DI/HP/ 127

ORGANISATION EUROPEEENNE POUR LA RECHERCHE NUCLÉAIRE CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

RADIATION MEASUREMENTS AROUND A BEAM STOPPER IRRADIATED BY $19.2 \mathrm{GeV} / \mathrm{C}$ PROTONS, AND NEUTRON ENERGY SPECTRA FROM MONTE CARLO NUCLEON-MESON CASCADE CALCULATIONS
K. Goebel and J. Ranft ${ }^{*}$)

GENEVA

[^0]
(C) Copyright CERN, Genève, 1970

Propriété littéraire et scientifique réseryée pour tous les pays du monde. Ce document ne peut être reproduit ou traduit en tout ou en partie sans l'autorisation écrite du Directeur général du CERN, titulaire du droit d'auteur. Dans les cas appropriés, et s'jl s'agit d'utiliser le document à des fins non commerciales, cétte autorisation sera volontiers accordée.
Le CERN ne revendique pas la propriété des inventions brevetables et dessins ou modèles susceptibles de dépôt qui pourraient être décrits dans le présent document; ceux-ci peuvent être librement utilisés par les instituts de recherche, les industriels et autres intéressés. Cependant, le CERN se réserve le droit de s'opposer à toute revendication qu'un usager pourrait faire de la propriété scientifique ou industrielle de toute invention et tout dessin ou modèle décrits dans le présent document.

Literary and scientific copyrights reserved in all countries of the world. This report, or any part of it, may not be reprinted or translated without written permission of the copyright holder, the Director-General of CERN. However, permission will be freely granted for appropriate non-commercial use. If any patentable invention or registrable design is described in the report, CERN makes no claim to property rights in it but offers it for the free use of research institutions, manufacturers and others. CERN, however, may oppose any attempt by a user to claim any proprietary or patent rights in such inventions or designs as may be described in the present document.

ORGANISATION EUROPEEENNE POUR LA RECHERCHE NUCLÉAIRE CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

RADIATION MEASUREMENTS AROUND A BEAM STOPPER IRRADIATED BY $19.2 \mathrm{GeV} / \mathrm{c}$ PROTONS, AND NEUTRON ENERGY SPECTRA FROM MONTE CARLO NUCLEON-MESON CASCADE CALCULATIONS
K. Goebel and J. Ranft*)

GENEVA
1970

[^1]
ABSTRACT

Flux density measurements around a $300-\mathrm{cm}$-1ong steel beam stopper are made by using activation detectors with different energy thresholds. These measurements, from 21 positions inside and 10 outside the shielding tunnel, provide information on the radiation at these positions, the spectrum of secondary neutrons, and attenuation by and shielding efficiency of the beam stopper and the concrete shielding tunnel, respectively. Calculations using a Monte Carlo method are made to evaluate the flux densities and spectra above 100 MeV . These calculations and the experimental data are compared, and it is shown that both agree in general within a factor of 2 .

CONTENTS

Page

1. INTRODUCTION 1
2. EXPERIMENTAL LAYOUT; MEASUREMENTS OF PARTICLE FLUXES 2
3. EXPERIMENTAL NEUTRON SPECTRA 4
4. NEUTRON ENERGY SPECTRA ABOVE E $=100 \mathrm{MeV}$ FROM MONTE CARLO NUCLEON-MESON CASCADE CALCULATIONS 9
5. CALCULATIONS OF STRONGLY INTERACTING PARTICLE FLUXES IN AND AROUND THE BEAM STOPPER 12
6. COMPARISON BETWEEN MEASURED AND CALCULATED PARTICLE FLUXES 15
REFERENCES 21

1. INTRODUCTION

Beam areas of primary and secondary high-energy particles are often protected by interlocked beam stoppers or beam plugs. The radiation field in the surroundings of such beam stoppers and their attenuation efficiency are of primary concern for the layout of particle beans and their shielding. In order to solve some acute problems comnected with transferring the beam from the CERN Proton Synchrotron (CPS) to the new intersecting storage rings, flux densities and dose measurements were made around a beam stopper in a fast-ejected primary proton beam.

In the past, attenuation measurements and shielding calculations were made in various materials in the forward directions ${ }^{i-1}$). In this case, the geonetry is such that the lateral dimenstons of the absorber are large compared with the cross-sections of the incoming beam and of the particle cascade developing inside the absorber. Other measurements and calculations are concemed with the transverse attenuation in configuration such as beam cunnels or a lateral shielding wall ${ }^{* / 7}$). The experiment reported here combines some of the features of the two simple cases: a long but narrow (compared with the particle cascade) steel beam plug, and a shielding tumel all around this radiation source.

We were interested in checking whether the Monte Carlo method could also predict with some reliability (as in the fomer calculations) the fuxes around the beam stopper and outside the transverse concrete shielaing.

The Monte Carlo method reveals information primarily about the star density inside the steel and the concrete. In fomer shielding experiments, nuclear emulsions were used to measure the star density, so direct comparison between experiment and calculation was posstble. However, the emulsion techmique requires constderable scaming effort, and the method is somewhat remote from the standard tecmique used in health physics. As the beamstopper measurements and calculations are of practical interest for radiation protection, it seens desirable to use the same methods as those nomally applied for assessing the flux density and dose levels in areas occupied by workers. Therefore we used for the measurements such activation detectors as plastic scintillators, sufur, aluminim, and moderated and bare indium.

In order to compare the results from the activation detectors with the star densities and the fluxes at energies above 100 to 200 MeV , the spectrum of the particles producing the activity in the detector must be known. Spectral information is readily obtained from the activation detectors, if detectors with responses to different parts of the energy range of interest are used. This is the case with our detectors up to about 100 MeV . (We could not masure with sufficient sensitivity ${ }^{148} \mathrm{~Tb}$ activity produced in gold or mercury, which has a threshold at 600 MeV .) Above this energy the spectral shape is calculated by the Monte Carlo method. The flux densities obtained from the activation detectors, at 19 positions inside the shielding tumel and 10 positions outside the shield, were compared with the predictions from the Monte Carlo calculations. The fact that both agree within acceptable limits strengthens the confidence that even in more complicated geometries the Monte Carlo calculation can predict flux densities for new shielding layouts.
2. EXPERMENTAL LAYOUT: MEASUREMENTS OF PARTICLE FLUXES

Tho large standard steel beam stoppers, 1.50 m long and 30 cm in dumeter, were installed in the eq beam tumel. In this fast-ejected proton beam, particle losses upstream from the selected site could be expected to be small, as the primary proton beam has small geometrical dimensions in the fast-ejected mode. The beam stopper is therefore the principal radiation source. At the chosen position, the shielding of the tumel was without cracks or inhomogeneitles; the shielding thickness at the right (south) side of the tumnel was 80 cm less than on the top and on the north side (Fig. 1).

