 2��o � 1)(2��i + 2��o � 1)���{

� _s(��� ��
�{ ) _s _t@���{

� _t

)�; (3. 19)

for which we verify

[[�M�� ; �
F
f
os

]] = +
i

2
(�f ��

o ) t
s �F f

ot

;

[[�M�� ; � �F f

�o _s

]] = �
i

2
(��f ��

�o )
_t
_s � �F f

�o _t

;

[[�M�� ; �V �
is

]] = +
i

2
(�� ��

i ) t
s �V �

it
;

[[�M�� ; ��V �
�{ _s

]] = �
i

2
(��� ��

�{ )
_t

_s ��V �

�{ _t

: (3. 20)

The application of the transformation g(x0;�0o
f ;

��0�o
f ;�

0i
� ;

��0�{
�) from the left has lead to the

construction of the di�erential operators providing a representation of the algebra on the

super�elds. The action of the transformation g(x0;�0o
f ;

��0�o
f ;�

0i
� ;

��0�{
�) from the right leads to

the construction of di�erential operators with a good covariance as well. We de�ne the

covariant derivatives:

Df
os := (@�os

f
� i�̂ff 0(o�

o�o )s _t
���o _t
f 0@�); (3. 21)

�Df

�o _t
:= (�@���o _t

f

+ i�os
f 0 �̂

f 0f (o�
o�o )s _t@�); (3. 22)

D�
is := (@�is

�
� i(2��o + �

�
i � 1)
̂��

0

(o�
i�{ )s _t

���{ _t
�0@�); (3. 23)

�D�
�{ _t

:= (�@���{ _t
�

+ i�is
�0 
̂

�0�
(o�
i�{ )s _t@�); (3. 24)
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where

&st(D
f
os) = &st(F

f
os) ; &st( �D

f
�o _s) = &st( �F

f
�o _s); (3. 25)

&st(D
�
is) = &st(V

�
is) ; &st( �D�

�{ _s) = &st( �V �
�{ _s): (3. 26)

These di�erential operators ful�l

[[Df
os;

�D
f 0

�o_t
]] = 2i�̂ff 0(o�

o�o )s _t@�;

[[D�
is;

�D�0

�{_t
]] = 2i
̂��0

(o�
i�{

)s _t@�: (3. 27)

The further generalized commutators among Df
os;

�D
f

�o _t
; D�

is;
�D�
�{_t

vanish. We also �nd

[[Df
os; �G]] = 0 ; [[ �D

f
�o _s; �G]] = 0;

[[D�
is; �G]] = 0 ; [[ �D�

�{ _s; �G]] = 0; (3. 28)

for all �G 2 f�P� ; �F f
os
; � �F f

�o _t

; �V �
is
; ��V �

�{ _t

g,

[[�M�� ; Df
os]] = +

i

2
(�f ��

o ) t
s D

f
ot;

[[�M�� ; �Df
�o _s]] = �

i

2
(��f ��

�o )
_t

_s
�Df

�o _t
;

[[�M�� ; D�
is]] = +

i

2
(�� ��

i ) t
s D

�
it;

[[�M�� ; �D�
�{_s]] = �

i

2
(��� ��

�{ )
_t
_s

�D�
�{_t
: (3. 29)

The representation associated with the super�eld � and the relations (3. 11)-(3. 29) is

said to be given in the real basis. We now consider further representations. In fact, the group

elements can be represented as well by g(1) or by g(2) of the generic forms

g(1)(x;�
o
f ;

���o
f ;�

i
�;

���{
�) = exp ifxP + �o

fF
f
o + �i

�V
�
i g � exp if �F

f
�o

���o
f + �V �

�{
���{
�g;(3. 30)

g(2)(x;�
o
f ;

���o
f ;�

i
�;

���{
�) = exp ifxP + �F f

�o
���o
f + �V �

�{
���{
�g � exp if�o

fF
f
o + �i

�V
�
i g:(3. 31)

The left action of g(x0;�0o
f ;

��0�o
f ;�

0i
� ;

��0�{
�) on the group elements g(1) and g(2) above yields

g(x0;�0o
f ;

��0�o
f ;�

0i
� ;

��0�{
�)g(1)(x;�

o
f ;

���o
f ;�

i
�;

���{
�) =

= g(1)(x
� + x0� � 2i�o

f �̂ff 0(o�
o�o )��0�o

f 0 � 2i(2��o + 2�
�
i � 1)�i

�
̂
��0

(o�
i�{ )��0�{

�0 ;

�o
f + �0o

f ;
���o
f + �0�o

f ;�
i
� + �0i

� ;
���{
� + ��0�{

�); (3. 32)

g(x0;�0o
f ;

��0�o
f ;�

0i
� ;

��0�{
�)g(2)(x;�

o
f ;

���o
f ;�

i
�;

���{
�) =

= g(2)(x
� + x0� + 2i�0o

f 0�̂
f 0f (o�

o�o )���o
f + 2i(2��o + 2��i � 1)�0i

�0
̂
�0�

(o�
i�{ )���{

�;

�o
f + �0o

f ;
���o
f + �0�o

f ;�
i
� + �0i

� ;
���{
� + ��0�{

�):(3. 33)

We can associate again the transformation properties of the group elements g(1) and g(2)
with super�eld representations �(1) and �(2) respectively. The considered representations

turn out to be related to one another by space-time shifts:

�(x�;�os
f ;

���o _s
f ;�

it
� ;

���{ _t
� ) = (3. 34)
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= �(1)(x
� + i�o

f �̂ff 0(o�
o�o )���o

f 0 + i(2��o + 2�
�
i � 1)�i

�
̂
��0

(o�
i�{ )���{

�0 ;�
os
f ;

���o _s
f ;�

it
� ;

���{ _t
� ) =

= exp(if�o
f �̂ff 0(o�

o�o
)���o

f 0 + (2��o + 2�
�
i � 1)�i

�
̂
��0

(o�
i�{

)���{
�0g@�)�(1)(x

�;�os
f ;

���o _s
f ;�

it
� ;

���{_t
� ) =

= �(2)(x
�
� i�o

f �̂ff 0(o�
o�o )���o

f 0 � i(2��o + 2�
�
i � 1)�i

�
̂
��0

(o�
i�{ )���{

�0 ;�
os
f ;

���o _s
f ;�

it
� ;

���{ _t
� ) =

= exp(�if�o
f �̂ff 0(o�

o�o
)���o

f 0 + (2��o + 2�
�
i � 1)�i

�
̂
��0

(o�
i�{

)���{
�0g@�)�(2)(x

�;�os
f ;

���o _s
f ;�

it
� ;

���{ _t
� );

and have the transformation properties:

g(x0;�0o
f ;

��0�o
f ;�

0i
� ;

��0�{
�)�(1)(x;�

o
f ;

���o
f ;�

i
�;

���{
�)g�1(x0;�0o

f ;
��0�o
f ;�

0i
� ;

��0�{
�) =

= �(1)(x
� + x0� � 2i�o

f �̂ff 0(o�
o�o

)��0�o
f 0 � 2i(2��o + 2�

�
i � 1)�i

�
̂
��0

(o�
i�{

)��0�{
�0 ;

�o
f + �0o

f ;
���o
f + �0�o

f ;�
i
� + �0i

� ;
���{
� + ��0�{

�); (3. 35)

g(x0;�0o
f ;

��0�o
f ;�

0i
� ;

