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1. Introduction

It has long been known that the N = 2 superconformal coset models based upon:

Gn =
SUk(n+ 1) × SO(2n)

SUk+1(n) × U(1)
(1.1)

have Landau-Ginzburg formulations and also have an underlying N = 2 super-W(n+1)

chiral algebra. It is natural to ask if one can determine, solely from a Landau-Ginzburg

formulation, whether or not the corresponding N = 2 superconformal model has such an

extended chiral algebra. Moreover, given that a model has an N = 2 super-W algebra,

one would like to know to what extent one can determine the spectrum of the zero-modes

of the chiral algebra by using the Landau-Ginzburg structure alone.

Techniques by which one can answer these questions were introduced in [1,2]. In

particular, a number of the Ramond sector characters can be extracted from the elliptic

genus, and it was shown how the latter can easily be calculated from the Landau-Ginz-

burg formulation. Similar computations of Ramond characters, but refined by N = 2,

U(1) charge, were performed for more complex models in [3-5]. However for models with

central charge c ≥ 3, the elliptic genus, even when refined by the U(1) charge, is too

coarse to determine the complete structure of the Hilbert spaces constructed above the

Ramond ground states. To completely characterize these Hilbert spaces, one needs to look

for extended chiral algebras and then appropriately refine the elliptic genus as in [6].

Using methods of [2], it was shown in [8] that at the classical level, the form of the

superpotential determines whether there is a super-W algebra acting upon the elliptic

cohomology of the theory. Quantum versions of these results were obtained in [6,7], and in

[6] it was also shown how the elliptic genus could be refined to yield much more complete

information about the structure of the Ramond sector Hilbert space.

Our primary purpose in this paper is to expand and develop the results of our earlier

letter [6]. In addition to doing this we also wish to discuss the relationships between the

many fomulations of the coset model (1.1). This will be done in section 3. In doing this

we will encounter an interesting feature of Coulomb gas formulations tensor products of

conformal models with a special choice of modular invariant. Partly for its own interest,

and partly as preparation for section 3, we will exhibit a simple example of this feature in

section 2. Indeed, section 2 can be read independently of the rest of the paper.

In section 4, we will descibe, as simply as possible, the N = 2 super-W algebra by

giving an explicit method for constructing the lowest components of each of the chiral
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algebra superfields. We then re-express this in terms of Landau-Ginzburg fields and show

how it can be used to refine the elliptic genus completely with respect to the super-W

algebra. In section 5 we expand the fully refined elliptic genus and obtain formulae for

the branching functions that make up the model. Finally, we discuss some issues about

fermionic screening currents in the Coulomb gas formulation, and indicate how this might

possibly be used to extract information about the modular invariant partition function of

the complete model.

2. Coulomb gas formulations of special tensor product models

The model that we wish to consider in this section is the coset theory SU(2)k×SU(2)1×SU(2)1
SU(2)k+2

.

This can be written in terms of a tensor product of minimal models:

M1 ×M2 =
SU(2)k × SU(2)1

SU(2)k+1
× SU(2)k+1 × SU(2)1

SU(2)k+2
. (2.1)

However, one has to remember that to recover the original model, the reperesentation

of the denominator factor of SUk+1(2) in M1 must always be the same as that of the

numerator factor of SUk+1(2) in M2. This “locking together” of representations defines a

special modular invariant of the tensor product model.

The stress-tensors for the Coulomb gas formulation of M1 and M2 are

T1(z) = − 1
2(∂φ1)

2 + i(α+ − α−)∂2φ1

T2(z) = − 1
2(∂φ2)

2 + i(β+ − β−)∂2φ2 ,
(2.2)

where we define:

α± =
(k + 2

k + 3

)±1
2

and β± =
(k + 3

k + 4

)±1
2
. (2.3)

The primary fields in the two models can be represented in terms of vertex operators:

V (1)
m,n = e

− i√
2
(mα+−nα−)φ1 ,

V (2)
m,n = e

− i√
2
(mβ+−nβ−)φ2 ,

(2.4)

whose conformal dimensions are given by:

∆(1)
m,n = 1

4 [(m+ 1)α+ − (n+ 1)α−]2 − 1
4(α+ − α−)2 ,

∆(2)
m,n = 1

4 [(m+ 1)β+ − (n+ 1)β−]2 − 1
4 (β+ − β−)2 .

(2.5)
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In particular, the vertex operators:

W (i) ≡ V
(i)
−2,−2 (2.6)

are the dual representatives of the vacuum states. The screening currents in M1 and M2

have the form

R± = e±i
√

2α±φ1 and S± = e±i
√

2β±φ2 . (2.7)

The tensor product of the minimal models can be constructed using the screening

currents R± and S± independently. The tensor product then has an obvious spin-2 element

of the chiral algebra:

S(z) = c2T1(z) − c1T2(z) . (2.8)

The coefficients, c1 and c2, are the central charges of the two minimal models, and the

foregoing combination of T1 and T2 is a good conformal field with respect to the total

stress-tensor.