In the flux-density measurements, a number of activation detectors with different thresholds were used. Table 1 shows the main characteristics of the detectors. The detectors were placed inside the tumel in order to obtain particle flux-density patterns around the beam stopper (Series 1), and outside on the shielding surface to measure the efficiency of the transverse shielding at large angles (Series ID). For Series 1 , the choice of a measuring site was 1 imited by the space avallable inside the shielding tumel. The positions for flux and density measurements are indicated in Fig. 2 .

The exposures were organized so as to comply with the requirements of the activity measurenents in three short exposures, A_{0}, B_{0}, and C_{0}, of 23 sec ($=10 \mathrm{pS}$ pulses) each for short half-1ives, and three longer exposures of 20 min each for the long half-lives* During the exposure the beam intensity was continuously monitored by a current transfomer and a secondarymemission chamber (SEC). The calibration of the SEC was based on the

Fig. 2 The measuring sites inside (posicions 1 to 21) anv outside (pos. thons 30 to 40) the proton bean cmmed. The broken innes Indtcate the vertical section, which is cumed by 90° into the horimontal plame.

Table 1
Activation detectors used for flux density measuxements

Weter6ar	keaction	 x"mye (4kV)	(rass-sectum (w) (a* mexyy 綡 (bV)	necay mode		Detector skut
		themax cnerry		v, ${ }^{* *}$		
wwherater			\% Mw.me	\%**		
		2×450	$300 \backslash 10$	\% ${ }^{\text {m* }}$	14.4.10	
		$6 \times 3 \rightarrow$	1204.6)	\%***		
		3	1450)	$\%^{* *}{ }_{*}$		0.1-10 ${ }^{\text {a }}$
Mastic scintiletar		203	$22(200)$	\%		1b th 10 列
	${ }^{3} \mathrm{C}\left(\mathrm{x}, \mathrm{xam}^{3}\right)^{3} \mathrm{C}$	$26 *$	3)(200)	\%	36 \%	ys to 10 ck 15 ca hyh
		45*	20 (2\%\%\%	\% \%	2.6. ycamy	

A1- ${ }^{24} \mathrm{Na}$ reaction cross-section (carried out by Dr. L. Hofmanm, MPS Divisiom, CERN). Eventual systematic errors in the absolute cross-section values would be the same for the secondary flux measurements, Table 2 gives the monitor readings for the exposures A_{0} to ${ }^{p} \%$, The average proton current was 3.1 to $3.4 \times 10^{11} \mathrm{p} / \mathrm{sec}$. Al the results were normalized to $10^{12} \mathrm{p} / \mathrm{sec}$, so the actual secondary fluxes measured were lower by a factor of 3 than the resules given below.

Table 2
Primary beam monitor results (at proton energy 18.4 GeV)

exposuxe	Tixe	Crrrent transformer	Secondary enission chamber	Charge loss monitor	Average fux into beam stopyer p/sec
A	23 see	7.08 $\times 10^{6 / 4}$	$7.08 \times 10^{1 *}$	6.85×10^{12}	3.05×10^{11}
3	2\% sec	7.87×10^{12}	5.90×10^{12}	7.97×10^{12}	3.45×10^{14}
${ }_{6}$	23 sec	7.60×10^{82}	7.84×10^{12}	7.58×10^{82}	3.35×10^{11}
no	23 man	448×10^{12}	461×10^{12}	***	3.30×10^{12}
\% ${ }^{\text {\% }}$	30.7 max	559×10^{12}	580×10^{12}	"-m***	3.10×10^{21}
F_{6}	23 m	$44 \% \times 10^{* 2}$	466×10^{14}	****	3.33×10^{14}

The results of the activation detector measurements are basically specific activities of certain isotopes in the detectors. If we assume an average cross-section, the specific activity can be interpreted as flux density. Table 3 gives a sumary of all results. The crossmsections assumed for deriving the flux densities are given at the head of each colum. [More details have been given elsewhere".] Figures 3 and 4 show the high-energy particle densities $\left[{ }^{12} \mathrm{C}(\mathrm{x}, \mathrm{xm})^{11} \mathrm{C}\right]$ inside and outside the shield, respectively, normalized to 1 m distance by multiplying by x^{2} (where x is in metres).

Counting errors for all samples except the ${ }^{32} \mathrm{p}$ and ${ }^{2 /} \mathrm{Na}$ are 10 w : $\leq 10 \%$. The results are, however, influenced by small inhomogenelties in the shield, and by positioning errors that might be important inside the tumel where the radiation field has large gradients. Detectors exposed side by side in the "same" position can thus "see" different flux densities.

3. EXPERIMENTAL NEUTRON SPECTRA

The production cross-section of the isotopes used in the activation detector system is known for most of the strongly interacting particles over the whole energy range $(<30 \mathrm{GeV})$. As excitation or response functions, we applied the curves given by Charalambus et al., and by Cuming'). A specific decay or counting rate found in a measurement is proportional to

$$
\mathrm{OR}_{\mathrm{det}} \text { or } \mathrm{CR}_{\mathrm{det}} \approx \int \mathrm{R}(\mathrm{E})_{\mathrm{det}} \times \varphi(\mathrm{E}) \mathrm{dE} \text {, }
$$

Table 3
Kentrs Erom activation detccors and donimecers．Serkes I finside tunet pog．1－21：Series IL（oucside concreve shield）pog．30－40．（uty＝highm

