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Recently we have proposed [1] a general strategy for the analysis of precision

electroweak tests in view of the search for new physics beyond the Standard Model.  Our

analysis is based on four parameters, ε1, ε2, ε3 and ε b. They represent an efficient

parameterisation of the small deviations from what is solidly established in a way that is, in

particular,  unaffected by our relative ignorance of mt. In fact, the extremely important new

information on mt from the CDF events [2] still leaves a considerable uncertainty on the

value of mt.  Indeed the epsilons are defined in such a way that they are exactly zero in the

Standard Model in the limit of neglecting all pure weak loop-corrections to a few especially

relevant observables (i.e. when only the predictions from the tree level Standard Model plus

pure QED and pure QCD corrections are taken into account). This very simple version of

improved Born approximation - hereafter simply called Born approximation - is a good

first approximation [3], according to the data. The main purpose of this letter is to update

the epsilon analysis by taking into account the new experimental information ( i.e. the data

presented at the Glasgow Conference [4] and displayed in Table 1) and some recent

theoretical progress in the computation of radiative corrections in the Standard Model. At

the same time we further clarify some important points, as, for example, the dependence of

the analysis on the input values of α s(mZ) and α (mZ).

* * *

In a completely model independent way we have defined [1] four variables, called*

ε1, ε2, ε3 and εb, that are precisely  measured and can be compared with the predictions of
different theories. The quantities ε1, ε2, ε3 and εb are defined in ref.1 in one to one

correspondence with the set of observables mW/mZ, Γl, A
l
FB and Γb.  The relations between

the basic observables and the epsilons can be linearised,  leading to the formulae

m
2
W

m
2
Z

  = 
mW

2

mZ
2

B
 (1+ 1.43ε1 - 1.00ε2 - 0.86ε3) (1a)

Γ l = Γ l B
1 + 1.20ε1 − 0.26ε3( ) (1b)

AFB
µ = AFB

µ
B

1 + 34.72ε1 − 45.15ε3( ) (1c)

Γb = Γb B
1 + 1.42ε1 − 0.54ε3 + 2.29εb( ) (1d)

The  Born approximations,  as defined above,  of the corresponding quantities on the right
hand side of eq. 1 depend on αs(mZ) and also on α(mZ). Defining

δαs = [αs(mZ)-0.118]/π  ; δα = (α (mZ) -1/128.87)/α               (2)

* Here we resume the notation εi for exactly the same quantities as defined in ref.1, where they were
denoted εNi (the index N, for "new", had been inserted to signal some small differences with respect to
the original definitions in refs.5,6).
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we have

mW
2

mZ
2

B

= 0.76883 1 − 0.40δα[ ] (3a)

Γ l B
= 83.56 1 − 0.19δα[ ]MeV (3b)

AFB
µ

B
= 0.01683 1 − 34δα( ) (3c)

Γb B
= 379.6 1 + 1.0δαS − 0.42δα[ ]MeV (3d)

Note that the dependence on δαs for Γb|B, shown in eq.3d, is not simply the one loop result

for mb=0 but a combined effective shift which takes into account both finite mass effects

and the contribution of the known higher order terms.

The important property of the epsilons is that, in the Standard Model, for all

observables at the Z pole, the whole dependence on mt (and mH) arising from one-loop

diagrams only enters through the epsilons. The same is actually true, at the relevant level of

precision, for all higher order mt-dependent corrections. Recently, within the Standard

Model, there has been some additional progress  in the control of radiative corrections by

new computations of some potentially dominant higher-loop effects: terms of order

(GFmt2)2  in the  Z->bb- vertex and in ∆ρ, for all values of mH [7]; terms of order  α sGFmt2

in the  Z->bb- vertex [8] and, for some refinements, in ∆r and ∆ρ [9] ; terms of order

(αsmb/mZ)2 in Γ(Z->hadrons) [10]. Very recently the o(α2
sGFmt2) corrections to ∆ρ have

also been computed [11]. We stress that since all of these improvements have to do with

vacuum polarisation diagrams or with the  Z->bb- vertex, the corresponding terms simply

affect the theoretical predictions of the epsilons in the Standard Model but do not invalidate

the basic property of the epsilons mentioned above. The improved theoretical values of the

epsilons in the Standard Model are given in table 2. Actually, the only residual mt

dependence of the various observables not included in the epsilons is in the terms of order

αs2 in the pure QCD correction factors to the hadronic widths [12]. But this one is

quantitatively irrelevant, especially in view of the errors connected to the uncertainty on the

value of α s. It is important to remark that the theoretical values of the epsilons in the SM,

as defined in eqs. 1 and given in table 2, are not affected, at the percent level or so, by

reasonable variations of α s(mZ) and/or α(mZ) around their central values. By our

definitions, in fact,  no terms of order αn
s
(mZ) or α log(mΖ/m) contribute to the epsilons.