��0�{
�)�(2)(x;�

o
f ;

���o
f ;�

i
�;

���{
�)g�1(x0;�0o

f ;
��0�o
f ;�

0i
� ;

��0�{
�) =

= �(2)(x
� + x0� + 2i�0o

f 0�̂
f 0f(o�

o�o
)���o

f + 2i(2��o + 2�
�
i � 1)�0i

�0
̂
�0�

(o�
i�{

)���{
� ;

�o
f + �0o

f ;
���o
f + �0�o

f ;�
i
� + �0i

� ;
���{
� + ��0�{

�): (3. 36)

The representations associated with �(1) and �(2) are said to be given in the chiral and in the

anti-chiral basis, respectively. The corresponding representations of the symmetry generators

and covariant derivatives as di�erential operators acting on �(1) and �(2) turn out to be:

(�
F
f
os

�)(1) := (@�os
f

)�(1);

(� �F f

�o _t

�)(1) := (�@���o _t
f

� 2i�os
f 0 �̂

f 0f (o�
o�o )s _t@�)�(1);

(�V �
is

�)(1) := (@�is
�

)�(1);

(��V �

�{ _t

�)(1) := (�@���{ _t
�
� 2i�is

�0 
̂
�0�

(o�
i�{ )s _t@�)�(1)

(Df
os�)(1) := (@�os

f
� 2i�̂ff 0(o�

o�o )s _t
���o _t
f 0@�)�(1);

( �Df

�o_t
�)(1) := (�@���o _t

f

)�(1);

(D�
is�)(1) := (@�is

�
� 2i(2��o + �

�
i � 1)
̂��

0

(o�
i�{ )s _t

���{ _t
�0@�)�(1);

( �D�
�{_t

�)(1) := (�@���{ _t
�

)�(1): (3. 37)

(�
F
f
os

�)(2) := (@�os
f

+ 2i�̂ff 0(o�
o�o )s _t

���o _t
f 0@�)�(2);

(� �F f

�o _t

�)(2) := (�@���o _t
f

)�(2);

(�V �
is

�)(2) := (@�is
�

+ 2i(2��o + �
�
i � 1)
̂��

0

(o�
i�{ )s _t

���{ _t
�0@�)�(2);

(��V �

�{ _t

�)(2) := (�@���{ _t
�

)�(2)

(Df
os�)(2) := (@�os

f
)�(2);

( �Df

�o_t
�)(2) := (�@���o _t

f

+ 2i�os
f 0 �̂

f 0f (o�
o�o )s _t@�)�(2);

(D�
is�)(2) := (@�is

�
)�(2);

( �D�
�{_t�)(2) := (�@���{ _t

�
+ 2i�is

�0 
̂
�0�

(o�
i�{ )s _t@�)�(2): (3. 38)

Analogously to the superspace formalism of supersymmetric models [11], we can consider

the space-time, the fermionic and the para-fermionic parameters on the same vein. Hence,

(x�;�os
f ;

���o _t
f ; (�

1s
� ;�

2s
� ;�

3s
� ); (��

�1_t
� ;

��
�2_t
� ;

��
�3_t
� )) (3. 39)
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provides the coordinates of the (I , q)-graded superspace associated to the algebraic exten-

sion in (2. 30)-(2. 46). The operator-valued distribution �(x;�o
f ;

���o
f ;�

i
�;

���{
�) transforming

according to (3. 17), (3. 35) or (3. 36) is called an (I , q)-graded super�eld representation of

this algebraic extension. The quantization relations for the corresponding component �elds

will be discussed in [6].

4 Field content of super�eld representations of ZZ2� (ZZ4�ZZ4)-
graded extensions

We want to start a preliminary discussion about the possible structure of supermultiplet

representations of the graded extension in (2. 30)-(2. 46).

We observe �rst that the space-time translation generators P� have vanishing generalized

commutators with the symmetry charges F f
o , �F

f
�o , V �

i , �V �
�{ . This might indicate that irre-

ducible representations are of equal mass. Nevertheless, the consequences of having reducible

momentum representations for these spin-12 charges should be studied carefully. Remember

that the structure of (I , q)-graded Lie algebras over IC sets conditions on the texture and

dimensions of momentum representations that lead to the usage of spin-12 quadruplets [2].

Much as has been done for supersymmetric extensions, we would like to have counting

operators for bosonic, para-bosonic, fermionic and para-fermionic one-particle states. For the

standard (anticommuting) supersymmetry charges we can de�ne an operator (�1)Nf that

simply reproduces the properties of a constant fermionic parameter �oo. In this case, we can

�nd a relation between the number of one-particle states associated with �elds of self-fermionic

components and one-particle states associated with �elds of self-bosonic components. For

�nite-dimensional representations (in order to have a naive de�nition of the trace) we have:

Trf(�1)Nf [[F f
os;

�F f 0

�o _t
]]g = 2�̂ff 0(o�

o�o )s _t Trf(�1)NfP�g = 0: (4. 1)

Hence, for degenerate masses, an equal number of one-particle states for self-fermionic �elds

and self-bosonic �elds would be expected. The task of constructing counting operators for

para-fermionic states is not trivial, since in this case the generalized commutator (see table

4)

[[V �
is ;

�V �0

�{_t ]] (4. 2)

involves simultaneously commuting and anticommuting parts. We have to determine as well a

suitable counting procedure when several couples of extending symmetry charges are present.

Although these particularities have been identi�ed, we could not exclude so far the existence

of the searched counting operators.

These problems might be circumvented by considering only fundamental spin-12 represen-

tations for the para-fermionic symmetry charges, and that the parameters associated to each

para-fermionic symmetry charge anticommute among them. These conditions would make it

trivial to construct operators counting para-fermionic states, but goes beyond the possibities

of the kind of extensions considered here.

The study of the component �eld spectrum in a supermultiplet thus merits further dis-

cussion.

5 Covariant constraints

Since the �-parameters introduced above have self-fermionic behaviour, they are nilpotent

and thus generate only polynomial expansions of bounded degree.
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We will constraint our considerations {for simplicity{ to the case in which there are no

fermionic symmetry charges, and there are only two para-fermionic symmetry charges: Vi and
�V�{ for i �xed (which are actually the novelty of the present formalism). A generic super�eld

might be expanded in the following way:

�(x�;�is; ���{ _s) =

= �(0;0)(x) + �is�(1;0)s (x) + �
(0;1)
_s (x)���{ _s + � � �+ (�i�i)2�(4;4)(x) (���{ ���{)2; (5. 1)

where the �(n;m)(x) are ordinary �elds (including para-fermionic representations), the so-

called component �elds of the given super�eld.

If we act with a covariant derivative Dis or �D�{ _s on the super�eld, then we obtain again

a super�eld. This nice property allows for the de�nition of covariant constraints. These

constraints must not yield di�erential equations in space-time coordinates. We can mention

the following examples of constrained super�elds:

� �A is called an anti-chiral super�eld, if

&st( �A) = ~�o; Dis
�A = 0 ; s 2 f0; 1; 2; 3g: (5. 2)

� A is called a chiral super�eld, if

&st(A) = ~�o; �D�{ _sA = 0 ; _s 2 f _0; _1; _2; _3g: (5. 3)

� � is called a real super�eld, if

&st(�) = ~�o; �� = �: (5. 4)

The summation and product of super�elds of the same type and representations preserve

the latter constraints.