The locking together of representations of SUk+1(2) in the tensor product means that

the allowed vertex operators have the form:

Vm,n,p ≡ V (1)
m,n V (2)

p,m = e
i√
2
[(nα−φ1 − pβ+φ2) − m(α+φ1 − β−φ2)] . (2.9)

Consider the operators:

Xr ≡ V
(1)
−2r,0 V

(2)
0,−2r = ei

√
2r(α+φ1 − β−φ2) . (2.10)

Note that X1 = R+S−. The operator Xr has dimension 2r2 and is local with respect to

all of the vertex operators Vm,n,p. Thus the operators Xr can be thought of as elements of

an extended chiral algebra in the free bosonic theory. They are also local with respect to

R− and S+, but not with respect to R+ and S−.

Generally the operators Xr do not play any role after one has reduced to the simple

tensor product of minimal conformal models. However, if one follows the spirit of locking

the SUk+1(2) representations together, then it is much more natural to introduce the

screening charges:

Q
(1)
+ =

∮
V−2,0,−2 =

∮
R+W (2) =

∮
ei

√
2α+φ1ei

√
2(β+−β−)φ2

Q
(1)
− =

∮
V0,−2,0 =

∮
R− =

∮
e−i

√
2α−φ1

Q
(2)
+ =

∮
V0,0,−2 =

∮
S+ =

∮
ei

√
2β+φ2

Q
(2)
− =

∮
V−2,−2,0 =

∮
W (1)S− =

∮
ei

√
2(α+−α−)φ1e−i

√
2β−φ2

(2.11)
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Observe that the current in Q
(1)
+ is simply R+ multiplied by the dual vacuum vector

of M2, and similarly for Q
(2)
− . One then finds that (2.8) no longer commutes with the

screening charges. However, define

S = c2T1 − c1T2 + ξR+S− , (2.12)

for some constant ξ. One then finds

[ Q
(1)
− + ζ Q

(2)
− , S ] = 0

[ ζ Q
(1)
+ + Q

(2)
+ , S ] = 0 ,

(2.13)

where ζ = β+ξ

(c1+c2)(β+−β−)
= α−ξ

(c1+c2)(α+−α−)
. Thus in the locked model the screening

currents involve the dual vacuum vectors, and the naive representations of non-trivial

elements of the chiral algebra receive nilpotent vertex operator corrections.

In the next section we will encounter examples of the foregoing “locked” tensor product

model. Moreover, they naturally come equipped with screening charges analogous to (2.11).

We will find it convenient to convert this description into the simple version of the tensor

product where one has to remember to lock the representations, but in which the screening

currents are not mixed with dual vacua, and in which the chiral algebra contains no

nilpotent vertex operator parts.

3. The multifarious formulations of the N = 2 super-Wn+1 models

The first and most obvious formulation of the model (1.1) is as a coset model [14].

There is also a formulation that comes from Drinfel’d-Sokolov reduction [12,13]. There

is the Landau-Ginzburg formulation [9,10], and a related Coulomb gas description [11,2].

There is also a Coulomb gas description of the model considered as a tensor product. We

will consider all of these formulations here, and describe how they are related. We begin

with the coset formulation.

3.1. The structure of the coset model

We will not review the details of [14], but simply wish to describe some of the general

structure of the that can be seen from the coset formulation.
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We begin by observing that the model (1.1) can be written as a tensor product:

SUk(n+ 1) × SO(2n)

SUk+1(n) × U(1)
= M1 × M2 × U(1)

=
SUk(n+ 1)

SUk(n) × U(1)
× SUk(n) × SU1(n)

SUk+1(n)
× U(1) ,

(3.1)

where M2 is a non-supersymmetric Wn-model. However, exactly as in the last section,

the representations of SUk(n) in M1 and M2 are locked together.

The chiral algebra of theN = 2 supersymmetric model contains a non-supersymmetric

Wn subalgebra. We now wish to argue that for k sufficiently large, the generators of

this Wn, along with the U(1) current, provide a complete set of lowest spin (bottom)

components of the N = 2 superfields that make up the full N = 2 chiral algebra. In doing

this we will also elucidate a duality between the chiral algebra and chiral ring of (1.1). This

has been well known for some time [15], and the classical version of it has been described

in [8].

The first thing to observe is that, for k large, there are n independent supermultiplets

in the N = 2 chiral algebra, and that the spins of the lowest components are 1, . . . , n.

This matches the spins of the generators of the Wn × U(1) algebra. It also matches the

N = 2, U(1) charges of the generators of the chiral ring. Next, one considers an equivalent

formulation of the coset model [14]:

G× SO(dim(G/H)

H
≡ SU1(k + n+ 1) × SO(2kn)

SUn+1(k) × SUk+1(n) × U(1)

=
SU1(k) × SUn(k)

SUn+1(k)
× SU1(n) × SUk(n)

SUk+1(n)
× U(1) .

(3.2)

Note that the second factor is M2. One can define this model entirely in terms of free

bosons [20]. The elements of the chiral algebra can be represented by those polynomials in

derivatives of the bosons that are invariant (up to total derivatives) under the Weyl group,

W (H0), of H0 = SU(k)×SU(n) [16–20]. In [20] it was shown that the supercurrents could

be represented by vertex operators that are related to screening currents via the action of

the maximal cyclic generator of the Weyl group, W (G), of G. Thus the top components

of superfields are those polynomials in derivatives of bosons that are invariant (up to total

derivatives) under the action of W (G). This is because W (G) invariance means that the

polynomial will commute (up to total derivatives) with the supercharges.

