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A new mechanism of a longitudinal single-bunch instability in storage rings has been found. This instability
results from an interaction between two radial modes which belong to the same azimuthal mode but have different
magnitudes of the action. Such a coupling is only possible with potential-well distortion ofthe bunch. The frequency
spread of the incoherent synchrotron motion in a bunch generated by the potential-well distortion plays an essential
role in this instability. The system becomes unstable by a coupling of two radial modes when the synchrotron
frequencies of two different actions degenerate. In an extreme case of a purely resistive (o-function) wake potential,
it is shown that the system is always unstable, i.e., the threshold intensity is zero.
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The longitudinal single-bunch collective motion in a storage ring is usually described by
the Vlasov equation1

af af af
-- = -p- + (q - V(q, s)) -

as aq ap
(1)

for the distribution function f = f (p, q, s) in the longitudinal phase space. The indepen­
dent variables are p == (E - Eo)/ EouE (relative energy deviation), q == z/uz (relative
longitudinal position), and s == wst (phase of the synchrotron motion). We have introduced
Eo as the nominal beam energy, U E the natural relative energy spread, U z the natural bunch
length, and W s the unperturbed angular frequency of the synchrotron motion. The posi­
tive q corresponds to the head of the bunch. The variables p and q are canonical with the
Hamiltonian, which will be shown later (Eq. 5), for the longitudinal single-particle motion.
Here the external rf-field is assumed to be linear in the position q. The charge of the bunch
induces the relative energy loss - V(q) through the longitudinal wake function (Green's
function) W(q) as

+00

V(q, s) = k f p(q', s)W(q' - q)dq'

-00
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(2)
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where p(q, s) J~: f(p, q, s)dp is the longitudinal density of particles, which is
normalized Jp(q, s)dq == 1. The wake function introduced here is a normalized one
W(q) == (el Eo)ew(q), where w(q) is the usual wake function in the unit of voltage/
revolution/charge. The parameter k represents the beam intensity:

N
k == ---,

2nvS O'E

(3)

where N is the number of the particles in the bunch, and Vs is the unperturbed synchrotron
tune. We only consider the ultra-relativistic case, which means W(q) == 0 for q < O.

The equilibrium solution of Eq. 1 is written as

fo(p, q) == g (R(p, q)) ,

where R(p, q) is the Hamiltonian for the single-particle motion in the bunch:

q

p2 q2 f
R(p, q) == 2 + "2 - Vo(q')dq' .

o

The equation of motion of a particle with this Hamiltonian is

(4)

(5)

dp aH
ds aq'

dq aH
ds ap

(6)

The wake Vo in Eq. 5 is determined by the density po(q) == J fo(p, q)dp using Eq. 2
self-consistently2

+00

Vo(q) = k f po(q')W(q' - q)dq'.

-00

(7)

The deformation of the distribution fo and the voltage Vo by the intensity through the
wake potential is called "potential-well distortion", which will play an essential role in
the longitudinal single-bunch instability. The actual form of the function g in Eq. 4 is not
unique, but in the case of an electron-storage ring, the function g must be Gaussian in the
p-direction, g(H) ex exp(- H), to be consistent with the damping and diffusion caused by
the synchrotron radiation.

The equilibrium solution Eq. 4 may exist in most cases for arbitrary intensity k, but this
does not guarantee the stability of the solution. The stability of the stationary solution Eq. 4
is examined by a linear perturbation. We expand f around the stationary distribution fo
as f (p, q, s) == fo(p, q) + fl (p, q, s), and take the first order terms of fl in Eq. 1, then
obtain

afl afl afl afo-- == -p- + (q - Vo(q)) - - Vl(q, s)- ,
as aq ap ap

(8)
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where VI is the wake voltage induced by fI:

45

+00 +OC+OO

V1(q,S)=k! pl(q',S)W(q'-q)dq'=k ! ! !l(p',q',s)W(q'-q)dp'dq'. (9)

-00 -00-00

One should not neglect or approximate the term of potential-well distortion - Vo (q )~ in