The symmetry transformations in the chiral basis have been listed in (3. 37). According

to them, a chiral super�eld A in chiral basis ful�ls

@���{ _sA(1) = 0; A(1) = A(1)(x;�
i) chiral super�eld: (5. 5)

In an analogous way, in the anti-chiral basis, an anti-chiral super�eld �A ful�ls

@�is
�A(2) = 0; �A(2) = �A(2)(x; ���{) anti-chiral super�eld: (5. 6)

Observe that, if A is a chiral super�eld, then (A) = �A is an anti-chiral super�eld. Observe

as well that

A chiral super�eld =) DiDi DiDi A anti-chiral super�eld; (5. 7)

�A anti-chiral super�eld =) �D�{
�D�{

�D�{
�D�{

�A chiral super�eld: (5. 8)

We might try to construct a kinetic term for chiral �elds using an expression of the formZ
d4xDiDi DiDi A �D�{

�D�{
�D�{

�D�{
�A: (5. 9)

We observe, nevertheless, that this adoption seems to produce bilinear terms involving cubic

and quartic derivatives. We can test the e�ect of the symmetry charges on the component
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�elds using a kinetic term of the form given in (5. 9). We then arrive to the conclusion that,

with the exclusion of the component �elds which might include higher derivatives the validity

of the generalized Jacobi associativity cannot be veri�ed. It should be determined if these

components have to be included as well in order to verify the Ward-identities associated with

the extended symmetry.

We then expect, that either a very smart choice of the �eld components is allowed in order

to compensate the terms with higher derivatives without breaking the external symmetry, or

we shall be confronted with unitarity problems. We do not know either if further super�eld

types could provide more appropriate models for matter �elds.

Observe that the possible presence of higher derivative terms in (5. 9) comes from the

integration over eight di�erent �-parameters, instead of integration over four as in the stan-

dard supersymmetric chiral models. This fact is then directly associated with the adoption

of quadruplets for spin-12 charges instead of fundamental spin-12 doublets.

6 Para-fermionic �elds

We can make use of the discussed candidate for the kinetic term in (5. 9) to obtain which

might be the Lagrangean and the equations of motion for a para-fermionic component �eld.

We consider a chiral super�eld A and its anti-chiral adjoint �A of the form:

A(1)(x;�
i) = � � �+ (�i�i)A(x) + (�i�i)�is2 is(x) + (�i�i)2F (x);

�A(2)(x; ���{) = � � �+ �A(x)(���{ ���{) + 2 � �{ _s(x)���{ _s(���{ ���{) + �F (x) (���{ ���{)2: (6. 1)

We construct a chiral super�eld out of the anti-chiral super�eld �A using (5. 8):

( �D�{
�D�{

�D�{
�D�{

�A)(2) =

= f1� 2i(2�
�
i + 2��o � 1)(�i
̂(o�

i�{ )���{)@� � 2(�i
̂(o�
i�{ )(�i
̂(o�

i�{ )@�@� +

+ 2i(2��i + 2��o � 1)(�i�i)(���{ ���{)(�i
̂(o�
i�{ )���{)@�2 + 1

4(�i�i)2(���{ ���{)222
g �

� f64 �F (x)� �ir64i
̂(o�
i�{ )r _t@�

� 
_t
i (x)� (�i�i)322 �A(x) + � � �g =

= expf�2i(2��i + 2��o � 1)(�i
̂(o�
i�{ )���{)@�g �

� f64 �F (x)� �ir64i
̂(o�
i�{ )r _t@�

� 
_t
i (x)� (�i�i)322 �A(x) + � � �g: (6. 2)

We can use the relation among the chiral and the anti-chiral bases in (3. 34) to present the

same result in chiral basis:

( �D�{
�D�{

�D�{
�D�{

�A)(1) =

= f64 �F (x)��is64i
̂(o�
i�{ )s _t@�

� 
_t
i (x)� (�i�i)322 �A(x) + � � �g: (6. 3)

Hence, we can write

�kin = 1
211

Z
d4x DiDi DiDi A �D�{

�D�{
�D�{

�D�{
�A =

=

Z
d4x f2F �F � i s

i 
̂(o�
i�{ )s _t@�

� 
_t
�{ + @�A@

� �A+ � � �g =

=

Z
d4x f2 �FF � i � �{ _t
̂(o��{i )

_ts@� is + @� �A@�A+ � � �g: (6. 4)

We have obtained a kinetic term for a complex massless scalar �eld A(x) and what might

correspond to a kinetic term for a massless para-fermionic �eld  i(x). The component F

turns out to be an auxiliary �eld.



L. A. Wills Toro: (I , q)-graded superspace formalism 17

The above construction provides an action for a para-fermionic Field. We can now con-

sider an action for a massive para-fermionic �eld:

�M =

Z
d4x f�i � �{ _t
̂(o��{i )

_ts@� is �
1
2
m( i i + � �{ � �{)g: (6. 5)

The corresponding equations of motion can be written in the following way(
i

"
0 
̂(o�

i�{ )r _u


̂(o��{i )
_ts 0

#
@� +

"
� sr 0

0 �
_t
_u

#) "
 is
� _u
�{

#
= 0: (6. 6)

The latter constitutes a system of coupled di�erential equations, which leads to the conditions:

(2+ m2) ir = 0; (2+m2) � 
_t

�{ = 0: (6. 7)

Hence, each component of the massive para-fermionic multiplet ful�ls a Klein-Gordon equa-

tion. Observe that the adjunction de�ned by

�	M �

"
 is
� _u
�{

#
:= [ t

i
� �{ _r] = [ is � _s

�{ ]

"
�ts 0

0 �� _s _r

#
(6. 8)

allows for the construction of a Lorentz-invariant bilinear form (already used in the mass

term)
�	M	M =  i i + � �{ � �{: (6. 9)

According to the de�nition (6. 8), the column vector 	M is linearly related to its adjoint �	M .

We can thus consider the expression in (6. 6) as the equation of motion of a Majorana-like

para-fermionic �eld.

We can easily construct an action for the Dirac-like para-fermionic �eld:

�D =

Z
d4x f�i � �{ _t
̂(o�

�{i )
_ts@� is � i���{ _t
̂(o��{i )

_ts@��is �m(�i i + ���{ � �{)g: (6. 10)

The equations of motions are accordingly(
i

"
0 
̂(o�

i�{ )r _u


̂(o��{i )
_ts 0

#
@� +

"
� s
r 0

0 �
_t
_u

#) "
 is
�� _u
�{

#
= 0: (6. 11)

We obtain again suitable on-shell conditions for the �eld components

(2+m2) ir = 0; (2+ m2)��
_t

�{ = 0: (6. 12)

In the present case, the column vector in (6. 11) is not linearly related to its adjoint:

�	D �

"
 is
�� _u
�{

#
:= [� t

i
� �{ _r] = [�is � _s

�{ ]

"
�ts 0

0 �� _s _r

#
: (6. 13)

Equation (6. 11) doubled the degrees of freedom of the Majorana-like equation (6. 6).

If we want to associate any probabilistic interpretation to the para-fermionic �elds, we

have to �nd a non-negative norm, conserved by the time evolution.