	Vixaction	$\begin{gathered} \text { Weskbace } \\ a^{2} \\ (\mathrm{~m}) \end{gathered}$	Shetarng$\left(\sin ^{2}\right)$						
					$\begin{gathered} \text { 紋 } \\ 28 \mathrm{k} \\ \text { (20 wk) } \end{gathered}$			除 至 10．8．8 cma （\％ Km^{3} \＄8c）	
考	（1）	\％， 13%		$355 * 10^{*}$	$118 \times 10{ }^{6}$	182 $\times 10^{6}$	322×16	526 $\times 18$	
\％	新	1．3离		283＊ 3 \％${ }^{6}$	1边× 0^{6}			\＄6\％$\times 10^{8}$	
3	紷	1．66		$53^{*} \times 10^{6}$	\％	30 $\times 1{ }^{\text {\％}}$	21×10^{6}	489×10^{8}	
4	\％	2.16		58＊${ }^{3}{ }^{*}$	38×16^{8}	26×10^{3}	4\％$\times 10^{6}$	＊ $88.2 \times 8{ }^{6}$	
5	4	2．46		160＊${ }^{\text {\％}}$	\％$\times 10^{8}$	$28 \times 1{ }^{6}$	48＊ 6 \％${ }^{\text {＊}}$		
6	x	0.6%		165×10^{6}	\％戍 $\times 1.46$	$67 \times 3{ }^{6}$	168 $\times 10^{6}$	$513^{\times 1} 0^{*}$	
7	\％	0.69		305 $\times 1{ }^{6}$	缕 $\times 10^{6}$	8＊＊\times \％	$236 \times 3{ }^{6}$	\＄20\％$\times 1.8{ }^{6}$	
\％	\％	3．43\％		82×10		$23^{6} \times 16{ }^{3}$	$18 \times 3{ }^{6}$	$368 . \times 1{ }^{6}$	
\％	4	3．4．6		乡＂$\times 1{ }^{6}$	65 3 30	2\％$\times 1{ }^{6}$	16 $\times 15$	36\％$\times 14{ }^{\text {\％}}$	
86	\％	30．3		16 $\times 10^{6}$		$5.6 \times 30{ }^{6}$	1t．$\times 10^{3}$	$2980 \times 1{ }^{3}$	
3 3	或	13．3		\＄．${ }^{3} \times 10^{6}$		4．83 38 0^{6}	9.4×16^{6}	2䇣 $\times 1.8$	
$8{ }^{2}$	14	20．3		$3.4 \times 8{ }^{3}$		3．${ }^{3} \times 1{ }^{6}$	$7.9 \times 1{ }^{3}$		
$1{ }^{3}$	舜	10．3		$2 \mathrm{x} \times 1 \mathrm{E}^{6}$		$5.7 \times$ ）	10＊ 3 \％		
［4	\％	26.0		S． 5×15		2． $5.610{ }^{6}$		108 $\times 1{ }^{\text {a }}$	
5	＊	26．$\%$				＋．\times＊$\times 6{ }^{6}$	2.85×10^{6}	1景＊ 0^{6}	
\％	\％	26.8					$2.8 \times 3{ }^{*}$	118\％ $\mathrm{SO}^{\text {\％}}$	
17	8	26.3		$3.35 \times 1{ }^{\text {3 }}$		1． 5×16^{6}	3．1．$\times 1.16$	117\％\％${ }^{\text {en }}$	
3	爱	2\％，\％		4．9\％ 6.6			$3 \times 2 \times 10^{6}$	14＊＊ $10{ }^{\text {\％}}$	
3	＊	2.3		3.6×10^{6}			3 $\times 10^{8}$	12 $\times 10^{*}$	
26	\％	2×3		\％ 4.4×80^{6}			14 $\times 10^{6}$	${ }^{12} \times 10^{6}$	
23	諒	3．8复		$3.48 \times 1{ }^{6}$		\％${ }^{3} \times 1{ }^{6}$	$9 \times 3 \times 0{ }^{6}$	3\％＊ 43^{6}	
3	\％	U8．7	${ }^{8} 78$	306\％		35			76%
3数	\％	16．6	\％\％\％	10\％\％\％		2986		\＄12\％	200\％
3	\％	20．3	\％\％	3x\％		93娄		2136	6no
3 3	\％${ }^{2}$	23， 0	\％7\％	L 80		4\％${ }^{\text {\％}}$		18\％\％	－ 58
3	\％	紋．2	770	\％\％		13\％		162\％	12．
䇾5	樓	510．6	$7{ }^{\text {7 }}$	2314		\％${ }^{4}$		\％4\％	149
3	3	77.3	\％ 70	3.8		3.7		36\％	\％
3\％	\％	12．6	38%	2630\％		\＄285		5 ${ }^{\text {5x\％}}$	14936\％
3	\％	\％ 6 \％	\＄6\％	934\％		3156		4950\％	6926
3	\％	$2{ }^{2} \times 3$	778			考誰		\％\％\％\％	1306
4	\％		縎	रुษ\％		\％\％		19\％${ }^{\text {\％}}$	1350\％

where $R(E)$ det is the response or excitation function of the detector，and $\phi(E)$ is the dif－ ferential energy spectrum of neutrons．For simplicity，the response functions for neutrons are used，as neutrons represent the predominant particle group，at least in the energy range where the detectors are most senstive．

Pig. 3 High-energy particke knux densities around the beam stopper. The lengths of tho arrow correspond to the VIux dens. ty reduced co 1 w distance $\left(1 / r^{2}\right)$ frm the assmmed source (inshde the first stopper).

 Ing. The lengths of the arrowg are proportiond to the flux denkities woducek by 1 m dustance from che assumed somxce. The maximum Elux ik measured at 80° with the beam dixection.

When, as in our case, more than one activation detector is used, the different $R(E)_{\text {det }}$ provide information about the spectrum. From Table 1 we see that the spectrum is reasonably well determined at thermal energies, in the range of fast neutrons of 0.1 to 20 MeV and up to about 100 MeV . By calculating the products $R\left(E_{i}\right) \times \phi\left(\mathrm{E}_{\mathrm{i}}\right)$ for different energy intervals E_{i} and summing them up, we can calculate the DR's from conjectured spectra. By modifying the spectrum in repeated trails we finally find a spectrum that gives a response equal to the measured one. Such a spectrum is not completely determined, and the method does not reveal a unique answer; however, a smooth spectrum that is free from oscillations, and matches the counting rates, might be considered a "reasonable" spectrum.

The program TELLY computes counting rates that would be observed from a given spectral distribution. (TELLY was originally written by Marjorie Simmons, Nickey Little, and Alan Smith to find the spectra in the CERN-Rutherford-Berkeley shielding experiments from the responses of the same detectors.) TELLY employs an open-loop technique to solve the problem, in the sense that the user must supply modifications to an input neutron spectrum in order to achieve the match with a set of observed count rates. As written, the program will not generate new trial spectra automatically in order to seek the desired match conditions. The light-pen is used as the means for modifying spectral shapes. One simply draws a desired modification on the cathode-ray tube display, and almost instantly can observe the changes in calculated detector count rates brought about by this special alteration.

A similar approach was made by applying the LOUHI program ${ }^{10 \text {) . Using an iteration pro- }}$ cess starting from a conjectured spectrum, this program finds a spectrum with the leastsquare deviations between calculated and measured responses. Above 100 MeV the spectra are ambiguous and not well determined by the detectors used. From the Monte Carlo calculations discussed in the next paragraph we have information about the spectra at higher energies. By imposing this spectral distribution above 100 MeV , the TELLY and LOUHI programs can still match the detector responses at lower energies. Examples of such experimental spectra are given in Fig. 5. In Table 4 the difference between measured responses and those calculated by the LOUHI program are given. Most of the spectra obtained match the responses within a few per cent, the highest difference being about 40%.