In terms of the epsilons, the following expressions hold, within the SM, for the

various precision observables



3

ΓΤ = ΓΤ0[1+ 1.35 ε1 - 0.46 ε3 + 0.35 εb] (4a)

R = R0[1+ 0.28 ε1 - 0.36 ε3 + 0.50 εb]  (4b)

σh = σh0[1- 0.03ε1 + 0.04 ε3 -  0.20 εb]                 (4c)

x = x0[1 + 17.6 ε1 - 22.9 ε3] (4d)

Rbh = Rbh0[1-  0.06 ε1 + 0.07 ε3 + 1.79 εb] (4e)

where x = gV
gA

 as obtained AFB
µ . The quantities in eqs. 1 and 4 are clearly not

independent and the redundant information is reported for convenience. By comparison
with the code of Ref. 13 (we also checked the results with the programme of ref.14) we
obtain

ΓΤ0 = 2488.88[1 + 0.73 δαs - 0.35 δα] MeV (5a)

R0 = 20.8177[1+ 1.05 δαs - 0.28 δα]  (5b)

σh0 = 41.4221[1-  0.41 δαs +0.03 δα] nb (5c)

x0 = 0.0753142 - 1.32 δα (5d)

Rbh0 = 0.21823 (5e)

Note that  the quantities in eqs. 5  should not be confused, at least in principle, with the
corresponding Born approximations, due to small "non universal" electroweak corrections.
In practice, at the relevant level of approximation, the difference between the two
corresponding quantities is in any case significantly smaller than the present experimental
error, from a factor of 2 in the case of ΓΤ up to a factor of 6 in Rbh .

* * *

The properties of the epsilons, as precisely defined from eqs.1, make them suitable

for a model independent analysis of the electroweak precision tests. In particular, the fact
that, for all observables at the Z pole, the whole relevant dependence on mt  (and mH ) only

enters through the epsilons, is true for any extension of the Standard Model with the

property that all possible deviations  only occur through vacuum polarisation diagrams

and/or the Z->bb- vertex. In any such model, of course, the actual values of the epsilons will

differ in general from the SM ones. As discussed in detail in ref.1, for this kind of models

one can compare the theoretical predictions with the experimental determination of the

epsilons as obtained from the whole set of LEP/SLC data. If a particular model does not

satisfy this requirement, then the comparison is to be made with the epsilons determined

from the defining variables only, eqs.1, or with some more limited enlargement of the same
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set of data, depending on the particular case. For example, if lepton universality is

maintained, then the data on A
l
FB  can be replaced by the combined result on gV/gA from all

lepton asymmetries.

In principle, any four observables could have been picked up as defining variables.

In practice we choose those that have a more clear physical significance and are more

effective in the determination of the epsilons. In fact,  since Γ b is actually measured by Rbh

(which is nearly insensitive to αs), it is preferable to use directly Rbh  itself as defining
variable, as we shall do hereafter. In practice, since Rbh0, eq.5e is practically

indistinguishable from the Born approximation of Rbh , this determines no change in any of

the equations given above but simply requires the replacement of eqs. 1d,3d with eqs.4e, 5e

among the defining relations of the epsilons. In this way, the equations that have

completely general validity are eqs.1a,b,c and 4e together with eqs.3a,b,c and 5e, whereas

the remaining observables and the corresponding equations, among which eqs.1d and 3d

can be included in the analysis only according to the progression of hypothesis that we

shall discuss.

We hope to have made clear by now that our method of analysing the data is more

complete and less model dependent than an alternative approach based on the variables S, T

and U [15], which, from the start, necessarily assumes dominance of vacuum polarisation

diagrams from new physics and truncation of the q2 expansion of the corresponding

amplitudes. Furthermore, the variables S, T, U depend on mt and mH, being defined as

deviations from the complete Standard Model prediction for specified mt (and mH). Instead

the epsilons are defined with respect to a reference approximation which does not depend

on mt.