The adjoint form of eq. (6. 11) is given by

i(2��i + 2��o � 1)[@��
t

i @� � �{ _r]

"
0 
̂(o�

i�{ )t _u

̂(o��{i ) _rs 0

#
�m[� s

i
� �{ _u] = 0: (6. 14)
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By multiplying eq. (6. 11) by [� s
i

� �{ _u] from the left and eq. (6. 14) by [ is � _u
�{ ]T from the

right, and adding the results we obtain:

@�

(
(2�

�
i + 2��o � 1)[� t

i
� �{ _r]

"
0 
̂(o�

i�{ )t _u

̂(o��{i ) _rs 0

# "
 is
�� _u
�{

#)
=

= @�f�
t

i 
̂(o�
i�{

)t _u �� _u
�{ + � �{ _r
̂(o�

�{i
) _rs isg(2�

�
i + 2��o � 1) = @�J

� = 0: (6. 15)

There is thus a conserved current

J� := (2�
�
i + 2��o � 1)f� t

i 
̂(o�
i�{ )t _u �� _u

�{ + � �{ _r
̂(o��{i ) _rs isg; (6. 16)

whose time-component is a positive density

� :=
X
s

( is) is +
X
_t

(��
_t

�{ )��
_t

�{ : (6. 17)

The current J� transforms as a Lorentz four-vector.

7 Conclusions and open questions

We have obtained here the following results:

� We introduced a ZZ2 � (ZZ4 � ZZ4)-graded extension of the Poincar�e algebra using the

standard Hamel basis fM��g for the Lorentz subalgebra. We determined the form of

the bilinear invariants for spin (1
2 ; 0) and for spin (0; 12) fermionic and para-fermionic

representations. We determined the metric matrices associated with the lowering and

rising of multiplet-component indices.

� We developed the superspace formalism which involves para-Grassmann parameters.

We de�ned the superspace associated with a ZZ2 � (ZZ4 � ZZ4)-graded extension of the

Poincar�e algebra. We constructed representations of the group elements with the help of

exponential mappings and the usage of superspace (or group) parameters. We studied

the product (from the left and from the right) of group elements and determined their

transformation e�ect on the group parameters.

� We obtained representations of the generators of the considered graded algebra as dif-

ferential operators acting on functions of the superspace parameters. We obtained

covariant derivatives as well. The super�elds are de�ned to transform in the same way

as the group elements (under group transformations). We determined three particular

representations for group elements and super�elds, which are the so-called real, chiral

and anti-chiral bases. We determined the relations among them.

� We addressed the question about the classi�cation of the super�eld representations.

We determined severe di�culties in providing a de�nition of an operator counting

para-fermionic one-particle states. This problem appears to be related with the mixed

(commutator-anticommutator) nature of the generalized commutator between the com-

ponents of each para-Fermionic symmetry charge. This feature is in turn related with

the usage of non-fundamental spin-12 representations for the symmetry charges.
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� We studied covariant constraints on super�elds using covariant derivatives. We observed

the origin of a further drawback of the considered algebraic extensions since higher

derivative terms can appear in constructing the simplest invariant actions for chiral

models.

We have not excluded, in any case, the possibility that a very careful choice of �eld

components or the use of further super�eld types could get rid of the undesired cubic and

quartic derivatives in the kinetic terms without breaking the graded external symmetry.

The possible appearance of higher derivative terms seems to be related with the usage

of non-fundamental spin-12 representations for symmetry charges. We associated four

independent (para-) Grassmann parameters with each non-fundamental spin-12 (para-)

fermionic multiplet of symmetry generators. In contrast, the usage of fundamental spin-
1
2

multiplets would require only two independent parameters for each (para-) fermionic

symmetry charge.

� We obtained, as a by-product of the presented superspace formalism, the action and the

equation of motion for a free para-fermionic �eld. We veri�ed that the multiplet com-

ponents ful�l adequate (Klein-Gordon) on-shell conditions. We derived Majorana- and

Dirac-like equations of motion for para-fermions. We veri�ed the existence of a positive

probability density, together with a continuity equation for such para-fermionic �elds.

This construction might be the analogue of what is expected when using fundamental

spin-12 representations for para-fermions.

The construction of a superspace formalism involving parameters which do not necessarily

commute with all the space-time parameters has been developed here and seems to present

no mathematical obstacle. From the physical point of view, nevertheless, we determined

several indications that the physical meaningful graded extensions might be more properly

related with graded extensions using fundamental spin-12 representations for fermionic and

para-fermionic symmetry charges. This would avoid, on the one hand, the appearance of

higher derivatives in the kinetic terms. On the other hand, it would allow for the de�nition

of counting operators for para-fermionic one-particle states [6]. In a deeper sense, the results

of this paper indicate several limits for usage of the (I , q)-graded extensions over IC of the

Poincar�e algebra. It furthermore indicates which might be the adequate structure of the

graded algebraic extensions that leads to meaningful physical models [10].

It should be investigated as well, if there is a symmetry structure among the fermionic and

para-fermionic charges, i.e. among the di�erent multiplet classes. The self-fermionic parame-

ters might be written suggestively in the form of quadrupets of quadruplets (�os;�1s;�2s;�3s),

( ���o _t; ��
�1_t; ��

�2_t; ��
�3_t), to which we might associate novel symmetry properties.
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Appendices

A (I, q)-graded Lie algebra over a commutative �eld IK

The study of parameters with generalized commutative behaviour �~a; �
0
~e; � � � ful�lling

�~a�
0
~e = q~a;~e�

0
~e�~a; (A.1)
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where q~a;~e 2 IK n f0g, leads to the determination [13] of the following graded algebraic

structure: The set IL of operators with generalized commutative behaviour is called an (I ,

q)-graded Lie algebra over a commutative �eld IK if besides IL we have

� a "statistic" function &stjIL,

� an index set I � II; II an Abelian additive group,

� a function qjI�I ,

� a rule of composition [[�; �]],

ful�lling the axioms IQ0-IQ4:

IQ0 The function &stjIL is a surjective map from IL into I , and the set of pre-images of each

~a 2 I , i.e. &stj
�1
IL (~a), is a vector space over IK:

&stjIL : IL �! I ; O~a 7! &st(O~a) = ~a; (A.2)

IL~a := &stj
�1
IL (~a) ; ~a 2 I; (A.3)

(IL~a; +; :) ; ~a 2 I vector spaces over IK: (A.4)

IQ1 The [[�; �]]-product is an internal and I-graded operation in IL:

[[�; �]] IL� IL �! IL ; (O~a;O
0
~e) 7! [[O~a;O

0
~e]] 2 IL; (A.5)

(~a; ~e 2 I) and (~a+ ~e 62 I) =) [[IL~a; IL~e]] = f0g; (A.6)

(~a; ~e 2 I) and (~a+ ~e 2 I) =) [[IL~a; IL~e]] � IL~a+~e; (A.7)

where

+jI�I : I � I �! II � I ; (~a; ~e) 7! ~a + ~e = ~e+ ~a; (A.8)

(II ; +) Abelian group : (A.9)

IQ2 The [[�; �]]-product is bilinear with respect to the addition operation de�ned in each vector

space (IL~a; +; �) ; ~a 2 I :

[[yO~a + y00O00
~a ;O

0
~e]] = y[[O~a;O

0
~e]] + y00[[O00

~a;O
0
~e]];

[[O0
~e; yO~a + y00O00

~a ]] = y[[O0
~e;O~a]] + y00[[O0

~e;O
00
~a]]; (A.10)

for all (y; y00) 2 IK � IK and (~a; ~e) 2 I � I and (O~a;O
00
~a;O

0
~e) 2 IL~a � IL~a � IL~e.