In Fig. 5e the spectra for different positions inside the tunnel and outside the concrete shield are compared with each other. Some characteristic changes can be observed when the site of the measurement moves downstream in the beam direction: at a distance of about 75 cm from the beam axis, the spectra upstream from the impact point (position 19) have very high contributions of low-energy neutrons. At energies above 1 MeV the spectra decrease very quickly. There are almost no high-energy particles above 100 MeV . As we move to positions 6 and 8 , small shoulders build up in the spectrum at about 100 MeV . This shows, as expected, the increasing number of particles of higher energy scattered and produced in the more forward direction. This systematic change continues at positions 10 and 14 , where the forward-scattered particles become more and more pronounced.

When comparing the spectra outside the shield we have, starting with position 31 (at the same longitudinal position as the beam stop impact point), a spectrum with a flat region between 1 and 100 MeV . In the Monte Carlo calculations discussed below, this flat

Fig. 5 Neutron spectra as calculated with the LOUHI program. Two spectra are from positions inside the tunnel (Figs. 5a and 5b); two are from outside (Figs. 5c and 5 d), at the points of maximum radiation: on top of the shield of position 31 , and from the side, where the shielding is only 240 cm of concrete, at position 38 . Figure 5 e is a comparison of spectra taken inside the tunnel and outside the shield along the beam line.
region of the spectrum does not show up, as the Monte Carlo particle spectrum has a lower energy cut-off at about 100 MeV . The flat part almost becomes a peak at positions 32 and 33, but disappears as one moves to more downstream positions (35 and 36). This shows that the greater shielding thickness, which the radiation must penetrate toward the downstream positions, attenuates the secondary particles more than the flux density increases at smaller angles. The highest dose-rates and also the largest relative contribution to the dose-rate from high-energy particles are found at angles that are between 70° and 90° to the beam direction.
4. NEUTRON ENERGY SPECTRA ABOVE $E=100 \mathrm{MeV}$ FROM MONTE CARLO NUCLEON-MESON CASCADE CALCULATIONS

The Monte Carlo nucleon-meson cascade calculations in a block of shielding material, and the computer program TRANSK, were described in Refs. 3 and 6. New experimental data and other improvements were recently introduced ${ }^{11)}$. These improvements include:
i) an improved formula for multiparticle production, which was fitted to new experimental data;
ii) energy-dependent absorption cross-sections for strongly interacting particles on nuclei;

Table 4
Ratio of (CR-CM) $\times 100 / \mathrm{CM}$ [CR $=$ responses of activation detectors (LOUHI program), $\mathrm{CM}=$ responses from activation measurement; $\pm 0=$ difference less than 1%; -- = no measurements made.]

Position	Activation detector					
	Indium		${ }^{24} \mathrm{Na}$	${ }^{32} \mathrm{P}$	${ }^{11} \mathrm{C}$	${ }^{22} \mathrm{Na}$
	Bare	Moderated				
Inside tunnel						
1	--	± 0	+4	-4	-8	-1
2	--	± 0	-4	+2	+1	-34
3	--	± 0	+2	± 0	-28	-25
4	--	± 0	+2	± 0	-7	+2
5	--	± 0	+2	± 0	-9	+8
6	--	± 0	+2	-2	± 0	-7
7	--	+1	+3	-2	-2	-5
8	--	± 0	± 0	± 0	-10	--
9	--	± 0	-3	+2	+5	-35
10	--	± 0	± 0	± 0	± 0	--
11	--	± 0	± 0	± 0	-7	--
12	--	± 0	± 0	± 0	-6	--
13	--	± 0	± 0	+2	-12	--
14	--	± 0	-1	+3	-12	--
15	--	± 0	± 0	+1	-8	--
16	--	± 0	± 0	+1	-6	--
17	--	± 0	± 0	+1	-5	--
18	--	± 0	± 0	+2	-10	--
19	--	+1	+2	-2	-5	--
20	--	+1	+3	-2	-5	--
21	--	+1	-3	+2	+3	--
Outside shielding						
30	-5	+15	± 0	--	-2	--
31	-2	+7	± 0	--	-7	--
32	-4	+10	± 0	--	-9	--
33	-1	+4	+3	--	-10	--
34	± 0	+2	+2	--	-8	--
35	± 0	+3	± 0	--	-3	--
36	-2	+4	± 0	--	+3	--
37	± 0	+4	± 0	--	-5	--
38	± 0	7	-3	--	+8	--
39	± 0	+3	± 0	--	-6	--
40	\pm	+3	± 0	--	-6	--

iii) a better representation of ionization energy losses and nuclear excitation energies;
iv) an improved treatment of energy conservation in the cascade, and introduction of a lower cut-off momentum or energy that can be changed but is usually around $\mathrm{E}_{\mathrm{cu}}=50$ to 125 MeV ;
v) separate calculations of star and track densities, and more reliable calculation of the energy deposited by the cascade.

The program TRANSK was further modified to calculate the energy spectra of protons, neutrons, and pions as functions of the radial distance r from the beam axis in the shielding block or as functions of the depth z in the shielding block. Figures 6 to 8 give calculated proton, neutron, and pion energy spectra for different radii r in an iron block. The cascade was excited by a $20 \mathrm{GeV} / \mathrm{c}$ proton beam. The neutrons are the most important components in the cascade. It is difficult to compare these curves with corresponding experimental particle spectra. Cosmic-ray neutron spectra are expected to be different in the region of the high energies considered. The primary spectrum is different and extends to much higher energies than 20 GeV , and the same must be true for the neutron spectra at sea level. Neutron energy spectra around accelerators, evaluated from activation detector measurements as in the preceding section, cannot be expected to be significant much above $\mathrm{E}=100 \mathrm{MeV}$ even if the curves are continued up to much higher energies, as was done in Ref. 5. There seems to be no physical process that could be responsible for the transmission, through thick lateral shields, of neutrons with energies nearly equal to the primary proton energy, but many such neutrons are present according to the spectra in Ref. 5. There is no direct experimental evidence available for the presence of these high-energy neutrons at the positions considered.

Fig. 6 Calculated proton energy spectra in a block of iron for different radial distances from the primary proton beam line.