There is now a natural finite ring structure that we can define upon the chiral algebra:

consider all the W (H0) invariant polynomials, modulo the W (G) invariant polynomials.
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This set consists of all the polynomials in elements of the chiral algebra such that these

polynomials are not top components of superfields. This is also the characterization, in

terms of ‘Cartan subalgebra variables,’ of the chiral ring of theN = 2 superconformal model

[9,21]. It is also a well know fact that the foregoing ring can be generated by restricting

to the bosons that correspond to either the first or second factors in (3.2). (This fact was

used in [9] to construct the Landau-Ginzburg potential for the model.) Thus, this finite

quotient ring of the chiral algebra is isomorphic to the chiral ring. Moreover, the ring

can be generated by the chiral algebra generators of the second factor of (3.2), that is,

by the Wn algebra of M2. Therefore, the task of finding representatives of the N = 2

superconformal chiral algebra is complete once we have the supercharges and either the

Wn algebra, or some free bosonic realization of M2.

The fact that a description of the chiral ring can be mapped onto the foregoing quotient

ring of the chiral algebra will not be important to this paper, and we have included merely

for interest’s sake. We feel that one should be able to establish this relationship more

directly within the superconformal model itself, and that one should be able to use it to

understand the conserved charge structure discussed in [21] for solitons of the quantum

integrable, off-critical models based upon (1.1).

3.2. Supersymmetric Drinfel’d – Sokolov reduction

The free superfield formulation of (1.1) can be obtained from the Lie superalgebra

A(n, n − 1) through a Hamiltonian reduction [12,13]. Before describing the free field

formulation we first review some basic properties of the super Lie algebra A(n, n− 1) that

are relevant to our discussion [22].

The algebra A(n, n−1) has a ZZ2-grading under which roots are viewed as either even

or odd. If we denote the simple roots by α1, α2, . . . , α2n−1, α2n, then the even roots are:

αi + αi+1 + . . .+ αi+2k−2 + αi+2k−1 k = 1, 2, . . . ,
[2n+ 1 − i

2

]
, (3.3)

and the odd roots are:

αi + αi+1 + . . .+ αi+2k−1 + αi+2k k = 0, 1, . . . ,
[2n− i

2

]
. (3.4)

The simple roots of A(n, n− 1) satisfy the following relations:

α2i−1 · α2i = 1 ; α2i+1 · α2i = −1 . (3.5)
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All other inner products are zero (including αi ·αi). The fundamental weights λ1, . . . , λ2n

are defined by:

αi · λj = δij . (3.6)

It is easy to see from (3.5), that in terms of the simple roots, the fundamental weights are

given by:
λ2i = α1 + α3 + . . .+ α2i−3 + α2i−1 ,

λ2i−1 = α2i + α2i+2 + . . . α2n−2 + α2n .
(3.7)

The super Lie algebra A(n, n− 1) contains the even subalgebras An and An−1. The

simple roots of these two subalgebras are given respectively by:

α2i−1 + α2i , i = 1, . . . , n; and α2i + α2i+1 , i = 1, . . . , n− 1 . (3.8)

From (3.5) we see that the root system for An has a positive definite metric, whereas for

An−1, the metric is negative definite.

To write down the free superfield description of (1.1) it is most convenient to use an

N = 1 superfield formulation. We therefore introduce a single anti-commuting coordinate

θ, and define the super-derivative, D by:

D =
∂

∂θ
+ θ

∂

∂z
. (3.9)

Consider 2n (real) superfields

Φi(z, θ) = ϕi(z) + θ χi(z) , (3.10)

where ϕi(z) is a free bosonic field and χi(z) is a free, real fermion. These superfields satisfy

the operator product expansion:

Φi(z1, θ1) Φj(z2, θ2) = − δij log(z12) , (3.11)

where z12 ≡ z1 − z2 − θ1θ2. In terms of components, we have:

ϕi(z) ϕj(w) = − δij log(z − w) , χi(z) χj(w) = − δij 1

(z − w)
. (3.12)

The generators of the extended chiral algebra are then obtained from the Lax operator

[12,13]:

L =

2n+1∏

j=1

[
iα0D − (−1)j(λj − λj−1) ·DΦ

]
, (3.13)
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where λ0 ≡ λ2n+1 ≡ 0.

The parameter α0 is background charge of Feigin-Fuchs representation. In order to

reproduce (1.1), whose central charge is c = 3kn
k+n+1 , we must set

α0 =
1√

k + n+ 1
. (3.14)

In the N = 1 superfield formulation the stress tensor T (z) is the top component of an

N = 1 superfield T (z, θ) with conformal dimension 3/2,

T (z, θ) = 1
2

(
G+(z) + G−(z)

)
+ θ T (z) . (3.15)

The fields G±(z) in (3.15) are the two supersymmetry generators of the N = 2 supersym-

metry algebra. The U(1) current, J(z), of the N = 2 algebra is the lowest component of

the superfield J(z, θ)

J(z, θ) = J(z) + θ 1
2

(
G+(z) − G−(z)

)
. (3.16)

The free field forms of these superfields are obtained from the quadratic and linear

parts of the Lax operator. One finds:

T (z, θ) = − 1
2

n∑

i=1

λ2i ·DΦiα2i · ∂Φi − 1
2

n∑

i=1

α2i ·DΦiλ2i · ∂Φi

− i

2
√
k + n+ 1

2n∑

i=1

λi ·D3Φ .