By combining the value of mW/mZ [1] with the LEP results on the charged lepton
partial width and the forward-backward asymmetry, all given in table 1, one obtains from
eqs. 1a,b,c and 3a,b,c:

ε1 = ∆ρ = (4.7 +-  2.2) 10-3

       ε2 = (-3.2 +- 5.0 ) 10-3 +0.23 δα                       (6)
ε3 = (3.4 +-  3.0) 10-3  -0.77 δα

Finally, by adding the value of Rbh listed in table 1 and using eqs. 4e, 5e one finds :

εb = (2.5 +-  4.6) 10-3         (7)

The central values of the epsilons, as determined experimentally, depend on the chosen
value α (mZ), since the Born approximation of the defining variables does. As before, we
have taken  α(mZ)=1/128.87 [16] but, in eqs.6,7, we have given  the variation induced on
the epsilons by corresponding shifts α(mZ). At present there is a lively debate in the
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literature on the best value of α (mZ) that can be extracted from the data on e+e- ->hadrons
and on the corresponding uncertainty [17]. By using eqs. 6,7 the reader can easily adapt the
results to his/her preferred values.

In fig.1 the experimental 1σ ellipse in the ε1-ε3 plane  is shown and compared, as a
particularly relevant example,  with the Standard Model predictions for different mt and mH

values. We recall that ε1 and ε3 are completely determined by Γ l and A
l
FB.  In fig.2 the

experimental value of ε2 is compared with the Standard Model prediction as a function of
mt. There is consistency at all practical values of mt. Note that ε2 also depends on mW/mZ
and better measurements of this quantity are needed in order to make this test more
stringent. Finally, in fig.3 we compare the experimental value of εb with the Standard
Model prediction. Here we see that εb would prefer relatively small values of mt. This
result is a simple and direct consequence of the fact that the measured value of Rbh is a bit
high ( for mt ~170 GeV, Γb is about 2σ larger than the Standard Model prediction).

To proceed further, and include other measured observables in the analysis we need
to make some dynamical assumptions. The minimum amount  of model dependence is

introduced by including other purely leptonic quantities at the Z pole such as A
τ
pol , Ae

(measured [4] from the angular dependence of the τ polarisation) and ALR (measured by
SLD [18]). At this stage, one is  simply relying on lepton universality.  With essentially the
same assumptions one can also include the data on the b-quark forward backward

asymmetry A
b
FB. In fact it turns out that A

b
FB is almost unaffected by the  Z->b b-  vertex

correction.

As a result, we can combine the values of  x =_ gV/gA from the whole set of
asymmetries measured at LEP (obtaining the value given in table 1) and we can include, in
the fit of the epsilons, eqs. 4d, 5d, valid in a more general theory fulfilling the stated
assumptions. At this stage, with the SLD result also taken into account, the best values of
ε1,  ε2 and ε3 are modified according to

ε1 = ∆ρ = (5.1 +-  2.2) 10-3

            ε2 = (-4.1+-  4.8) 10-3                     (8)
ε3 = (5.1 +-  2.0) 10-3

εb = (2.4 +-  4.6) 10-3

with a similar dependence on α (mZ) as in eqs.6,7. In fig.4 we report the two ellipses in the
ε1-ε3 plane that correspond to the data with and without ALR from SLD.

All observables measured on the Z peak at LEP can be included in the analysis
provided that we assume that all deviations from the Standard Model are only contained in
vacuum polarisation diagrams (without demanding a truncation of the q2 dependence of the

corresponding functions) and/or the Z->bb-  vertex. Note that this is true for whatever
partition of the new effect between gbV and gbA, because only one combination of them is

measured in Γb, while, as already mentioned, A
b
FB is nearly independent of the Z->b b-

vertex.
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For a global fit of all high energy data we consider mW/mZ, Γ T, Rh, σh, Rbh and
x=gV/gA given in table 1.The relations between these quantities and the epsilons, valid in
any model of the assumed type,  are given in eqs.1a,3a,4,5. For LEP data, we have taken
the correlation matrix for ΓT, Rh and σh given by the LEP experiments [4], while we have
considered the additional information on Rbh and x as independent. We obtain (SLD is also
included):

ε1 = ∆ρ =(4.2 +-  1.8) 10-3  -0.27 δαs
            ε2 = (-4.9+-  4.8 ) 10-3 - 0.24 δαs+0.23 δα                                        (9)

ε3 = (4.5 +-  1.8) 10-3 - 0.17 δαs -0.77 δα
εb = (-0.2 +-  4.1)10-3  -1.23 δαs

At this stage, the epsilons have acquired also a dependence on αs(mZ). We have taken
αs(mZ) = 0.118 [19] and we have given the variation induced on the epsilons by a shift of
αs(mZ), as defined in eq.2. The comparison of theory (the SM) and experiment in the
planes ε1-ε3, εb-ε3 and εb-ε1 is shown in fig.5,6 and 7, respectively. We see that the
inclusion of all LEP quantities does not  change the epsilons very much.  The effect of a  +-
0.007 uncertainty on αs(mZ) is included in the quoted error for εb. Note that εb moves in the
direction of the Standard Model prediction. This is because Γ T, σh and Rh (or equivalently
the ratios  of Γ Z, Γh and Γ l), which also depend on εb,  are normal.