IQ3 The [[�; �]]-product is generalized antisymmetric:

[[O~a;O
0
~e]] = �q~a;~e[[O

0
~e;O~a]]; (A.11)

for all (~a; ~e) 2 I � I and (O~a;O
0
~e) 2 IL~a � IL~e, and where

qjI�I : I � I �! IK n f0g ; (~a; ~e) 7! q(~a; ~e) =: q~a;~e; (A.12)

ful�ls

q~a;~e = q�1~e;~a; (A.13)

q~a+~e;~c = q~a;~cq~e;~c: (A.14)
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IQ4 The [[�; �]]-product is generalized Jacobi-associative:

q~c;~a[[O~a; [[O
0
~e;O

00
~c ]]]] + q~a;~e[[O

0
~e; [[O

00
~c ;O~a]]]] + q~e;~c[[O

00
~c ; [[O~a;O

0
~e]]]] = 0; (A.15)

for all (~a; ~e; ~c) 2 I � I � I ; (O~a;O
0
~e;O

00
~c ) 2 IL~a � IL~e � IL~c:

We can easily verify that the particular de�nition of the [[�; �]]-product provided by

(O~a;O
0
~e) 7! [[O~a;O

0
~e]] := O~aO

0
~e � q~a;~eO

0
~eO~a (A.16)

ful�ls the requirements (A.10), (A.11) and (A.15). This is the product naturally associated

to the adjoint representations and the derivations on the (I , q)-graded Lie algebra [13]. We

call the product (A.16) the generalized commutator.

If IL is an (I , q)-graded Lie algebra over IK and ful�ls additionally the requirement that

there exist involutions acting simultaneously in IL; I; IK

9(�); (�)?; (�)� involutions in IL; I; IK respectively :

(�) : IL �! IL ; O~a 7! (O~a) =: �O~a? ; (A.17)

(�)? : I �! I ; ~a 7! (~a)? =: ~a?; (A.18)

(�)� : IK �! IK ; y 7! (y)� =: y�; (A.19)

such that

q~a?;~e ? = (q�~a;~e)
�1; (A.20)

then IL is called an (I; q)-graded Lie algebra over IK with involution . If IK = IC, then we adopt

"(�)�" to be the complex conjugation.

We consider now a maximal set fGng of linearly independent elements of IL. The set

fGng is called a Hamel basis of IL. We call fGng~a the subset of elements of fGng which

have index ~a,

fGng~a := fGni 2 fGng : &st(Gni) = ~ag: (A.21)

Hence, fGng~a is a Hamel basis of the vector space IL~a:

IL~a = GenfGng~a: (A.22)

Accordingly,

IL =
[
~a2I

GenfGng~a: (A.23)

In terms of the Hamel basis fGng, the algebraic relations of IL take the form:

[[G1; G2]] = CGx

G1G2
Gx; (A.24)

where summation over Gx 2 fGng is understood, and G1; G2 2 fGng. The coe�cients

CGx

G1G2
2 IK are called the structure constants of IL using the Hamel basis fGng. These

structure constants ful�l:

CGx

G1G2
= 0 if Gx 62 fGng&st(G1)+&st(G2);

CGx

G1G2
2 IK if Gx 2 fGng&st(G1)+&st(G2): (A.25)

Using the generalized Jacobi associativity (A.15), we can write

q&st(G3);&st(G2)C
Gy

G2Gx
CGx

G1G3
+ q&st(G2);&st(G1)C

Gy

G1Gx
CGx

G3G2
+

+ q&st(G1);&st(G3)C
Gy

G3Gx
CGx

G2G1
= 0: (A.26)
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The generalized antisymmetry condition becomes

CGz

GxGy
= �q&st(Gx);&st(Gy)C

Gz

GyGx
; (A.27)

Consider an (I , q)-graded Lie algebra IL with involution. If we act with the involution

operations on both sides of the algebraic relations in (A.24) and use the property (A.20) we

obtain

([[G1; G2]]) = [[ �G2; �G1]] = �q�&st(G1);&st(G2)
[[ �G1; �G2]]: (A.28)

Hence,

[[ �G1; �G2]] = C
�Gx
�G1

�G2

�Gx; (A.29)

C
�Gx
�G1

�G2
= �q�&st(G2);&st(G1)

(CGx

G1G2
)� = (CGx

G2G1
)�: (A.30)

The graded generalizations of Lie algebras have been studied �rst by P. Cartier [14] in

1955 and by R. Ree [15] in 1960. A concrete family of graded Lie algebras beyond the

superalgebras have been introduced into physics by V. Rittenberg and D. Wyler [5] in 1978.

A formal presentation of this subject with further developments has been accomplished by

M. Scheunert [16] in 1983. Novel developments in graded Lie algebras can be found in [13]

and [10].

B Single-grading model for the index set I and the function

q when IK = IC

We now construct a particular model, the so-called single-grading model, for the index set

I and the function q of an (I , q)-graded Lie algebra over IC. For more general models,

multi-grading models, see [13].

We consider an Abelian group ( �E; +) and a complex function �q:

�E := ZZ2 � IR
2
� IR2;

�E 3 ~a � (a0; ~�~a; ~%~a) � (a0; (a1; a2); (a3; a4)); (B.1)

+ : �E � �E �! �E ;

(~a;~e) 7! ~a+ ~e := (a0 + e0; ~�~a + ~�~e; ~%~a + ~%~e) =

= (a0 + e0; (a1 + e1; a2 + e2); (a3 + e3; a4 + e4)); (B.2)

�q : �E � �E �! IC ;

(~a;~e) 7! �q~a;~e := expfi�a0e0 + i�(a1e2 � e1a2) + �(a3e4 � e3a4)g: (B.3)

We consider now that the index set I is a set of disjoint subsets of �E, i.e.

~a 2 I =) ~a � Ê; (B.4)

~a; ~e 2 I and ~a 6= ~e =) ~a \ ~e = ;: (B.5)

The addition of indices will then have the form:

+jI�I : I � I �! II � I ; (~a; ~e) 7! ~a+ ~e := f~a+ ~e : (~a;~e ) 2 ~a� ~eg: (B.6)
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The equivalence relation
I
' associated to the partition of [~a2I (~a) into I should have the

following property:

~a
I
' ~e() (8~c 2 I and 8~c 2 ~c : �q~a;~c = �q~e;~c): (B.7)

The connection between �q and q is given by the de�nition

qjI�I : I � I �! IC ; (~a; ~e) 7! q~a;~e 2 f�q~a;~e : (~a;~e ) 2 ~a� ~eg: (B.8)

This de�nition of the function q given �q is not ambiguous since according to condition (B.7)

the set f�q~a;~e : (~a;~e ) 2 ~a� ~eg has only one single element. Observe that there might be mul-

tiple admissible choices of the Abelian set II � I . This is a remarkable fact when considering

the (I , q)-graded extensions of a given algebra.

It is easy to verify that the de�ned function q ful�ls the properties (A.13) and (A.14)

required by the (I , q)-graded Lie algebra over IC.

If we want an (I , q)-graded extension with involution, with the complex conjugation as

involution in IC, then there should exist a map (�)? ful�lling (A.20). From this we obtain:

~a 2 ~a ; ~e 2 ~e ; ~a ?
2 ~a? ; ~e ?