(3.17)

and

J(z, θ) =
n∑

i=1

(
λ2i ·DΦ

)(
α2i ·DΦ

)
− i√

k + n+ 1

n∑

i=1

(λ2i − λ2i−1) · ∂Φ . (3.18)

To define the conformal model fully, we need the screening operators. These are in

one-to-one correspondence with the roots of the Lie superalgebra A(n, n− 1) and its even

subalgebras An and An−1. The screening operators corresponding to the roots of An have

the form:

Qα2i−1+α2i
=

∮
dzdθ (α2i − α2i−1) ·DΦ e

− i√
k+n+1

(α2i−1+α2i)·Φ
, (3.19)
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while the screening operators corresponding to the roots of An−1 have the form:

Qα2i+α2i+1
=

∮
dzdθ (α2i − α2i+1) ·DΦ e

+ i√
k+n+1

(α2i+α2i+1)·Φ
. (3.20)

These screening operators are usually called D-type screeners. The screening operators

associated the simple root of A(n, n−1), are usually referred to as F -type, or “fermionic,”

screening operators, and these have the form:

Qαi
=

∮
dzdθ ei

√
k+n+1 αi·Φ . (3.21)

It is relatively easy re-express the foregoing in a manifestly N = 2 supersymmetric

formalism. We will adopt the following N = 2 superfield conventions. First introduce

D± =
∂

∂θ∓
+ θ±

∂

∂z
D̄± =

∂

∂θ̄∓
+ θ̄±

∂

∂z̄
. (3.22)

These satisfy

{D+, D−} = 2
∂

∂z
; {D̄+, D̄−} = 2

∂

∂z̄
. (3.23)

Let Φ+
i (z, θ+, θ−) denote a set of n holomorphic, chiral bosonic superfields. That is, they

satisfy

D− Φ+
i = 0 ; D̄± Φ+

i = 0 . (3.24)

Similarly, Φ−
i will denote conjugate anti-chiral bosonic superfields, that satisfy

D+ Φ−
i = 0 ; D̄± Φ−

i = 0 . (3.25)

In terms of components, Φ±
j can expanded as follows:

Φ+
j (z, θ+, θ−) = φj(z) +

√
2 θ− ψj(z) + θ−θ+ ∂φj(z)

Φ−
j (z, θ+, θ−) = φ̄j(z) +

√
2 θ+ ψ̄j(z) − θ−θ+ ∂φ̄j(z) .

(3.26)

We take the operator product to be

Φ±
i (z1, θ

+
1 , θ

−
1 ) Φ∓

j (z2, θ
+
2 , θ

−
2 ) ∼ − δij log(z̃12 ± θ−12θ

+
12) , (3.27)

where θ12 = θ1 − θ2 and z̃12 = z1 − z2 − θ+
1 θ

−
2 − θ−1 θ

+
2 .

For the component fields this means that

φi(z1) φ̄j(z2) ∼ − δij log(z1 − z2) ,

ψi(z1) ψ̄j(z2) ∼ − δij
1

z1 − z2
.

(3.28)
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To relate these to the N = 1 superfields, we first note that the weight space of

A(n, n − 1) has a natural complex basis spanned by α2j and λ2j , j = 1, . . . , n. These

vectors satisfy:

α2i · α2j = 0 ; λ2i · λ2j = 0 ; α2i · λ2j = δij . (3.29)

We can then identify the complex components of the N = 2 superfields with the N = 1

components according to:

φj = λ2j · ϕ ; φ̄j = α2j · ϕ ,

ψj = λ2j · χ ; ψ̄j = α2j · χ .
(3.30)

With these superfields, and using (3.18) and (3.7), one can write the complete energy

momentum tensor as:

J = +1
4

n∑

j=1

(D+Φ+
j ) (D−Φ−

j ) − i
α0

2

n∑

j=1

[
∂Φ+

j − j ∂Φ−
j

]
. (3.31)

The components of J are simply the N = 2 superconformal generators, and they can

be read off from the expansion:

J = 1
2 J + 1√

2
θ+G+ − 1√

2
θ−G− + θ−θ+T . (3.32)

Explicitly, one has:

J(z) = −
n∑

j=1

[
ψ̄j(z) ψj(z) + iα0∂φj(z) − ijα0∂φ̄j(z)

]

G+(z) =

n∑

j=1

[
ψ̄j(z)∂φj(z) + ijα0 ∂ψ̄j(z)

]

G−(z) =
n∑

j=1

[
ψj(z)∂φ̄j(z) + iα0 ∂ψj(z)

]

T (z) = −
n∑

j=1

[
(∂φj)(∂φ̄j) − 1

2 (ψj∂ψ̄j + ψ̄j∂ψj) + i
α0

2
∂2φj + ij

α0

2
∂2φ̄j

]
.