Eq. 8, because it is of the same order in the intensity k as the term - VI (q, s) ac .Moreover
once the potential-well term is neglected, the consistency of Eq. 8 will be lost, and it leads
to unphysical results. For instance, since the wake potential is an internal force of the bunch,
a simple sinusoidal motion of the centroid of the bunch, with the frequency ws , is never
affected by the longitudinal wakefield. Therefore there always exists one trivial solution for
Eq. 1, the so-called "rigid-dipole mode", which corresponds to the motion of the centroid
of the bunch without deformation. This solution is

f(p, q, s) = ?Rfo (p + ia exp(is), q - a exp(is)), (10)

(11)

where a is an arbitrary amplitude of the motion of the centroid. Thus the first order deviation
of Eq. 10 from fo for a small a

/1 = m[a exp(is) ( - ~ + i ~)]

satisfies the first-order equation Eq. 8. If one modifies the potential-well term in Eq. 8, the
centroid motion Eq. 11 becomes no longer its solution. Therefore by changing the potential­
well term, one may get an unphysical mode of the motion of the bunch instead of the trivial
but physical solution. Couplings of such unphysical modes may give incorrect information
on the stability.

The nature of the first-order equation Eq. 8 will become clear by introducing the action­
angle variables (J, ¢) which rewrite the Hamiltonian Eq. 5 as H = H (J). 3 These variables
reduce Eq. 8 to

(12)

where W (J) = d¢ / ds = aH / aJ is the angular frequency of the single-particle motion in
the potential well. In Eq. 12, we have applied Eqs. 4 and 5. The term P VI (q, s) is further
rewritten as

P VI (q, s) k!! !l(p', q', s)pW(q' - q)dp'dq'

k!! !l(p', q', s)w(J) a: F(q' - q)dp'dq' ,

(13)
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by making use of the equation of motion p == -w (J) aq / a¢ with a primitive function F of
W, i.e., F'(q) == W(q). Thus Eq. 12 becomes

- at = w(J) aa¢ (11 - kg' (H(J)) II 11 (p', q', s)F(q' - q)dP'dq') , (14)

which indicates that the flow of the particles is always along the line J == const. even
with the wake field. Now it is natural to expand an eigenfunction of Eq. 14 in terms of the
azimuthal modes

fI(J, ¢, s) == Lam(J) exp(im¢ - iJ-Ls) .
m

(15)

Subsituting Eq. 15 into Eq. 14, then integrating it over ¢ after multiplying exp(-im¢), we
obtain

mkw(J)g' (H(J)) "II " ,, , ,am(J) == - ~ am,(J )F(q - q) exp(im ¢ - im¢)dJ d¢ d¢ ,
2rr (J-L - mw(J)) I

m
(16)

where we have changed the integration variables p', q' into J', ¢'. What Eq. 16 implies is
that if the eigenmode is stable, i.e., J-L is real, the radial function am (J) becomes singular at
some value of the action where mw(J) == J-L, unless the numerator ofEq. 16 vanishes at that
point. Although there may exist a few stable modes without singularities, for instance the
rigid-dipole mode, most of the stable modes are expected to have such singularities. On the
other hand, an unstable mode with a complex J-L cannot be singular, since the denominator
of Eq. 16 is always finite for any J. This is the most remarkable nature of the motion with
the continuous frequency spectra w(J), which is created by the potential-well distortion.
Therefore it should be very hard to observe or excite a particular stable mode of the bunch
below the instability threshold, with exceptions like the rigid-dipole mode, whereas the
unstable mode is easy to see once the intensity reaches the threshold.