Fig. 7 Calculated neutron energy spectra in a block of iron for different radial distances from the primary proton beam line. The curve for $r=300$ to $320 \mathrm{~g} / \mathrm{cm}^{2}$ is continued down to $\mathrm{E}=$ 10 MeV by using the ring-top neutron spectrum of Ref. 5.

Fig. 8 Calculated pion energy spectra in a block of iron for different radial distances from the primary proton beam line.

Below 100 MeV however, the experimental neutron spectra are expected to be much better, and we use the spectra shown in the preceding section to continue the calculated energy spectra from $\mathrm{E}=100 \mathrm{MeV}$ (about the lowest energy for which the spectra can at present be calculated) down to lower energies. This was done with typical activation detector spectra for one of the curves in Fig. 7.
5. CALCULATIONS OF STRONGLY INTERACTING PARTICLE FLUXES

IN AND AROUND THE BEAM STOPPER
The Monte Carlo nucleon-meson cascade calculation ${ }^{3,6,10)}$ was first developed for applications in the simplest geometrical situation. The underlying principles and the physical data used have now been shown to lead to results in agreement with measurements in the simple geometric situation. Therefore we can now apply the same method to more complicated geometrical situations. The first such applications have already been reported in Ref. 7. Here we consider a geometric situation similar to that around the beam stopper.

The primary proton beam hits a cylindrical iron beam stopper of radius r_{0} and length ℓ_{1}, surrounded by a cylindrical concrete shield with inner radius r_{s}. The computer program KASTRA calculates, for the time being, only the proton, neutron, and pion star densities inside the beam stopper and in the concrete shield. However, we need the flux densities to compare them with the activation detector measurements. The assumption made here is that the flux densities inside the steel or concrete are proportional to the calculated star densities. This would be correct only in a calculation with cross-sections independent of energy and type of particle. We know, however, from the results of the program TRANSK that the assumption is a good approximation.

The resulting flux density for all strongly interacting particles, normalized to one incoming primary proton, is given in Fig. 9. The calculations were made with $\mathrm{r}_{0}=15 \mathrm{~cm}$, $\ell=300 \mathrm{~cm}$, and $\mathrm{r}_{\mathrm{s}}=75 \mathrm{~cm}$. The neutron, proton, and pion fluxes at $\mathrm{r}_{\mathrm{s}}=75 \mathrm{~cm}$ in the shield are compared in Fig. 10. The neutrons are by far the most important component.

It is very difficult to get statistically significant results at large radii in the concrete shield. Therefore we calculate also the mean transverse attenuation of the flux density in the concrete by integrating over all z-values considered. The histogram obtained is given in Fig. 11. The transverse attenuation of the flux density $\phi(r, z)$ is well represented by

$$
\phi(\mathrm{r}, \mathrm{x}) \approx \exp \left(-\mathrm{r} / \lambda_{\mathrm{r}}\right),
$$

with $\lambda_{r}=80 \mathrm{~g} / \mathrm{cm}^{2}$ for the layout studied.

Fig. 9 Calculated star density (stars produced by strongly interacting particles of $\mathrm{E} \geq 125 \mathrm{MeV}$) inside the iron beam stopper and inside the concrete shielding. The density is normalized to 1 star $/ \mathrm{cm}^{3}$ at $\mathrm{r}=0$ and $Z=0$ in the beam stopper. The curves can also (approximately) be regarded as the corresponding flux densities, normalized to one incoming primary proton.

Fig. 10 Comparison of neutron, proton, and pion flux or star densities at $r=75 \mathrm{~cm}$ in the concrete shielding.

Fig. 11 Mean radial attenuation of the star density in the concrete shielding.

6. COMPARISON BETWEEN MEASURED AND CALCULATED PARTICLE FLUXES

The energy-dependent cross-sections of the activation reactions which we use:

$$
\begin{aligned}
\sigma_{\mathrm{Al}, \mathrm{n}} & =\sigma_{\left.\left[{ }^{27} \mathrm{Al}(\mathrm{n}, \alpha)\right)^{24} \mathrm{Na}\right]}, \\
\sigma_{\mathrm{A} 1, \mathrm{p}} & =\sigma_{\left[{ }^{27} \mathrm{Al}(\mathrm{p}, 3 \mathrm{pn})^{24} \mathrm{Na}\right]}, \\
\sigma_{\mathrm{C}, \mathrm{n}} & =\sigma_{\left[{ }^{12} \mathrm{C}(\mathrm{n}, 2 \mathrm{n})^{11} \mathrm{C}\right]}, \\
\sigma_{\mathrm{C}, \mathrm{p}} & =\sigma_{\left[{ }^{12} \mathrm{C}(\mathrm{p}, \mathrm{pn})^{11} \mathrm{C}\right]},
\end{aligned}
$$

are given in Ref. 9. The neutron energy spectra $\phi_{\mathrm{n}}(\mathrm{E})$ in and around the beam stopper and behind the shield are given below $\mathrm{E}=100 \mathrm{MeV}$ by the activation detector measurements. Individual spectra for points 1 to 21 continued above 100 MeV by the spectra from Fig. 7 for $\mathrm{r}=100-120 \mathrm{~g} / \mathrm{cm}^{2}$, and for the points 30 to 40 by the spectra from Fig. 7 for $\mathrm{r}=$ $400-420 \mathrm{~g} / \mathrm{cm}^{2}$. The proton energy spectrum is assumed to have the form

$$
\phi_{\mathrm{p}}(\mathrm{E})=\frac{1}{3} \frac{\left(\mathrm{E}+\mathrm{m}_{\mathrm{p}}\right)^{2}-\mathrm{m}_{\mathrm{p}}^{2}}{\left(\mathrm{E}+\mathrm{m}_{\mathrm{p}}\right)^{2}} \phi_{\mathrm{n}}(\mathrm{E}),
$$

which is qualitatively in agreement with the calculated proton spectra in Fig. 6.
The number of nucleons contributing to the fluxes in the Monte Carlo calculation is

$$
\mathrm{N}_{\mathrm{MC}}=\int_{125 \mathrm{MeV}}^{\mathrm{E}_{0}}\left[\phi_{\mathrm{n}}(\mathrm{E})+\phi_{\mathrm{p}}(\mathrm{E})\right] \mathrm{dE}
$$