(3.33)
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The screening operators may also be similarly translated:

Qα2i−1+α2i
=

∮
dz

[
(∂φ̄i − ∂φi + ∂φi−1) +

2iα0(ψ̄iψi − ψ̄iψi−1)
]
e−iα0(φ̄i+φi−φi−1) ,

Qα2i+α2i+1
=

∮
dz

[
(∂φ̄i + ∂φi − ∂φi+1) +

2iα0(ψ̄iψi − ψ̄iψi+1)
]
e+iα0(φ̄i−φi+φi+1) ,

Qα2i
=

∮
dz ψ̄i e

i
√

k+n+1 φ̄i ,

Qα2i−1
=

∮
dz (ψi − ψi−1) e

i
√

k+n+1 (φi−φi−1) ,

(3.34)

with the convention that φ0 ≡ φn+1 ≡ 0, ψ0 ≡ ψn+1 ≡ 0.

The higher spinW -generators can, in principle, be extracted from (3.13) and rewritten

in terms of the N = 2 superfields. In practice, this can be algebraically very cumbersome,

and has only been done for the model (1.1) with n = 2. In this model, the spin-2 superfield

may be written explicitly as:

W = W̃ (z, θ+, θ−) − 1
4
α2

0∂J (z, θ+, θ−) − 3 − 8α2
0

2(5 − 18α2
0)

: J 2(z, θ+, θ−) :

+
(1 − 3α2

0)(1 + 2α2
0)

8(5 − 18α2
0)

(D+D− −D−D+) J (z, θ+, θ−) ,

(3.35)

where

W̃ (z, θ+, θ−) = −iα
3
0

4
∂2Φ+

1 + i
α3

0

4
∂2Φ−

1 + i
α3

0

4
∂2Φ−

2 +
α2

0

8
D+∂Φ+

1 D
−Φ−

1

+
α2

0

8
D+Φ+

1 ∂D
−Φ−

1 +
α2

0

8
D+∂Φ+

1 D
−Φ−

2 +
α2

0

4
∂Φ+

2 ∂Φ−
1 +

α2
0

4
∂Φ+

2 ∂Φ−
2

− α2
0

4
∂Φ−

2 ∂Φ−
1 − α2

0

4
∂Φ−

2 ∂Φ−
2 − α2

0

4
∂Φ+

2 ∂Φ+
1 +

α2
0

4
∂Φ−

2 ∂Φ+
1

− i
α0

8
∂Φ+

2 D
+Φ+

1 D
−Φ−

1 + i
α0

8
∂Φ−

2 D
+Φ+

1 D
−Φ−

1 + i
α0

8
∂Φ−

1 D
+Φ+

2 D
−Φ−

2

+ i
α0

8
∂Φ−

2 D
+Φ+

2 D
−Φ−

2 + i
α0

8
∂Φ−

1 D
−Φ−

2 D
+Φ+

1 − i
α0

8
∂Φ+

1 D
+Φ+

2 D
−Φ−

2

+
1

16
D+Φ1D

−Φ−
1 D

+Φ+
2 D

−Φ−
2 .

(3.36)

If we define
Ĵ = + 1√

2(k+2)
(∂Φ+

1 − ∂Φ+
2 − ∂Φ−

1 )

+ i

2
√

2

√
k+3
k+2 (D+Φ+

1 D
−Φ−

1 −D+Φ+
2 D

−Φ−
2 )

(3.37)
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Then we can write (3.36) as

W̃ = 1
4J

2 + 1
8(1−α2

0)
Ĵ 2 +

α2
0

4

(
∂J + i 1

2(1−α2
0)
∂̂J

)
+

α2
0

8
D+∂Φ+

1 D
−Φ−

2 + iα0

8
∂Φ−

1 D
−Φ−

2 D
+Φ+

1 .
(3.38)

Combining eq. (3.35) and (3.38) we have

W = c2

2
(D+D− −D−D+)J − 6c2

c
J 2

− (c1 + c2)
(
−1

2 Ĵ 2 +
iα2

0√
2(1−α2

0)
∂Ĵ

)

+
α2

0

2
√

2(1−α2
0)
D+∂Φ+

1 D
−Φ−

2

+
iα2

0

2(1−α2
0)
∂Φ−

1 D
−Φ−

2 D
+Φ+

2 ,

(3.39)

where

c2 =
(1 − 3α2

0)(1 + 2α2
0)

(1 − α2
0)

, c1 + c2 = 5 − 18α2
0 and c = 6(1 − 3α2

0) (3.40)

3.3. The Landau-Ginzburg free field formulation

The idea in this formalism is to directly use the N = 2 supersymmetric Landau-

Ginzburg model with action:

S =

∫
d2x d4θ

∑

j

Φ+
j Φ−

j −
∫

d2x d2θ W (Φ+
j ) −

∫
d2x d2θ̄ W (Φ−

j ) , (3.41)

where Φ±
j , j = 1, . . . , n are N = 2 (anti)-chiral superfields. If W is quasihomogenous

then the Landau-Ginzburg model (3.41) with its “trivial” kinetic term is superconformally

invariant on the cohomology of the half of the supercharges [2]. This is in the same spirit

as the work of [23–26] in that there is certainly a kinetic term that renders the model

exactly superconformal, and such a kinetic term can be viewed as a cohomologically trivial

correction to that of (3.41). It was also shown in [2] that the superconformal generators

could be identified using the equations of motion of (3.41) alone. Indeed (3.41) implies

that the fields Φ+
j and Φ−

j have logarithmic short distance expansion, and the left-moving

N = 2 superconformal stress energy tensor can be represented by:

J =
∑

j

[
1
4(1 − ωj)D

+Φ+
j D

−Φ−
j − 1

2ωjΦ
+
j ∂Φ−

j

]
, (3.42)
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where the ωj are the scaling dimensions of the Landau-Ginzburg fields Φ+
j . For the model

(1.1) they are given by ωj = j
k+n+1

. The current J has been constructed so as to satisfy

D̄−J = 0 , (3.43)

given the equations of motion of (3.41).

This is closely related to the free field approach of [27]. That is, one can describe

the Landau-Ginzburg system in terms of twisted ghost and superghost fields. Introduce

anti-commuting fields b̂j(z) and ĉj(z), and commuting fields β̂j(z) and γ̂j(z), with operator

products:

b̂i(z) ĉj(w) ∼ δij
z − w

β̂i(z) γ̂j(w) ∼ − δij
z − w

. (3.44)

The superconformal generators are then:

J(z) = −
n∑

j=1

[
(1 − ωj)b̂j ĉj − ωj β̂j γ̂j

]

G+(z) =
n∑

j=1

[
(1 − ωj)ĉj ∂β̂j − ωj β̂j ∂ĉj

]
; G−(z) =

n∑

j=1

b̂j γ̂j

T (z) = − 1
2

n∑

j=1

[
(1 + ωj)b̂j ∂ĉj + (1 − ωj) ĉj ∂b̂j + ωj β̂j∂γ̂j

− (2 − ωj)γ̂j∂β̂j

]
.

(3.45)

The fields β̂j(z) and b̂j(z) can be identified with the bosonic and and fermionic components

of the superfield Φ+
j , while γ̂j and ĉj(z) can be identified with the components of Φ−

j .

One can easily determine the relationship between the the Landau-Ginzburg fields

and the free fields of the last subsection by using the dimensions and charges of the Lan-

dau-Ginzburg fields along with the fact that (3.45) must be the same as (3.33). From this

we find

β̂j = eiα0φj ; γ̂j = (ψjψ̄j + i
√
k + n+ 1 ∂φ̄j) e

−iα0φj

b̂j = − i√
k+n+1

ψj e
iα0φj ; ĉj = −i

√
k + n+ 1 ψ̄j e

−iα0φj .
(3.46)

The shortcoming of the Landau-Ginzburg motivated free field formulation is that the

Landau-Ginzburg formulation provides one with very little information about the screening

currents. From [27,2,6] it is evident that such knowledge is unnecessary if one wants to

study the topological matter model or extract the elliptic genus. However, the screeners
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are essential in order to get the complete conformal theory. Using (3.46) one could, at

least in principle, obtain the proper Landau-Ginzburg screeners from the screeners of the

Drinfeld-Sokolov reduction.

It is also interesting to observe that in the complete Landau-Ginzburg theory, the holo-

morphic supercurrent G+(z), and its anti-holomorphic counterpart, Ḡ+(z̄), receive correc-

tions from the superpotential. Indeed the complete supercurrent with anti-holomorphic

component Ḡ+(z̄) has a holomorphic component that can be written:

n∑

j=1

∂W (Φ+
ℓ )

∂Φ+
j

D−Φ+
j

∣∣∣∣
θ=θ̄=0

. (3.47)

These currents appear to be the Landau-Ginzburg analogue of the F-type screening cur-

rents in the Drinfeld-Sokolov reduction. In the N = 2 superconformal minimal model

(with one superfield) the identification is exact, but the precise relationship is rather less

clear for the more general models.

One can now use (3.46) to translate the W -algebra generators of the previous section

into the Landau-Ginzburg formulation. Alternatively, one can obtain these W -generators

by making an Ansatz, imposing chirality of the W -superfield and using the Landau-Ginz-

burg equations of motion as in [8,6]. In the appendix to this paper we give details of

such a computation for the first W -superfield for the Landau-Ginzburg theory with two

fields. This computation, along with the foregoing translation to the Drinfel’d-Sokolov

formulation, lead us to believe that the process of imposing chirality and the operator

equations of motion in the Landau-Ginzburg formulation is basically equivalent to imposing

commutation with the fermionic screening charges in the Drinfel’d–Sokolov reduction, and

so the chirality and the Landau-Ginzburg equations of motion are, in principle, a little less

stringent than the requirements of the full Coulomb gas description. In practice, for the

Ansätze that we have used, chirality and the Landau-Ginzburg equations of motion are

sufficient to determine the W -generator. However, the process of constructing the quantum

versions of the W -generators using the Landau-Ginzburg formulation is operationally more

difficult to implement, and it is easier to use the Drinfel’d–Sokolov reduction (along with

the simplifications to be discussed in the next section).
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3.4. Coulomb Gas formulations of related coset models

The Coulomb gas formulation that we will discuss here can only be properly justified

by the results of the next section, and we include it here for completeness. The idea is to

find free bosonic descriptions of the factors in the tensor product (3.1).