The standard way to obtain the eigenvalue of Eq. 14 is to expand the radial function
am (J) in terms of an orthogonal basis, to rewrite Eq. 14 in a matrix form of the expansion
coefficients, then to solve the eigensystem of the matrix. Such a method has been tried
numerically using a set of piecewise step-functions as the orthogonal basis.3 In this method
the function fl is expanded in terms of the orthogonal basis as

(17)

where the function hj (J) is a step-like function which takes the value 1/~Jj in the strip
around the j -th mesh point J == Jj with the thickness ~Jj, and zero outside. We have also

( )

1/2
used the normalization factor mWj - gj ~ Jj with gj == g' (H (Jj)) and Wj == w (Jj) for

convention. Here we choose the origin of ¢ on the q -axis so that

q ---+ m cos ¢ , p ---+ m sin¢ , (18)
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in the limit k ---+ 0. Since Eq. 12 contains no derivative by J, we do not have to
worry about the discontinuity of hj (J). After substituting Eq. 17 to Eq. 14, we multiply

( )
1/2 ()1/2

-~Jj / gj hj (J) cos m¢/nmWj or -~Jj / gj hj (J) sin m¢/nmwj on the both

side of them, and integrate them over J and ¢, then obtain

(19)

2 2n

X 1rr d41f d41'F(q(Jr,41')-q(Jj,41))cosm41cosm'41'. (20)

o

We have again assumed smoothness for w, q, and F in the strip hj (J) to evaluate their
integrals with the values at Jj and Jj'. Combining Eqs. 19 and 20, we get a linear equation
for Cjm:

with

jL
2

Cjm = L Mjmj'm,Cj'm' ,
j'm'

2n 2n

X f f cos m41 cos m/41/F (q(Jr, 41/) - q(Jj, (1)) d41d41' ,

o 0

(21)

(22)

where 8j j' is Kronecker's delta. The system becomes unstable when the matrix M has a
negative or a complex eigenvalue.

Once the wake potential W (q) of a machine is given, we can examine the stability of the
equilibrium ofEq. 4 by solving the matrix ofEq. 22 for a given number of mesh points in the
J -direction and azimuthal modes. This method has been applied to several cases.4,s Since
the singular nature of the stable modes described above, most eigenfunctions corresponding
to stable modes shrink around particular actions mw (J) r-v jL as pointed out in Ref. 6.

To proceed further in an analytical way, we apply this formulation to special forms of
the wake potential: pure-capacitive: W(q) = C()(q), pure-resistive: W(q) = R8(q), and
pure-inductive: W (q) = L8' (q) wakes. The function () (q) is the step function defined as
() (q) = 1 when q > °and zero otherwise. First in the cases of the pure-capacitive and
the pure-inductive wakes, the matrix Mjmj'm' becomes completely symmetric under the
exchange of (j, m) and (j', m' ) indices. In Eq. 22, it is easy to see that the matrix M
becomes symmetric when F is an even function. In the case of the pure-capacitive wake,
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we can choose F(q) = C(lq I+q)/2. Its first term is even in q and the second term vanishes
in the integral of Eq. 22, thus M is symmetric. Also in the pure-inductive case, the matrix
becomes symmetric by simply choosing F(q) = L8(q). Therefore all the eigenvalues of
M are real, which results in a stable system for the pure-capacitive and the pure-inductive
wakes.

On the other hand, the pure-resistive wake brings a quite different situation. In this
case we can use F(q) = R(()(q) - 1/2) which makes the second term of M jmj ,m, in
Eq. 22 antisymmetric by exchanging (j, m) and (j', m' ). Thus the matrix M becomes
antisymmetric except the diagonal elements. The main characteristics of the pure-resistive
case can be understood by looking at a 2 by 2 sub-matrix of the big matrix M. Let us pick
up 2 by 2 elements of M which belong to the same azimuthal mode m and have different
actions jt and j2. Such a sub-matrix has the form

(

2
2 w·M·· -m Jl

JIJ2 - -b
m

(k)
bm(k))

w?
J2

(23)

where bm (k) is a quantity given by the integral in Eq. 22. The matrix Mhj2 is unstable when

(24)

If the frequencies at two actions are equal or close to each other, i.e., wh ~ Wj2' the sub­
matrix Mjlj2 is unstable for any azimuthal mode number m. Then the entire matrix M can
be unstable, if the contributions of other components more or less cancel each other. The
condition of Eq. 24 becomes rigorous in the case of the "double-waterbag model", which
assumes the equilibrium distribution to be a double-step function.7 Note that the coupling
between two modes with the same azimuthal mode number m is only possible under the
potential-well distortion, since the coupling terms in Eq. 22 for the same m vanishes when
there is no distorsion, i.e., q = m cos ¢.