Because of the fact that ΓT, σh, Rh depend on α s much more than Rbh, the fitted

value of εb in eq.9 depends on the assumed value of α s(mZ), that we have taken as in table

1. If we repeat the fit of high energy data with αs(mZ) free, εb moves up to  εb.103 = 2.6 +-

4.8 (to fix Rbh which is nearly independent of αs(mZ)) while αs(mZ) goes down to αs(mZ)

= 0.111 +-  0.009. Finally, ε1,  ε2 and ε3 are quite insensitive to  αs(mZ) and closely keep

their values in eq.9.

 To include in our analysis lower energy observables as well, a stronger hypothesis
needs to be made:  vacuum polarization diagrams are allowed to vary from the Standard
Model  only in their constant and first derivative terms in a q2-expansion. In such a case,
one can, for example, add to the analysis the ratio Rν of neutral to charged current
processes in deep inelastic neutrino scattering on nuclei [20], the "weak charge" QW
measured in atomic parity violation experiments on Cs [21]  and the measurement of gV/gA
from νµe scattering [22]. The expressions of these quantities in terms of the epsilons are
given in ref.1. In this way one obtains  the global fit (also including SLD):

ε1 = ∆ρ= (3.6 +- 1.7) 10-3 

            ε2 = (-5.3+-  4.7 ) 10-3                (10)
ε3 = (4.0 +-  1.7) 10-3

εb = (0.2 +-  4.0) 10-3

with the same dependence on αs(mZ) and α (mZ) as in eqs.9. With the progress of LEP the
low energy data, while important as a check that no deviations from the expected q2

dependence arise, play a lesser role in the global fit. The ε1-ε3 plot for all data is shown in
fig.8. We observe no drastic change in the epsilons and we take this fact as evidence that no
exotic q2 dependence is visible.The inclusion of more parameters to describe the possible
departure from the q2 behaviour predicted by the Standard Model was discussed in refs.
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23,24. Their conclusion coincides with ours that no sign of special q2 dependent non
standard effects is observed. Any attempt of significantly constraining the additional
parameters is frustrated by the limited precision of the low energy data.

Note that the present ambiguity on the value of α(mZ) = (128.87+_ 0.12) -1 [16]
corresponds to an uncertainty on ε3 (the other epsilons are not much affected) given by
∆ε3.103 =  +-  0.7  Thus the theoretical error is still confortably less than the experimental
error but the two will become close at the end of the LEP1 phase. The values of ε2 and εb in
eq.10 were compared with the Standard Model predictions in figs. 2  and 3.

∗ ∗ ∗

Finally we would like to add some comments.

As is clearly indicated in figs.5-12 there is by now a solid evidence for departures
from the "improved Born approximation", defined as including the predictions from the
tree level Standard Model plus pure QED and pure QCD corrections only, where all the
epsilons vanish. Such evidence comes from ε1 and ε3, both measured with an absolute error
below 2 10-3 and shown to be different from zero at more than the 2σ level for each of
them. In this way one has obtained a strong evidence for pure weak radiative corrections,
thus fulfilling one of the explicit goals of the precision electroweak tests. LEP and SLC are
now measuring the different components of the radiative corrections.

Of great significance is also the fact that both ε1 and ε3 are reproduced in the
Standard Model with an appropriate choice of mt  and mH. This can be interpreted as an
indirect but nevertheless significant evidence for the description of the electroweak
symmetry breaking sector of the theory in terms of fundamental Higgs(es), as in the
Standard Model or its supersymmetric extension. This is true in spite of the fact that the
dependence of ε1 and ε3 on the Higgs mass is rather weak.  One should consider in fact
that, in most examples of Higgs-less theories that can be found in the literature [25,26], ε1
and ε3,  when they can be computed [27], show relatively large deviations from the
predictions of the  Standard Model. In this respect a further reduction of the errors on ε1
and ε3,  together with an improved direct determination of mt  at the Tevatron, are
extremely important. Similarly, it would also be interesting to have a clear evidence for a
deviation from zero of the remaining parameters, ε2 and εb. These important goals of the
electroweak precision tests are indeed possible in a near future.
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mZ(GeV) 91.1888 +_ 0.0044
ΓT(MeV) 2497.4 +_ 3.8
R=Γh/Γ l 20.795 +_  0.040