The number of nucleons contributing to the activation detector measurements is

$$
\begin{aligned}
N_{A 1} & =\int_{E_{\operatorname{thr}(\mathrm{Al}, \mathrm{n})}}^{\mathrm{E}_{0}} \phi_{\mathrm{n}}(\mathrm{E}) \mathrm{dE}+\int_{\mathrm{E}_{\operatorname{thr}(\mathrm{Al}, \mathrm{p})}}^{\mathrm{E}_{0}} \phi_{\mathrm{p}}(\mathrm{E}) \mathrm{dE} \\
\mathrm{~N}_{\mathrm{C}} & =\int_{\mathrm{E}_{\mathrm{thr}(\mathrm{C}, \mathrm{n})}}^{\mathrm{E}_{0}} \phi_{\mathrm{n}}(\mathrm{E}) \mathrm{dE}+\int_{\mathrm{E}_{\mathrm{thr}(\mathrm{C}, \mathrm{p})}}^{\mathrm{E}_{0}} \phi_{\mathrm{p}}(\mathrm{E}) \mathrm{dE} \cdot
\end{aligned}
$$

We define the quantities

$$
\begin{aligned}
\mathrm{Q}_{\mathrm{Al}} & =\frac{\mathrm{N}_{\mathrm{Al}}}{\mathrm{~N}_{\mathrm{MC}}} \\
\mathrm{Q}_{\mathrm{C}} & =\frac{\mathrm{N}_{\mathrm{C}}}{\mathrm{~N}_{\mathrm{MC}}}
\end{aligned}
$$

which are needed in order to compare the fluxes calculated in the Monte Carlo calculation with the measured fluxes.

The average A1 and C activation cross-sections are:

$$
\begin{gathered}
\int_{\mathrm{\sigma}_{\mathrm{A} 1}}=\frac{\mathrm{E}_{\mathrm{thr}(\mathrm{~A} 1)}^{\mathrm{E}_{0}}\left[\phi_{\mathrm{n}}(\mathrm{E}) \sigma_{\mathrm{A} 1, \mathrm{n}}+\phi_{\mathrm{p}}(\mathrm{E}) \sigma_{\mathrm{Al}, \mathrm{p}}\right] \mathrm{dE}}{\mathrm{~N}_{\mathrm{Al}}}=38.8 \mathrm{mb} \\
\bar{\sigma}_{\mathrm{C}}=\frac{\int_{\mathrm{E} h r(\mathrm{C})}^{\mathrm{E}_{0}}\left[\phi_{\mathrm{n}}(\mathrm{E}) \sigma_{\mathrm{C}, \mathrm{n}}+\phi_{\mathrm{p}}(\mathrm{E}) \sigma_{\mathrm{C}, \mathrm{p}}\right] \mathrm{dE}}{\mathrm{~N}_{\mathrm{C}}}=21 \mathrm{mb} .
\end{gathered}
$$

A11 these integrals can be evaluated by numerical integration.
The experimental particle fluxes given in Table 3 were obtained with $\bar{\sigma}_{\mathrm{Al}}=120 \mathrm{mb}$ and $\bar{\sigma}_{\mathrm{C}}=22 \mathrm{mb}$. To compare the fluxes ϕ_{MC} obtained in the Monte Carlo calculation, with the measured ones $\phi_{\mathrm{A} 1}$ and ϕ_{C} given in Table 3, we convert the latter with the relations

$$
\begin{aligned}
\psi_{\mathrm{A} 1} & =\frac{120 \mathrm{mb}}{\bar{\sigma}_{\mathrm{A} 1} \cdot \mathrm{Q}_{\mathrm{A} 1}} \phi_{\mathrm{A} 1} \\
\psi_{\mathrm{C}} & =\frac{22 \mathrm{mb}}{\bar{\sigma}_{\mathrm{C}} \cdot \mathrm{Q}_{\mathrm{C}}} \phi_{\mathrm{C}}
\end{aligned}
$$

This has been done for all points of the measurement. Table 5 gives the Monte Carlo fluxes ϕ_{MC} according to Fig. 9 for different positions around the beam stopper. The positions are characterized by the coordinates z and r. Table 6 gives the calculated $\bar{\sigma}_{\mathrm{Al}}$ and $\bar{\sigma}_{\mathrm{C}}$, and the calculated Q_{Al} and Q_{C} for each position, and compares the Monte Carlo fluxes ϕ_{MC} with the converted fluxes $\psi_{\mathrm{A} 1}$ and ψ_{C}. In a second comparison the proton energy spectra were set equal to zero: $\phi_{p}(E)=0$. Table 7 gives for this case the calculated $\bar{\sigma}_{A 1}$ and $\bar{\sigma}_{C}, Q_{A 1}$ and Q_{C}, as well as the fluxes $\psi_{\mathrm{A} 1}$ and ψ_{C}. Most numbers in Table 7 differ by less than 10% from the corresponding numbers of Table 6 .

At the same time the fluxes obtained from the LOUHI spectra above 130 MeV are given. The fluxes as presented in the table are compatible with the form of the spectrum as in Fig. 9 and with both the ${ }^{24} \mathrm{Na}$ and ${ }^{11} \mathrm{C}$ responses as measured with the activation detectors.

Figure 11 shows that the calculated attenuation at large angles is compatible with an attenuation length of $80 \mathrm{~g} / \mathrm{cm}^{2}$. When the high-energy particle flux densities inside and outside the tunnel are normalized by multiplying by r^{2}, the apparent λ is $110 \mathrm{~g} / \mathrm{cm}$. This λ is in agreement with the values found for earth and concrete shielding in the CERN-LRL Rutherford shielding experiment.

The maximum radiation is measured on top of the shield at 80° with the beam direction. The dose equivalent at positions outside the shield is estimated from the flux densities to be $1.5 \mathrm{rem} / \mathrm{h}$ at positions $31\left(770 \mathrm{~g} / \mathrm{cm}^{2}\right)$ and $4.25 \mathrm{rem} / \mathrm{h}$ at position $37\left(580 \mathrm{~g} / \mathrm{cm}^{2}\right)$.

The radiation profile across the beam tunnel shows a minimum at the beam axis, and maximum values at 10° with the beam direction. Ten metres behind the 300 cm steel stopper, the dose-rate would be of the order of a couple hundred rem/h; in such geometry the two stoppers would be insufficient to control the access to a downstream area.

Table 5
Fluxes calculated at $\mathrm{r}_{0}=75 \mathrm{~cm}$, and at $\mathrm{r}=\mathrm{r}_{0}+240 \mathrm{~cm}$ and $r=r_{0}+320 \mathrm{~cm}$, in the concrete shield and for different Z positions. The fluxes at $r>r_{0}$ are obtained from

$$
\phi(r)=\phi\left(r_{0}\right) \exp -\frac{\left(r-r_{0}\right)\left[g / \mathrm{cm}^{2}\right]}{80}
$$

The fluxes are normalized to one proton hitting the beam stopper.