There is a well known, standard Coulomb gas description of M2 in terms of free

bosons [17–28]. Let σ(z) denote a vector of n− 1 canonically normalized free bosons with

energy-momentum tensor:

T2(z) = −1

2
(∂σ(z))2 + i (β+ − β−) ρ · ∂2σ(z) , (3.48)

where ρ is the Weyl vector of SU(n) and

β± ≡
[√

k + n+ 1

k + n

]±1

. (3.49)

The screening currents are then

S±
γj

= e±iβ±γj ·σ(z) , (3.50)

where the γj are the simple roots of SU(n).

The highest weight fields of M2 can be represented as:

Vλ+,λ−(z) = e−i(β+λ+−β−λ−)·σ(z) . (3.51)

This has conformal weight

∆λ+,λ− =
1

2
(β+λ+ − β−λ−)2 + (β+ − β−)ρ · (β+λ+ − β−λ−)

=
λ+ · (λ+ + 2ρ)

2(k + n)
+

1

2
(λ+ − λ−)2 − λ− · (λ− + 2ρ)

2(k + n+ 1)
.

(3.52)

Thus λ+ and λ− can be thought of as corresponding to the weights of the SUk(n) and

SUk+1(n) factors of M2.

The model M1 can be realized in terms of 2n free bosons. Let χ and ξ be vectors of

n canonically normalized free bosons, and take

T1(z) = −1

2
(∂ξ)2 − 1

2
(∂χ)2 − i√

k + n+ 1
ρ̃ · ∂2ξ − 1√

k + n
ρ · ∂2χ , (3.53)
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where ρ̃ is the Weyl vector of SU(n + 1). The natural choice for representations of the

highest weight fields are

Uλ+,λ− = exp
[
+i

λ+ · ξ√
k + n+ 1

+
λ− · χ√
k + n

]
. (3.54)

This has conformal weight

λ+ · (λ+ + 2ρ̃)

2(k + n+ 1)
− λ− · (λ− + 2ρ)

2(k + n)
, (3.55)

which is consistent with with identifying λ+ and λ− with heighest weights of the numerator

and denominator factors respectively of M1. The screening currents are somewhat more

difficult to determine, and will be given in the next section.

4. The N = 2 super-W structure and factorizing the Coulomb gas description

It was observed in section 3.1 that the simplest way to get at the generators of the

N = 2 super-W algebra is to find the supercharges, and the W -generators of the model

M2 in (3.1). We will therefore show explicitly how the Coulomb gas descriptions of the

last section decompose into a tensor product. We will also have to handle the subtleties

described in section 2.

The key to extracting the bosonic formulations of the factor models in (3.1) from the

Drinfeld-Sokolov reduction is to use the screening charges. Modulo the subtleties of section

2, the screening charges (3.19) and (3.20) must be sums of screening charges for the factor

models. (We will discuss the role of the fermionic screeners, (3.21), later.) Moreover, the

roots of the An and An−1 subalgebras of the superalgebra A(n, n − 1) should coincide

with the roots of the factors of An and An−1 in (3.1). This leads to the following fairly

unambiguous identification:

γi · ξ ≡ (α2i−1 + α2i) · ϕ ≡ φi + φ̄i − φi−1 , i = 1, . . . , n ; (4.1)

where the γi are the simple roots of SU(n+ 1), the αj are the simple roots of A(n, n− 1),

and the bosons ξ are those of section 3.4.

The simple roots of an An−1 subalgebra are given by α2i + α2i+1, and one would

expect this to coincide with a linear combination of the bosons, σ, of M2, and the bosons

χ of the denominator of M1. To isolate bosons corresponding M2 one seeks the screening

currents corresponding to the denominator of M2, that is, those screening currents that
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have monodromy involving (k + n + 1)th roots of unity. From (2.11), and its obvious

generalizations, one sees that the screeners that can be modified (as in section 2) are those

associated with the locked numerator factor of M2, while the other screeners ar unchanged.

Noting that the screening charges in (3.34) involves the (k + n+ 1)th roots of unity, it is

natural to look for the pure vertex operator screeners, S−
γj

, of (3.50) in the SU(n) screener,

Qα2i+α2i+1
, of (3.34). From this it is not hard to identify the second fermion bilinear term

as the one we want.