In the case of the pure-resistive wake, the behavior of weI) is shown in Figure l(a).
The function actually gives the same frequency for two different actions. This situation
suggests that the stationary solution with the pure-resistive wake is always unstable, and
we confirmed it by the numerical calculation for the large matrix M. Figure 2 shows the
growth rate of several unstable modes for the pure-resistive wake obtained by the large­
matrix method with a Gaussian distribution (in this paper we used 60 mesh points in the
range 0 :s I :s 8, and azimuthal modes of m :s 5). According to the analysis above, this
instability can be understood as a coupling of coherent modes with the same azimuthal
mode number m.

It is remarkable that all the intensity dependences of the matrix M start from the order of
k2 in the case of the pure-resistive wake. It is due to the fact that the coupling between two
radial modes is only caused by the potential-well distortion which raises the order from k to
k2 . As the result the growth rate of the pure-resistive instability starts at the order ofk2 , which
agrees with Figure 2. Then the growth of the instability can be very weak at low intensity.
In particular in an electron ring, the actual threshold of the instability is determined by the
balance between the growth rate and the radiation damping rate of the mode. Although
this instability appears in any azimuthal mode number m, their growth and damping rates
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FIGURE 1: The nonnalized synchrotron frequency U) (J) ofthe single-particle motion in the bunch as the function
of the action J. (a): the pure-resistive wake W(q)=R8(q). (b): the pure-inductive wake W(q)=L8'(q).
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FIGURE 2: Growth rates of unstable modes with the pure-resistive wake W(q)=R8(q) obtained from the matrix
in Eq. 22. The parameter m specifies the nearest integer of the frequency of each mode. It is seen that the growth
rate is roughly proportional to k2 .
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are different. We see in Figure 2 that the growth rate is highest for m = 2 especially in the
region kR ;(: 5. The threshold becomes lowest for the m = 2 mode with an estimation of
the radiation damping rates for these unstable modes.

Next we discuss on the combined wake of the pure-inductive and the pure-resistive cases,
i.e., W (q) = R8(q) +L8' (q). In the analysis for the pure-resistive wake, we have made the
hypothesis that the degeneration of the synchrotron frequencies for two different actions
makes the instability. If the hypothesis is true, the additional inductive part can suppress
the instability by boosting the frequency spread in the bunch. Figure 1(b) shows w (I) for
the pure-inductive wake. The frequency weI) for the pure-inductive wake starts below
1 at I = 0, and simply raises toward 1 as the action I increases. Thus when we add the
inductive term to the resistive term, the minimal point of weI) shifts left (toward smaller I).
As we increase the inductive part more, the minimal point eventually vanishes, so that the
frequency is always different for two distinct values of the action. The condition for a
monotonic growth of weI) is equivalent to

dw(I) I > 0
dl J=O - ,

(25)

in the combined case of the pure-resistive and the pure-inductive wakes. Now we
have reached a hypothetical condition which gives the stability criterion of the pure­
resistive+inductive wake. To verify that Eq. 25 gives the threshold of the instability, we
have to express it in terms of the intensity and the magnitudes of the wakes. So far we use a
Gaussian bunch, but the method is applicable to any distribution with minor changes. First
we rewrite the Hamiltonian around its fixed point qO for the given intensity and wakes, using
the new coordinate q == q - qo:

H(p, q)

(26)

~2 + (q +2qO)2 - kR11i
po(q' + qo)dq' + kL (Po(q + qo) - po(qo»

where we have used Eq. 7 and the combined wake. From the definition of the fixed point
qo,

3HIo= -=- = qO - kRpo(qo) ,
3q q=o

(27)

where Eq. 4 has been applied. We also assume a Gaussian distribution

+00

po(q) = A f exp (-H(p, q» dp ,

-00

(28)
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where A is the normalization factor. To obtain the derivative Eq. 25, we need terms up to
the fourth order in q in H (p, q). Such an expansion of H (p, q) can be obtained repeatedly
by combining Eqs. 26, 27, and 28. The result is

H(
-) p2 a_2+a5/2qO_3+a4qo(qo+3LIR)~+O(_5)

p, q = 2: + 2q 6 q 24 q q,

where a == (RI(R + LqO))1/2. From Eq. 29 it is not difficult to obtain the derivative

dw(J) I a
3
qo-- = -(9L-2Rqo).

dJ J=O 24R

Thus the stability condition Eq. 25 is written in a simple form

(29)

(30)

(31)

(32)

2
kL ~ gkRqO .