Z (cm)	$\Phi_{\mathrm{MC}}\left(\mathrm{r}_{0}\right)$	$\Phi_{\mathrm{MC}}\left(\mathrm{r}_{0}+240\right)$	$\Phi_{\mathrm{MC}}\left(\mathrm{r}_{0}+320\right)$
-120	1×10^{-6}		5×10^{-11}
30	1.2×10^{-5}		6×10^{-10}
60	1.7×10^{-5}		8×10^{-10}
70	2×10^{-5}	1.3×10^{-8}	1×10^{-9}
150	2×10^{-5}		1×10^{-9}
180	1.7×10^{-5}		8×10^{-10}
220	1×10^{-5}		5×10^{-10}
230	9×10^{-6}	6×10^{-9}	4.5×10^{-10}
330	4×10^{-6}		2×10^{-10}
430	$(1.8-2.2) \times 10^{-6}$		$(9-11) \times 10^{-10}$
530	$(7.5-14) \times 10^{-7}$		$(3.7-7) \times 10^{-11}$
830	$(4-40) \times 10^{-8}$		$(2-20) \times 10^{-12}$

The fluxes predicted by the Monte Carlo calculations differ from the experimental fluxes by more than a factor of 2 in only a few positions. The differences between the converted A1 and C fluxes are smaller than a factor of 2 , and both agree within about the same limit with the fluxes ϕ LOUHI.

Only the errors at positions 2,6 , and 7 are notably larger. These are the positions with $z \approx 0$. The reason for this disagreement is the poor statistical accuracy of the Monte Carlo results at locations perpendicular to the beam at the position where the primary proton hits the stopper. Efforts will be made to improve the Monte Carlo calculation in this respect.

Other systematic errors came from the fact that the energy spectra above $\mathrm{E}=100 \mathrm{MeV}$ cannot be expected to agree everywhere with the assumed ones, and from errors in the assumed activation cross-sections.

The agreement between experimental and calculated fluxes is already good enough for making an estimation of the shielding at the present stage. The predictions are better than the assumptions that can be made concerning beam losses in most of the practical cases. This latter uncertainty often demands higher safety factors for the shielding, than the uncertainties of the shielding estimation itself.

Table 6
Comparison of measured and calculated fluxes, all normalized to one proton hitting the beam stopper

Position	$\begin{gathered} Z \\ (\mathrm{~cm}) \end{gathered}$	$\begin{gathered} \mathrm{r} \\ (\mathrm{~cm}) \end{gathered}$	$\bar{\sigma}_{A L}$ (mb)	$\begin{gathered} \bar{\sigma}_{\mathrm{C}} \\ (\mathrm{mb}) \end{gathered}$	$\mathrm{Q}_{\text {Al }}$	${ }^{Q}$ C	$10^{6} \times \phi_{\text {MC }}$	$10^{6} \times \psi_{\mathrm{Al}}$	$10^{6} \times \psi_{\mathrm{C}}$
2	60	55	35.1	21.5	3.9	2.3	17	92	126
3	220	55	30.3	21.5	3.6	2.2	10	11	25
4	150	40	33.6	21.3	4.6	2.9	20	$20 \quad 20$	32
5	150	40	31.9	27.3	4.0	2.5	20	26	45
6	30	75	37.1	21.3	5.4	2.9	12	40	59
7	30	75	37.5	21.3	6.6	2.8	12	41	76
8	180	75	34.7	21.3	4.2	2.5	17	21	34
9	180	75	30.7	21.6	3.3	2.2	17	32	42
10	330	75	33.0	21.5	3.7	2.3	4	5.5	8.1
11	330	40	38.8	21.2	5.3	2.7	4	2.4	3.7
12	330	40	39.5	21.2	5.8	3.0	4	1.9	2.9
13	330	75	33.2	21.3	4.1	2.6	4	5.0	8.4
14	530	75	33.3	21.3	4.1	2.6	0.75-1.4	1.3	2.15
15	530	40	36.5	21.3	4.4	2.5	0.75-1.4	1.05	1.65
16	530	0	38.8	21.1	5.7	3.0	0.74-1.4	0.75	1.2
17	530	40	39.4	21.1	5.7	2.9	0.74-1.4	0.75	1.25
18	530	75	37.3	21.1	5.2	2.9	0.74-1.4	1.1	1.75
19	-120	75	42.1	21.1	7.5	2.8	1.0	1.7	3.2
20	-120	75	43.5	21.0	8.5	3.4	1.0	1.4	2.3
							$10^{10} \times \phi_{\text {MC }}$	$10^{10} \times \psi_{\text {A } 1}$	$10^{10} \times \psi_{\mathrm{C}}$
31	70	$\mathrm{R}+320$	32.3	21.1	6.7	4.4	10	16.5	25
32	230	$\mathrm{R}+320$	30.3	21.1	6.7	4.7	4.5	5.5	8.6
33	330	$\mathrm{R}+320$	30.8	21.1	7.2	4.9	2.0	2.4	3.9
34	430	$\mathrm{R}+320$	33.9	21.0	7.8	4.8	0.9 2-1.7	0.9	1.5
35	530	$\mathrm{R}+320$	38.6	21.0	7.5	4.1	0.32-0.7	0.36	0.55
36	830	$\mathrm{R}+320$	56.5	20.8	24.0	3.3	0.02-0.2	0.09	0.12
37	70	$\mathrm{R}+240$	36.2	21.0	7.5	4.4	130	47	63
38	230	$\mathrm{R}+240$	35.9	21.0	8.5	5.0	60	12	19.2
39	70	$\mathrm{R}+320$	36.4	21.1	7.4	4.3	10	6.0	9.2
40	230	$\mathrm{R}+320$	35.6	21.0	7.6	4.6	4.5	3.9	6.0

We may conclude that the Monte Carlo nucleon-meson cascade can be used, not only for simple but also for more complicated geometric situations, to predict with sufficient accuracy the shielding requirements for strongly interacting particles. The Monte Carlo method is possibly the most reliable of the methods known at present for estimating shielding requirements for future accelerators in the 200 to 500 GeV energy region.

Table 7
Comparison of measured and calculated fluxes, all normalized to one proton hitting the beam stopper. The proton energy spectra $\phi_{\mathrm{p}}(\mathrm{E})$ are set equal to zero in the calculation of $\bar{\sigma}_{A 1}, \bar{\sigma}_{C}, Q_{A 1}$, and Q_{C}.