2 ~e ? =)

i) a?0 = a0; (B.9)

ii) (a1a
?
2 � a?1a2) mod 2 2 f0; 1g; (B.10)

iii) (a?1e
?
2 � e?1a

?
2) mod 2 = (a1e2 � e1a2) mod 2; (B.11)

iv) (a?3e
?
4 � e?3a

?
4) = �(a3e4 � e3a4): (B.12)

Every choice of the (�)?-involution ful�lling the requirements (B.9)-(B.12) will be consis-

tent with the condition (A.20).

Observe that

q~a;~a = q~a?;~a? = expfi�a0a0g ; ~a 2 ~a: (B.13)

Hence, we shall call a0 the intrinsic commutative behaviour of the objects of index ~a 3 ~a.

The two allowed values of the intrinsic commutative behaviour are 0 and 1, and we call them

self-bosonic and self-fermionic respectively.

C Spin-1
2
representations in terms of the Hamel basis fM��g

The connection between the momentum representations in terms of the Hamel basis fTig [

f �Tig used in reference [2] and the standard basis fM��g follows from the relations

Moi = Ĵi = �i(Ti � �Ti);

M jk = �ijkJi = �ijk(Ti + �Ti): (C.1)

There are some matrix arrays that are so frequently used in the following appendices that

we assign to them the following names for short:

�0 :=

2
6664

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3
7775 ; �1 :=

2
6664

0 1 0 0

1 0 0 0

0 0 0 �i

0 0 i 0

3
7775 ; (C.2)

�2 :=

2
6664

0 0 1 0

0 0 0 i

1 0 0 0

0 �i 0 0

3
7775 ; �3 :=

2
6664

0 0 0 1

0 0 �i 0

0 i 0 0

1 0 0 0

3
7775 : (C.3)
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These matrices correspond to the Pauli-like matrices of the present formalism.

We will now list some graded-irreducible spin-12 representations as well the relations be-

tween them.

C.1 Spin (1
2
; 0) self-representation

The spin (1
2
; 0) representations to be considered here are those associated to the multiplets

of generators F f
os and V �

is , transforming according to:

[[M�� ; F f
os]] = �

1
2(�f��

o ) t
s F

f
ot; (C.4)

[[M�� ; V �
is]] = �1

2
(����

i ) t
s V

�
it : (C.5)

The corresponding structure constants arrays are given by

�fo1
o = ��oi

i = �i�1; �fo2
o = ��oj

i = �i�2; �fo3
o = ��ok

i = �i�3;

�f23
o = ��jk

i = �1; �f31
o = ��ki

i = �2; �f12
o = ��ij

i = �3; (C.6)

where (i; j; k) 2 f(1; 2; 3); (2; 3; 1); (3; 1; 2)g, and the Pauli-like matrices �i ; i 2 f1; 2; 3g are

those de�ned in (C.2)-(C.3).

C.2 Spin (1
2
; 0) dual self-representation

The multiplets F fs
o and V �s

i transform under spin (12 ; 0) dual self-representations:

[[M�� ; F fs
o ]] = 1

2(�f��
o )stF

ft
o ; (C.7)

[[M�� ; V �s
i ]] = 1

2(����
i )stV

�t
i : (C.8)

The bilinear products of the form F fs
o F f 0

os and V �s
i V �0

is are Lorentz-invariant. Hence,

(�f��
o )st = (�f��

o ) s
t ; (C.9)

(����
i )st = (2��i + 2��o � 1)(2��i + 2��o � 1)(����

i ) s
t : (C.10)

The metric matrices relating the spin (12 ; 0) self-representation and its dual self-representation

are given by

"us :=

2
6664

0 1 0 0

�1 0 0 0

0 0 0 �i

0 0 i 0

3
7775
us

; "st :=

2
6664

0 �1 0 0

1 0 0 0

0 0 0 �i

0 0 i 0

3
7775
st

; (C.11)

�us :=

2
6664

0 �1 0 0

1 0 0 0

0 0 0 �i

0 0 i 0

3
7775
us

; �st :=

2
6664

0 1 0 0

�1 0 0 0

0 0 0 �i

0 0 i 0

3
7775
st

: (C.12)

The lowering and rising of the component indices of spin (12 ; 0) multiplets is obtained as

follows:

F fs
o = "stF

f
ot ; F f

os = "stF
ft
o ; (C.13)

V �s
i = �stV �

it ; V �
is = �stV

�t
i : (C.14)

Accordingly,

(�f��
o )st = "su"tr(�f��

o ) r
u ; (C.15)

(����
i )st = �su�tr(�

���
i ) r

u : (C.16)
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C.3 Spin (0; 1
2
) adjoint self-representation

The spin (0; 1
2
) representations to be considered here are those associated to the multiplets

of generators �F
f
�o _s and �V �

�{ _s , transforming according to:

[[M�� ; �F
f
�o _s]] = 1

2
(��f��

�o )
_t

_s
�F
f

�o _t
; (C.17)

[[M�� ; �V �
�{_s ]] = 1

2(�����
�{ )

_t
_s

�V �
�{_t
: (C.18)

The corresponding structure constants arrays are given by

��fo1
�o = ���oi

�{ = �i(�1)
�; ��fo2

�o = ����oj
�{ = �i(�2)

�; ��fo3
�o = ���ok

�{ = �i(�3)�;

��f23
�o = ���jk

�{ = (�1)
�; ��f31

�o = ����ki
�{ = (�2)

�; ��f12
�o = ����ij

�{ = (�3)
�; (C.19)

where (i; j; k) 2 f(1; 2; 3); (2; 3; 1); (3; 1; 2)g, and the Pauli-like matrices �i ; i 2 f1; 2; 3g are

those de�ned in (C.2) and (C.3).

Observe that the spin (1
2
; 0) self-representation and the spin (0; 1

2
) adjoint self-representation

are related by

��f��
�o = (�f��

o )�; (C.20)

�����
�{ = (2�

�
i + 2��o � 1)(2��i + 2��o � 1)(����

i )�: (C.21)

C.4 Spin (0; 1
2
) dual adjoint self-representation

The multiplets �F f _s
�o and �V � _s

�{ transform under spin (0; 12) dual adjoint self-representations:

[[M�� ; �F f _s
�o ]] = �

1
2(��f��

�o ) _s _t
�F f _t
�o ; (C.22)

[[M�� ; �V � _s
�{ ]] = �

1
2(�����

�{ ) _s _t
�V � _t
�{ : (C.23)

The bilinear products of the form �F f
�o _s

�F f 0 _s
�o and �V �

�{ _s
�V �0 _s
�{ are Lorentz-invariant. Hence,

(��f��
�o ) _s _t = (��f��

�o ) _s
_t
; (C.24)

(�����
�{ ) _s _t = (2��i + 2��o � 1)(2��i + 2��o � 1)(�����

�{ ) _s
_t
: (C.25)

The metric matrices relating the spin (0; 12) adjoint self-representation and its dual adjoint

self-representation are given by

�" _u _s :=

2
6664

0 �1 0 0

1 0 0 0

0 0 0 �i

0 0 i 0

3
7775
_u _s

; �" _s _t :=

2
6664

0 1 0 0

�1 0 0 0

0 0 0 �i

0 0 i 0

3
7775
_s _t

; (C.26)