Note that the equilibrium position qo is a function of k Rand k L. Its lowest-order term is
given by Eq. 27 as

kR 2
qo = r=L + O(k ) .

v2n

To examine the validity of the stability condition Eq. 31, we show the growth rate
of the combined wake, obtained by the large-matrix method, as a function of both kR
and kL in Figure 3. Here we draw the m = 2 mode which gives the highest growth
rate among all unstable modes in most cases. We also superimposed the curve given
by Eq. 31 on the plot. The fixed point qO is obtained by solving Eq. 27 numerically.
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FIGURE 3: Contour plot of the growth rate Im(JL) of m=2 mode of the combined wake W (q )=R8 (q )+£8' (q),

obtained from the matrix in Eq. 22. The pitch of the contour is ~ 1m (JL)=0.006. The dashed curve is the stability
condition Eq. 31.
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This figure shows that Eq. 31, which is derived from Eq. 25, gives a fairly good criterion of
stability. This result justifies our basic hypothesis that the degeneration of the synchrotron
frequency for two different actions is the source of the weak longitudinal single-bunch
instability. Figure 3 and Eq. 31 also suggest that reducing the wakefield by smoothing the
beam duct does not always improve the threshold of the instability, unless the resistive part
is significantly reduced. Although the bunch-lengthening below threshold is improved, the
threshold itself is lowered by reducing only the inductive part of the wake. Even with a
more general form of the wake potential than the pure-resistive+inductive model, reducing
the frequency spread inside a bunch can be dangerous from the point of view of the stability
condition. Indeed an additional frequency spread with a higher harmonic rf accelerating
voltage can possibility remove the instability.

The recent results seen at the SLC damping rings with new smooth chambers may be
caused by the coupling between radial modes w"ith a wake field close to the pure-resistive
one as described in this paper.5,g

ACKNOWLEDGEMENTS

The author thanks A.W. Chao, K.L.F. Bane, and K. Yokoya for important discussions.

REFERENCES

1. See, e.g., A.W. Chao, Physics of Collective Beam Instabilities in High Energy Accelerators (Wiley, New
York, 1993), p. 273.

2. J. Halssinski, II Nuovo Cimento 18 B, 72(1973).

3. K. Oide and K. Yokoya, National Lab. for High Energy Physics, KEK-Preprint-90-10 (1990) (unpublished);
K. Oide, in Nonlinear Dynamics and Particle Acceleration, AlP Conf. Proc. 230, edited by Y.H. Ichikawa
and T. Tajima, p. 266 (1990).

4. K.L.F. Bane and K. Oide, Proceedings ofthe 1993 Particle Accelerator Conference, Washington DC, 17-20
May 1993, (1993) p. 3339.

5. K.L.F. Bane and K. Oide, SLAC-PUB-95-6878 (1995), contributed to the 1995 Particle Accelerator
Conference, Dallas, 1-5 May 1995.

6. M. Dyachkov and R. Baartman, in Proc. European Particle Accelerator Conference (EPAC 94), London,
England, 27 Jun -1 Ju11994.

7. A.W. Chao, B. Chen, K. Oide, to be appeared in Proc. Workshop on Beam Instabilities in Storage Rings,
NSRI, Hefei, China, 1994; A.W. Chao, B. Chen, K. Oide, to be appeared in Proceedings ofthe 1995 Particle
Accelerator Conference, Dallas, 1-5 May 1995.

8. K.L.F. Bane, R. Siemann et al., SLAC-PUB-95-6894 (1995), contributed to the 1995 Particle Accelerator
Conference, Dallas, 1-5 May 1995.