Position	$\begin{gathered} \mathrm{Z} \\ (\mathrm{~cm}) \end{gathered}$	$\begin{gathered} \mathbf{r} \\ (\mathrm{cm}) \end{gathered}$	σ_{Al} (mb)	$\begin{gathered} { }^{\sigma_{\mathrm{C}}} \end{gathered}$	$Q_{\text {Al }}$	${ }^{Q} \mathrm{C}$	$10^{6} \times \phi_{\text {MC }}$	$10^{6} \times \psi_{\mathrm{Al}}$	$10^{6} \times \psi_{\mathrm{C}}$	$10^{6} \times \phi_{\text {LOUHI }}$
2	60	55	33.9	21.9	3.55	2.2	17	104	128	65
3	220	55	29.3	21.8	3.1	2.15	10	11.7	24.5	7.8
4	150	40	32.6	21.6	4.2	2.7	20	22.5	32.5	19
5	150	40	30.9	21.6	3.5	2.35	20	31.0	47.0	21
6	30	75	36.1	21.6	4.85	2.8	12	31.0	59.0	40
7	30	75	36.4	21.6	4.7	2.65	12	58.0	78.0	45
8	180	75	33.7	21.7	3.8	2.4	17	23.0	35.0	15
9	180	75	29.6	21.9	3.0	2.1	17	36.0	45.0	21
10	330	75	31.8	21.8	3.4	2.2	4.0	6.2	8.3	3.8
11	330	40	37.8	21.5	4.8	2.6	4.0	2.6	3.8	1.9
12	330	40	38.5	21.4	5.25	2.8	4.0	2.5	3.0	1.7
13	330	75	32.1	21.6	3.7	2.4	4.0	6.3	9.0	3.9
14	530	75	32.2	21.6	3.7	2.45	0.75-1.4	1.5	2.2	1.0
15	530	40	35.4	21.6	4.0	2.7	0.75-1.4	1.2	1.5	0.76
16	530	0	37.8	21.5	5.1	2.8	0.75-1.4	0.87	1.2	0.71
17	530	40	38.4	21.5	5.1	2.8	0.75-1.4	0.92	1.25	0.72
18	530	75	36.2	21.5	4.8	2.55	0.75-1.4	1.25	1.9	1.0
19	-120	75	41.2	21.5	6.0	2.75	1.0	2.1	3.2	1.6
20	-120	75	42.7	21.3	7.6	3.3	1.0	1.65	2.3	1.6
							$10^{10} \times \phi_{\text {MC }}$	$10^{10} \times \psi_{\mathrm{Al}}$	$10^{10} \times \psi_{\mathrm{C}}$	$10^{10} \times \phi_{\text {LOUHI }}$
31	70	$\mathrm{R}+320$	31.7	21.3	6.1	4.1	10	18.5	26.0	26
32	230	$\mathrm{R}+320$	19.7	21.4	6.2	4.4	4.5	6.1	9.3	9.0
33	330	$\mathrm{R}+320$	30.2	21.3	6.6	4.6	2.0	2.6	4.2	4.0
34	430	$\mathrm{R}+320$	33.2	21.3	7.1	4.6	0.9-1.1	1.0	1.5	1.5
35	530	$\mathrm{R}+320$	37.9	21.3	6.8	3.9	0.32-0.7	0.41	0.56	0.57
36	830	$\mathrm{R}+320$	56.2	21.4	21.0	3.4	0.02-0.2	0.01	0.11	0.012
37	70	$\mathrm{R}+240$	35.5	21.3	6.8	4.1	130	46.0	66.0	66.0
38	230	$\mathrm{R}+240$	35.2	21.2	7.7	4.7	60	14.0	20.5	20.0
39	70	$\mathrm{R}+320$	35.7	21.4	8.7	4.0	10	6.7	10.0	9.5
40	230	$\mathrm{R}+320$	34.9	21.3	7.0	4.3	4.5	4.2	6.2	6.2

Acknowledgements

The authors thank Dr. J. Baarli for his support of this work; E. Barbe, P. Coninckx, M. Nielsen and C. Renaud from the CERN Health Physics Group for their assistance with the activation measurements; and J. Dutrannois who helped to get the program KASTRA running at CERN. The help of A. Smith and N. Little (LRL, Berkeley) with 'TELLY' computation, and of Dr. J. Routti in the use of the "LOUHI" program was very much appreciated. These computations of spectra were carried out during a year's stay of one of the authors (K.G.) with the Health Physics Department of the Lawrence Radiation Laboratory at Berkeley, California. Our thanks are also due to many members of the CERN Proton Synchrotron Machine Division for their assistance with the installation, calibration, and operation of the fast ejected proton beam.

REFERENCES

1) A. Citron, L. Hoffmann and C. Passow, Nuclear Instrum. Methods 14, 47 (1961).
2) A. Citron, L. Hoffmann, C. Passow, W.R. Ne1son and M. Whitehead, Nuclear Instrum. Methods 32, 48 (1965).
3) J. Ranft, Nuclear Instrum. Methods 48, 133 (1967); ibid. 261 (1967); also CERNMPS/Int. MU/EP 66-8, 1966.
4) T. Capone, J. Baarli, S. Charalambus, J. Dutrannois, J.Y. Freeman, K. Goebel, W.C. Middelkoop, T.R. Overton, A. Rindi and A.H. Sullivan, CERN Report DI/HP 71, 1965.
5) W. Gilbert, D. Keefe, J. McCaslin, H.W. Patterson, A.R. Smith, L.D. Stephens, K.B. Shaw, G.R. Stevenson, R.H. Thomas, R.D. Fortume and K. Goebe1, UCRL-17941, Sept. 1968.
6) J. Ranft, CERN-MPS/Int. MU/EP 67-1, 1967; 67-6, 1967.
7) J. Ranft, MPS/Int. MU/EP 67-5, 1967.
8) K. Goebel, CERN Int. HP 68-60.
9) S. Charalambus, J. Dutrannois and K. Goebel, CERN DI/HP 90, 1966; J.B. Cumming, Ann. Rev. Nuclear Sci. 13, 261 (1963).
10) J. Routti, High-energy neutron spectroscopy with activation detectors, incorporating new methods for the analysis of $\mathrm{Ge}(\mathrm{Li})$ gamma-ray spectra and the solution of Fredholm integral equations (Ph.D. Thesis), UCRL-18514, April 1969.
11) J. Ranft and T. Borak, National Accelerator Laboratory Internal Report, NAL-FN 193 (21 Nov. 1969).

[^0]: *) Rutherford High-Energy Laboratory, Didcot, Berkshire, England.

[^1]: *) Rutherford High-Energy Laboratory, Didcot, Berkshire, England.

