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ABSTRACT

We consider the Schr�odinger operator H = ��+ V (jxj) on R3. Let n` denote the number of

bound states with angular momentum ` (not counting the 2` + 1 degeneracy). We prove the

following bounds on n`. Let V � 0 and d=dr r1�2p(�V )1�p � 0 for some p 2 [1=2; 1) then

n` � p(1� p)p�1 (2` + 1)1�2p
Z
1

0
(�r2V )p

dr

r
:

This bound closes the gap between the celebrated bounds by Calogero (p = 1=2) and Bargmann

(p = 1).

CERN-TH.7445/94

September 1994

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25176362?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

A standard problem in the study of Schr�odinger operators is to obtain bounds on the number

of bound states in terms of integrals over the potential V . The most important bound which

played an important rôle in the proof of the stability of matter is in terms of the classical phase

space expression proved by Cwickel [1], Lieb [2] and Rosenblum [3] in the seventies

N(V ) � C

Z
R3

jV �(x)j3=2 d3x (1)

Here units are chosen such that �h2=2m = 1 where V � denotes the attractive part of V , i.e.,

V � = sup (�V; 0).

For spherically symmetric potentials there is the following bound by Bargmann [4]. If

n`(V ) denotes the number of bound states with angular momentum ` (not counting the 2`+ 1

degeneracy), then

n`(V ) � (2` + 1)�1
Z
1

0
V �(r)r dr : (2)

In 1965, Calogero [5] derived the following condition for monotonous purely attractive potentials

n`(V ) �
2

�

Z
1

0
jV �(r)j1=2dr : (3)

Conditions on the non-existence of bound states have been derived by Glaser et al. [6] involving

arbitrary powers p � 1 of the potential. More precisely, if

Cp

1

4�

Z
R3

jxj2p�3jV �(x)jpd3x < 1

Cp �
(p� 1)p�1�(2p)

pp�2(p)
; p � 1 ; (4)

then there is no bound state, i.e., N(V ) = 0. This condition is valid only for spherically

symmetric potentials if 1 � p < 3=2 and for arbitrary V if p � 3=2. For spherically symmetric

potentials the following conditions have been found in [6]. If, for some p � 1,

(2` + 1)1�2pCp

Z
1

0
(r2V �(r))p

dr

r
< 1 (5)

then n`(V ) = 0. The constants Cp are the best possible. An inequality on n` can be obtained

by noticing that if there are n` bound states, the zero energy wave function regular at the origin

has n` nodes, and by applying the converse of (5) to every nodal interval. In this way one gets

n`(V ) � (2` + 1)1�2pCp

Z
1

0
(r2V �(r))p

dr

r
(6)

The following bound on N(V ) for p � 3=2 corresponding to (4) has been proved by Blanchard

et al. [7]

N(V ) � ep�1Cp

1

4�

Z
R3

jxj2p�3jV �(x)jpd3x : (7)
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Since the paper by Glaser et al. [6] there was the conjecture that for spherically symmetric

potentials there should be bounds on n`(V ) involving powers p < 1 of the potential probably

under some restrictions on V since Calogero's bound which corresponds to p = 1=2 only holds

for monotonous potentials. The �rst attempt was made by one of us (K.C.) and R. Kobayashi

[8]. If V (r) is purely attractive and d=dr (r1�2p(�V )1�p) � 0 for some p 2 [1=2; 1] then there

is a bound on n`(V ) containing the powers p and 1 � p. In particular at the two borders the

bound tends to the bounds by Bargmann and Calogero, respectively.

However, the bound is not of the form one should expect. In the present paper we shall prove

bounds which are the \natural" interpolations between the bounds by Calogero and Bargmann.

Theorem: Let V be a spherically symmetric potential V = V (r) satisfying

( i) V � 0;

(ii) d=dr (r1�2p(�V )1�p) � 0 for some p 2 [1=2; 1).

Then

n`(V ) � p(1 � p)p�1(2` + 1)1�2p
Z
1

0
(�r2V )p

dr

r
:

Notice that condition (ii) is weaker than the requirement of monotonicity of the Calogero bound.

2 Proof of the main result

First of all we prove that a bound for ` = 0 implies a bound for ` > 0.

Lemma 1: Let V satisfy the conditions of the theorem. If there is ~Cp > 0 such that n0(V ) �
~Cp

R
1

0 (r2V )p dr=r, 1=2 � p � 1, then n`(V ) � ~Cp(2` + 1)1�2p
R
1

0 (�r2V )p dr=r

Proof: Consider the reduced hamiltonians

h` = �
d2

dr2
+
`(` + 1)

r2
+ V (r) on (0;1) (8)

It is a well-known result that n`(V ) equals the number of nodes of the zero energy solution in

(0;1) satisfying Dirichlet boundary conditions at the origin. Let u` be the solution of h`u` = 0.

De�ne s = s(r) and '`(s) by

s(r) =
r2`+1

2` + 1
; '`(s) = r`u`(r) ; (9)

Then '`(s) satis�es

�
d2

ds2
'`(s) + ~V (s)'`(s) = 0 (10)

with

~V (s) =
V (r(s))

r(s)4`
and '`(0) = 0 :
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Obviously, the number of nodes of u` and '` in (0;1) coincides. ~V (s) satis�es the same

conditions as V (r) since ~V (s) � 0 and

d

ds
s1�2p(�~V (s))1�p = r�2`

d

dr

�
r�2`=1�pr1�2p(�V (r)1�p

�
� 0 (11)

Therefore

n`(v) � ~Cp

Z
1

0
(�s2V 2(s))p

ds

s
(12)

Since the right-hand side of (12) equals

(2` + 1)1�2p ~Cp

Z
1

0
(�r2V (r))p

dr

r

the lemma is proved.