σh=12πΓeΓh/m
2
ZΓ2

T  (nb) 41.49 +_ 0.12

Γl(MeV) 83.96 +_ 0.18
Γh(MeV) 1745.9 +_ 4.0
Γb(MeV) 382.7 +_ 3.1
Rbh=Γb/Γh 0.2192 + _ 0.0018

A
l
FB

0.0170 +_ 0.0016

Aτ
pol

0.143 +_ 0.010

Ae 0.135 +_ 0.01091

Ab
FB

0.0967 +_  0.0038

Ac
FB

0.0760 +_  0.0091

gv/ga(all asymmetries -LEP) 0.0716 +_ 0.0020
ALR (SLD) 0.1637 +_ 0.0075
gv/ga(all asymmetries-LEP+SLD) 0.0738 +_ 0.0018
mW/mZ (UA2+CDF+D0) [28] 0.8798 +_ 0.0020
αs(mZ) [19] 0.118 +_  0.007

Table 1

Summary of the data [4] used in the present paper
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ε1 ε2 ε3 εb

mt
(GeV)

mH=
65
GeV

300 1000 65 300 1000 65 300 1000 All
mH

120 1.51 0.888 -0.23 -5.72 -5.40 -5.25 5.04 6.4 7.07 -2.29
130 2.19 1.54 0.413 -6.10 -5.74 -5.56 4.96 6.3 6.96 -2.98
140 2.93 2.25 1.10 -6.46 -6.07 -5.86 4.88 6.21 6.85 -3.71
150 3.72 3.00 1.84 -6.80 -6.38 -6.15 4.81 6.12 6.75 -4.48
160 4.56 3.81 2.63 -7.13 -6.70 -6.45 4.74 6.03 6.65 -5.30
170 5.47 4.68 3.47 -7.48 -7.03 -6.76 4.68 5.95 6.57 -6.15
180 6.43 5.60 4.36 -7.84 -7.36 -7.07 4.63 5.88 6.49 -7.05
190 7.44 6.57 5.29 -8.23 -7.71 -7.39 4.58 5.81 6.41 -7.99
200 8.53 7.6 6.27 -8.64 -8.08 -7.72 4.54 5.76 6.35 -8.98
210 9.67 8.69 7.30 9.08 -8.47 -8.08 4.51 5.72 6.29 -10.0
220 10.9 9.83 8.37 9.55 -8.9 -8.45 4.49 5.69 6.23 -11.1
230 12.2 11.0 9.49 -10.0 -9.36 -8.85 4.49 5.67 6.18 -12.2

Table 2

Values of the epsilons in the Standard Model as functions of mt and mH as
obtained from recent versions of ZFITTER [13] and TOPAZ0 [14]. These
values are obtained for for αs(mZ)=0.118,  α(mZ)=1/128.87 but are essentially
independent of these input parameters.
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Figure Captions.

1. The 1σ ellipse in the plane ε1-ε3 obtained from the data on the defining variables Γl and

A
l
FB compared with the Standard Model predictions for the indicated values of mt and mH.

2. The 1σ data on ε2 obtained from the data on the defining variables Γ l, A
l
FB and mW/mZ

compared with the Standard Model predictions as functions of mt for the indicated values

of mH. The arrows indicate the experimental 1σ  band from the fit in eq.10 to all

electroweak data.

3. The 1σ data on εb obtained from the data on the defining variables Γl, A
l
FB, mW/mZ and

Rbh compared with the Standard Model predictions as functions of mt . The arrows indicate

the experimental 1σ band from the fit in eq.10 to all electroweak data.

4. The 1σ ellipses in the plane ε1-ε3 obtained from the data on Γl and gV/gA derived from

all the asymmetries (see table 1), both with SLD included or not, compared with the

Standard Model predictions for the indicated values of mt and mH.

5. The 1σ ellipses in the plane ε1-ε3 obtained from the data on mW/mZ, ΓT, σh, Rh, Rbh and

gV/gA derived from all the asymmetries (see table 1), both with SLD included or not,

compared with the Standard Model predictions for the indicated values of mt and mH.

6. The 1σ ellipses in the plane εb-ε3 obtained from the data on mW/mZ, ΓT, σh, Rh, Rbh and

gV/gA derived from all the asymmetries (see table 1), both with SLD included or not,

compared with the Standard Model predictions for the indicated values of mt and mH.

7. The 1σ ellipses in the plane ε1-εb obtained from the data on mW/mZ, ΓT, σh, Rh, Rbh and

gV/gA derived from all the asymmetries (see table 1), both with SLD included or not,

compared with the Standard Model predictions for the indicated values of mt and mH.

8. The 1σ ellipse in the plane ε1-ε3 obtained from all the data also including the low energy

data compared with the Standard Model predictions for the indicated values of mt and mH.