�� _u _s :=

2
6664

0 1 0 0

�1 0 0 0

0 0 0 �i

0 0 i 0

3
7775
_u _s

; �� _s _t :=

2
6664

0 �1 0 0

1 0 0 0

0 0 0 �i

0 0 i 0

3
7775
_s _t

: (C.27)

The lowering and rising of the component indices of spin (0; 1
2) multiplets is obtained as

follows:

�F f _s
�o = �F f

�o _t
�"
_t _s ; �F f

�o _s = �F f _t
�o �" _t _s; (C.28)

�V � _s
�{ = �V �

�{_t ��
_t _s ; �V �

�{ _s = �V � _t
�{ �� _t _s: (C.29)
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Accordingly,

(��f��
�o ) _s _t = �" _u _s�" _r _t(��f��

�o ) _r
_u ; (C.30)

(�����
�{ ) _s _t = �� _u _s�� _r _t(�����

�{ ) _r
_u : (C.31)

D Superspace parameters, summation conventions, and dif-

ferentiation

The summation convention: The summation over a repeated multiplet component index in

the same monomial is understood if this index appears as subindex as well as superindex. If

a summed index is omitted, then the following convention is understood:

xy := x�y� = x�y
�; (D.1)

�o
f�o

f 0 := �os
f �o

f 0s ; (NW-SE summation convention); (D.2)

���o
f

���o
f 0 := ���o

f _s
���o _s
f 0 ; (SW-NE summation convention); (D.3)

�i
��i

�0 := �is
� �i

�0s ; (NW-SE summation convention); (D.4)

���{
�

���{
�0 := ���{

� _s
���{ _s
�0 ; (SW-NE summation convention): (D.5)

The lowering and rising of the multiplet-component indices is given by

x� = g��x� ; x� = g��x
� ; (D.6)

�os
f = "su�o

fu ; �o
fs = "su�ou

f ; (D.7)

���o _s
f = ���o

f _u�" _u _s ; ���o
f _s = ���o _u

f �" _u _s; (D.8)

�is
� = �su�i

�u ; �i
�s = �su�iu

� ; (D.9)

���{ _s
� = ���{

� _u�� _u _s ; ���{
� _s = ���{ _u

� �� _u _s; (D.10)

where the corresponding metric matrices are given by

g�� = g�� = diag(1;�1;�1;�1); (D.11)

"su = �" _s _u = �� _s _u = �su =

2
6664

0 1 0 0

�1 0 0 0

0 0 0 �i

0 0 i 0

3
7775 ; (D.12)

�" _s _u = "su = �su = �� _s _u =

2
6664

0 �1 0 0

1 0 0 0

0 0 0 �i

0 0 i 0

3
7775 : (D.13)

The di�erentiation with respect to superspace parameters is de�ned by

(@�x
�) � [[@�; x

� ]] := ���; (D.14)

(@�os
f

�ou
f 0 ) � [[@�os

f
;�ou

f 0 ]] := �us �
f
f 0 ; (D.15)

(@���o _s
f

���o _u
f 0 ) � [[@���o _s

f
; ���o _u

f 0 ]] := � _u_s �
f

f 0
; (D.16)

(@�is
�

�ju
�0 ) � [[@�is

�
;�ju

�0 ]] := �us �
�
�0�ji; (D.17)

(@���{ _s
�

��
�| _u
�0 ) � [[@���{ _s

�
; ��

�| _u
�0 ]] := � _u_s �

�
�0�

�|
�{ : (D.18)
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Hence, the (statistic) indices assigned to the di�erentiation operators are given by

&st(@
�) = &st(@�) = (0; a�) ; � 2 f0; 1; 2; 3g;

&st(@�os
f

) = &st(@���o _s
f

) = (1; as) ; s 2 f0; 1; 2; 3g ; _s 2 f _0; _1; _2; _3g;

&st(@�i1
�

) = &st(@���{�0
�

) = (1; ai1
+

) ; i 2 f1; 2; 3g ; �{ 2 f�1; �2; �3g;

&st(@�i0
�

) = &st(@���{�1
�

) = (1; ai1
�

) ; i 2 f1; 2; 3g ; �{ 2 f�1; �2; �3g;

&st(@�i3
�

) = &st(@���{�2
�

) = (1; ai2
+

) ; i 2 f1; 2; 3g ; �{ 2 f�1; �2; �3g;

&st(@�i2
�

) = &st(@���{�3
�

) = (1; ai2
�

) ; i 2 f1; 2; 3g ; �{ 2 f�1; �2; �3g: (D.19)

According to the above de�nitions, we have

(@�os
f

�) = �q�&st(@�os
f
);&st(�)

(@���o _s
f

��); (D.20)

(@�is
�

�) = �q�&st(@�is
�
);&st(�)

(@���{ _s
�

��): (D.21)

Using the metric matrices for the lowering or rising of multiplet-component indices, we

obtain as well

(@�x�) = g�� ; (@�x�) = g�� ; (@�x�) = ��� ; (D.22)

(@�os
f

�o
f 0u) = "us�

f
f 0 ; (@�o

fs
�ou
f 0 ) = "su�

f
f 0 ; (@�o

fs
�o
f 0u) = ��su�

f
f 0 ; (D.23)

(@���o _s
f

���o
f 0 _u) = �" _s _u�

f
f 0 ; (@���o

f _s

���o _u
f 0 ) = �" _u _s�ff 0 ; (@���o

f _s

���o
f 0 _u) = �� _s_u�

f
f 0 ; (D.24)

(@�is
�

�j

�0u
) = �us�

�
�0�

j
i ; (@�i

�s
�ju

�0
) = �su���0�

j
i ; (@�i

�s
�j

�0u
) = ��su�

�
�0�

j
i ; (D.25)

(@���{ _s
�

���|
�0 _u) = �� _s _u�

�
�0�

�|
�{ ; (@���{

� _s

���| _u
�0 ) = �� _u _s���0�

�|
�{ ; (@���{

� _s

���|
�0 _u) = �� _s_u�

�
�0�

�|
�{ : (D.26)

E Useful Identities for spin-1
2
and superspace calculations

We collect here some identities useful to reproduce the results presented in the main text.

E.1 The upsilon and gamma matrices

The �̂- and 
̂-matrices are structure constants arrays in the expressions

[[F f
os;

�F f 0

�o _t
]] = 2�̂ff 0(o�

o�o )s _tP� = 2�ff
0

�̂(o�
o�o )s _tP�; (E.1)

[[V �
is ;

�V �0

�{_t
]] = 2
̂��

0

(o�
i�{ )s _tP� = 2���

0


̂(o�
i�{ )s _tP�: (E.2)

These matrix arrays are constrained by the generalized Jacobi associativity conditions, and

can be chosen to have the form:

�̂(o0
o�o)s _t = 
̂(o0

i�{ )s _t = (�0)s _t; (E.3)

�̂(o1
o�o)s _t = 
̂(oi

i�{ )s _t = (�1)s _t;

�̂(o2
o�o)s _t = 
̂(oj

i�{ )s _t = (�2)s _t;

�̂(o3
o�o)s _t = 
̂(ok

i�{ )s _t = (�3)s _t; (E.4)

where (i; j; k) 2 f(1; 2; 3); (2; 3; 1); (3; 1; 2)g, and the Pauli-like matrices �� ; � 2 f0; 1; 2; 3g

are those de�ned in (C.2) and (C.3).
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It is easy to verify that they ful�l:


̂(o�
i�{ )s _t = (2�

�
i + 2��o � 1)(�[?]s _t
̂(o�

i�{ )s _t); (E.5)

where

[?] :=

2
6664
�1 �1 1 1

�1 �1 1 1

1 1 �1 �1

1 1 �1 �1

3
7775 : (E.6)

We can de�ne further arrays:

�̂(o�
o�o

)s
_t := "su�̂(o�

o�o
)u _r �" _r

_t; (E.7)

�̂(o��oo )
_ts := �̂(o�

o�o )s
_t; (E.8)


̂(o�
i�{

)s
_t := �su
̂(o�

i�{
)u _r��

_r _t; (E.9)


̂(o��{i )
_ts := �[?]s

_t
̂(o�
i�{ )s

_t: (E.10)

We easily verify

�̂(o0�oo)
_ts = 
̂(o0�{i ) _ts = (�0)

_ts; (E.11)

�̂(o1�oo)
_ts = 
̂(oi�{i )

_ts = �(�1)
_ts; (E.12)

�̂(o2�oo)
_ts = 
̂(oj�{i ) _ts = �(�2)

_ts; (E.13)

�̂(o3�oo)
_ts = 
̂(ok�{i )

_ts = �(�3)
_ts; (E.14)

where (i; j; k) 2 f(1; 2; 3); (2; 3; 1); (3; 1; 2)g.

E.2 The sigma matrices

We recall some useful identities relating the di�erent spin-12 representations presented in

Appendix C.

��f��
�o = (�f��

o )�; (E.15)

(�f��
o )st = "su"tr(�f��

o ) r
u = (�f��

o ) s
t ; (E.16)

(��f��
�o ) _s _t = �" _u _s�" _r _t(��f��

�o ) _r
_u = (��f��

�o ) _s
_t : (E.17)

�����
�{ = (2��i + ��o � 1)(2��i + ��o � 1)(����

i )�; (E.18)

(����
i )st = �su�tr(�

���
i ) r

u = (2�
�
i + ��o � 1)(2��i + ��o � 1)(����

i ) s
t ; (E.19)

(�����
�{ ) _s _t = �� _u _s�� _r _t(�����

�{ ) _r
_u = (2�

�
i + ��o � 1)(2��i + ��o � 1)(�����

�{ ) _s
_t : (E.20)

E.3 Useful identities involving upsilon, gamma, and sigma matrices

(�f��
o ) t

s = i
2f�̂(o�

o�o )s _r�̂(o��oo ) _rt � �̂(o�
o�o )s _r�̂(o��oo ) _rtg; (E.21)

(��f��
�o ) _s _t = i

2f�̂(o��oo ) _sr�̂(o�
o�o )r _t � �̂(o��oo ) _sr�̂(o�

o�o )r _tg: (E.22)

(����
i ) t

s = i
2f
̂(o�

i�{ )s _r
̂(o��{i ) _rt � 
̂(o�
i�{ )s _r
̂(o��{i ) _rtg; (E.23)

(�����
�{ ) _s _t = i

2f
̂(o��{i ) _sr
̂(o�
i�{ )r _t � 
̂(o��{i ) _sr
̂(o�

i�{ )r _tg: (E.24)
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if�̂(o�
o�o

)s _tg
��
� �̂(o�

o�o
)s _tg

��
g = 1

2
f(�f��

o ) r
s �̂(o�

o�o
)r _t � �̂(o�

o�o
)s _u(��f��

�o ) _u _tg: (E.25)

if
̂(o�
i�{

)s _tg
��
� 
̂(o�

i�{
)s _tg

��
g = 1

2
f(����

i ) r
s 
̂(o�

i�{
)r _t � 
̂(o�

i�{
)s _u(�����

�{ ) _u _tg; (E.26)

if
̂(o�
�{i

) _tsg
��
� 
̂(o�

�{i
) _tsg

��
g = 1

2
f�(�����

�{ ) _r
_t

̂(o�

�{i
) _rs � 
̂(o�

�{i
) _tr(�

���
i )rsg: (E.27)

f�̂(o�
o�o )s _r�̂(o��oo ) _rt + �̂(o�

o�o )s _r�̂(o��oo ) _rtg =

f
̂(o�
i�{

)s _r
̂(o�
�{i

) _rt + 
̂(o�
i�{

)s _r
̂(o�
�{i

) _rtg = 2g���ts; (E.28)

f�̂(o�
�oo

) _us�̂(o�
o�o

)s _t + �̂(o�
�oo

) _us�̂(o�
o�o

)s _tg =

f
̂(o��{i ) _us
̂(o�
i�{ )s _t + 
̂(o��{i ) _us
̂(o�

i�{ )s _tg = 2g��� _u_t : (E.29)

E.4 Useful identities for superspace calculations

(�i�i) = (���{ ���{); (E.30)

(�i�i)2 = �8i�i0�i1�i2�i3; (E.31)

(���{ ���{)2 = 8i���{ _0 ���{ _1 ���{ _2 ���{_3; (E.32)

(�i�i)�is�ir = �
1
4�

sr(�i�i)2; (E.33)

(���{ ���{)���{ _s ���{ _r = �
1
4�� _s _r(���{ ���{)2: (E.34)

(@�is(�i�i)) = 2�st�
it; (E.35)

(@���{ _t(���{ ���{)) = 2�� _t _r
���{ _r; (E.36)

(@�i@�i (�i�i)) = �8; (E.37)

(@���{@���{ (���{ ���{)) = �8; (E.38)

(@���{@���{ (���{ ���{ ���{ _s)) = �4���{ _s; (E.39)

(@���{ _t (���{ ���{)2) = 4�� _t _u
���{ _u(���{ ���{); (E.40)

(@���{@���{ (���{ ���{)2) = �8(���{ ���{); (E.41)

(@�i@�i @�i@�i (�i�i)2) = 64; (E.42)

(@���{@���{ @���{@���{ (���{ ���{)2) = 64: (E.43)

(DiDi)(1) = @�i@�i + 4i
̂(o�
i�{ )t _r ���{ _r�ts@�is@� + 4(���{ ���{)2; (E.44)

( �D�{
�D�{)(2) = @���{@���{ + 4i�ir
̂(o�

i�{ )r _u@��� _u
_t@���{ _t + 4(�i�i)2: (E.45)

expf�2i(2��i + 2��o � 1)(�i
̂(o�
i�{ )���{)@�g =

= f1� 2i(2��i + 2��o � 1)(�i
̂(o�
i�{ )���{)@� � 2(�i
̂(o�

i�{ )(�i
̂(o�
i�{ )@�@� +

+ 2i(2�
�
i + 2��o � 1)(�i�i)(���{ ���{)(�i
̂(o�

i�{ )���{)@�2+ 1
4(�i�i)2(���{ ���{)222

g: (E.46)

For an anti-chiral �eld �A, in the anti-chiral basis

�A(2)(x; ���{) = � � �+ �A(x)(���{ ���{) + 2 � �{ _s(x)���{ _s(���{ ���{) + �F (x)(���{ ���{)2; (E.47)

we obtain

( �D�{
�D�{

�D�{
�D�{

�A)(2) =

= expf�2i(2��i + 2��o � 1)(�i
̂(o�
i�{ )���{)@�g �

�f64 �F(x)��ir64i
̂(o�
i�{ )r _t@�

� 
_t

i (x)� (�i�i)322 �A(x) + � � �g: (E.48)
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