For ` = 0 we need the following properties of V .

Lemma 2: Let I(R) =
RR
0 (�r

2V )pdr=r. If d=dr (r1�2p(�V )1�p) < 0, then

I(R) �
1 � p

p
(�r2V (R))p

Proof: We write I(R) as

I(R) =

Z R

0
(�V (r) r1�2p=1�p)p r(2p�1)=(1�p)dr :

The �rst term in the integral is decreasing since p < 1 and may be bounded below by

(�V (R)R1�2p=1�p)p. Integrating the second term we obtain the desired inequality.

Lemma 3: If V � 0 and d=dr (r1�2p(�V )1�p) � 0 (for some p 2 [�1=2; 1) then

Z
1

0
(�r2(V (r))

dr

r
<

"
~Cp

Z
1

0
(�r2V (r))p

dr

r

#1=p

where ~Cp = p(1 � p)p�1

Proof: We have Z
1

0
(�rV )dr =

Z
1

0

dI(r)

dr
(�r2V )1�pdr

By Lemma 2, Z
1

0
(�rV )dr <

Z
1

0

dI(r)

dr

"
p

1 � p
I(r)

#(1�p)=p

Since
dI(r)

dr
I(r)

1�p

p = p
d

dr
(I(r)1=p)
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the result follows.

Now we are in position to prove the bound for ` = 0.

If the zero energy solution for h0 has n0(V ) zeros then by Bargmann's bound

n0(V ) <

Z
1

0
(�rV (r))dr (13)

In particular (if there is one bound state) then by Lemma 3

~Cp

Z
1

0
(�r2V (r))p

dr

r
> 1 (14)

Now, consider the interval [rk; rk+1] between two successive nodes of the zero energy solution.

We de�ne Vk(r) by

Vk(r) =

�
V (r) r � rk+1
0 r > rk+1

(15)

Then Vk(r) satis�es the same conditions as V (r). Changing the origin x = r � rk we consider

Vk(x+ rk) for x � 0. Since d=dr (r1�2p(�V (r)1�p) � 0 reads

(1 � p)
(�dV=dr)

(�V )
<

2p � 1

r
(16)

we also have

(1 � p)
�dV=dr

(�V )
<

2p � 1

r � rk
for r > rk (17)

since p � 1=2.

Hence, by Eq. (14)

1 < ~Cp

Z
1

0
(�Vk(x+ rk))

px2p�1dx

= ~Cp

Z rk+1

rk

(�V (r))p(r � rk)
2p�1dr

< ~Cp

Z rk+1

rk

(�V (r))pr2p�1dr (18)

Consequently, if we add up all contributions we �nd

n0(V ) < ~Cp

Z
1

0
(�r2V (r))p

dr

r
: (19)

3 Conclusions and a conjecture about the optimal con-

stants

We have proved bounds on the number of bound states in a spherically symmetric potential

which interpolate between the bounds by Calogero and Bargmann. In particular, a simple
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\transformation of variables" argument showed that a bound on the zero angular momentum

sector implies a (non-trivial) bound for non-zero angular momenta.

The constants ~Cp = p(1� p)p�1 are not optimal for p < 1 but we suppose that they are not

too far from the optimal values since as p ! 1, ~Cp tends to the value in Bargmann's bound

which is known to be optimal and for p = 1=2 we have c1=2 = 1=2
p
2 = 0:707; : : : which is not

too far from 2=� = 0:6366 : : :

We conjecture that the optimal constants (at least for ` = 0) are related to the potentials

which saturate the �rst-order di�erential inequality on V as follows.

Let Vp(r) be given by

Vp(r) =

�
�r2p�1=1�p 0 � r � R

0 r > R
(20)

for some R > 0. Vp(r) satis�es d=dr (r
1�2p(�V )(�p) = 0 in (0; R) and in (R;1).

The zero energy solution in (0; R) is

up(r) = r1=2J1�p(2(1� p)r1=2(1�p)) (21)

where J1�p(:) denotes the standard Bessel function.

If we choose R = Rp as the �rst critical point of up(r) given in (21), then up corresonds to

a zero energy eigenstates. We conjecture that

Cp �
1RRp

0 (�r2Vp)p
dr
r

=
p

1 � p
R�p=1�pp (22)

is the optimal constant (which is true as p! 1 and for p = 1=2).

A more explicit condition for Rp can be obtained as follows.

De�ning the change of variables

z = 2(1 � p)r1=2(1�p) (23)

and de�ning the function 'p(z) by

'p(z) = z1�pJ1�p(z) (24)

we compute that

zp � 2(1 � p) (Rp)
1=2(p�1) (25)

is the �rst critical point of �p.

Since d=dz 'p(z) = z1�pJ�p(z) we see that zp is the �rst zero of J�p(z) and

Cp = p(1 � p)2p�1
�
zp

2

�
�2p

(26)
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In the following Table we list some numerical values for Cp and compare them with our constant
~Cp = p(1 � p)p�1.

p ~Cp Cp

~Cp

Cp

0.50 0.7071 0.6366 1.111

0.55 0.7878 0.7089 1.111

0.60 0.8656 0.7802 1.110

0.65 0.9386 0.8492 1.105

0.70 1.0045 0.9145 1.099

0.75 1.0607 0.9739 1.089

0.80 1.1038 1.0250 1.077

0.85 1.1298 1.0639 1.062

0.90 1.1330 1.0851 1.044

0.95 1.1035 1.0781 1.024

1.00 1.0000 1.0000 1.000

We conclude that our bound is not far from being optimal, especially for p close to unity.
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