Bosonize the fermions according to:

ψj(z) = eiHj(z) , ψ̄j(z) = −e−iHj (z) ,

ψ̄j(z) ψj(z) = i∂Hj(z) , ψj(z) ψ̄ℓ(z) = ei(Hj(z)−Hℓ(z)) , j 6= ℓ ;
(4.2)

where Hj(z) Hℓ(w) ∼ −δjℓ log(z − w). Writing the second fermion bilinear of Qα2i+α2i+1

as a pure vertex operator, we can then identify the free bosons of M2:

γj · σ ≡
√

k+n+1
k+n

(Hj −Hj+1) + 1√
k+n

(φj − φ̄j − φj+1) , j = 1, . . . , n− 1 . (4.3)

The last U(1) factor in (3.1) is the N = 2, U(1) current, which can be written:

J(z) = i
n∑

j=1

[
∂Hj(z) + 1√

k+n+1
( ∂φj − j ∂φ̄j )

]
. (4.4)

The remaining bosons of M1 are the natural orthogonal combinations to (4.1), (4.3) and

(4.4). This yields the identifications:

γj · χ ≡ i√
k+n

(Hj −Hj+1) + i
√

k+n+1
k+n

(φj − φ̄j − φj+1) , j = 1, . . . , n− 1

K(z) ≡ 2i
√

k
n(n+1)

(ρ̃− ρ) · ∂χ

≡
√

n+1
n

n∑

j=1

[
∂Hj(z) +

√
k+n+1
n+1 ( ∂φj − j ∂φ̄j )

]
.

(4.5)

The current, K(z), corresponds to the U(1) factor in M1 and has been normalized accord-

ing to K(z) K(w) ∼ k
(z−w)2

.

One can now rewrite the entire model in terms of these free bosonic fields. The W -

generators of M2 can be written in the usual manner as Weyl invariant combinations of

the derivatives of the bosons σ [16–19]. This enables one to write down rather explicit

expressions for the bottom components of the super-multiplets. There are, however, the

subtleties discussed in section 2.
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One can easily express the D-type screening currents in the new free bosonic basis.

To do this, it is convenient to introduce the standard basis, ej , j = 1, . . . , n + 1 for the

weight space of SU(n + 1). The vectors ej satisfy: γj = ej − ej+1,
∑n+1

j=1 ej = 0 and

ei · ej = δij − 1
(n+1)

. Introduce a similar basis êj for SU(n). The vectors êj are orthogonal

to en+1 and are given by êj = ej − 1
n
en+1, j = 1, . . . , n. Using these vectors the screening

currents corresponding to Qα2j−1+α2j
and Qα2j+α2j+1

can be respectively written as:

Uj(z) = 2i√
k+n+1

exp
[
− i√

k+n+1
(γj · ξ) − 1√

k+n
(γj−1 · χ)

]
·

exp
[

+ i
√

k+n+1
k+n

(γj · σ)
]

− i
√
k + n+ 1 ∂

(
e
− i√

k+n+1
γj · ξ )

− 2
[
ej+1 · ∂ξ(z) − i

√
k+n

k+n+1

(
êj · ∂χ(z)

)

+ 1√
(k+n+1)n(n+1)

K(z)
]
· e−

i√
k+n+1

γj · ξ
, j = 1, . . . , n ;

(4.6)

Vj(z) = 2i√
k+n+1

exp
[

− i
√

k+n
k+n+1

(γj · σ)
]

+ i
√
k + n+ 1 ∂

(
exp

[
− 1√

k+n
(γj · χ)

+ i√
(k+n+1)(k+n)

(γj · σ)
] )

− 2
[
ej+1 · ∂ξ(z) − i

√
k+n

k+n+1

(
êj · ∂χ(z)

)

+ 1√
(k+n+1)n(n+1)

K(z)
]
exp

[
− 1√

k+n
(γj · χ)

+ i√
(k+n+1)(k+n)

(γj · σ)
]
, j = 1, . . . , n− 1

.

(4.7)

These screening currents have precisely the kind of structure that was described in

section 2. That is, the screening currents of one factor of the tensor product (3.1) have

been mixed with dual representatives of the vacuum of the other factor in the tensor

product. The operators analogous to (2.10), that extend the chiral algebra of the bosonized

theory, are nothing other than combinations of derivatives of φℓ and φ̄ℓ with nilpotent

fermion bilinears like ψiψ̄j and (∂ψi)ψ̄j . We should therefore expect such corrections to

the standard forms of the W -generators. Indeed, the corrections to S(z) analogous to

R+S− in (2.12) can be read off from (4.6) and (4.7). These terms are of the form:

Nj(z) ≡
[
ej+1 · ∂ξ(z) − i

√
k+n

k+n+1

(
êj · ∂χ(z)

)
− 1√

(k+n+1)n(n+1)
K(z)

]

× exp
[

− 1√
k+n

(γj · χ) + i
√

k+n+1
k+n

(γj · σ)
]

≡
[

(∂φ̄j) ψj ψ̄j+1 + iα0 (∂ψj) ψ̄j+1

]
.

(4.8)
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These terms must be added (with appropriate coefficients) to the naive form for S(z), and

for n ≥ 3 there will be further terms of the form

[
(∂φ̄j) ψj ψ̄j+ℓ + iα0 (∂ψj) ψ̄j+ℓ

]
. (4.9)

These terms are necessary to cancel other terms that result from commuting the screening

charges with the Nj(z). Alternatively, they have to be present for S(z) to have the proper

operator product with itself.

Rather than get too deeply involved in the technical details of the general problem,

we will specialize to the model (1.1) with n = 2. The model, M2, is then an ordinary

minimal (c < 1) model, and is realized by a single free boson σ. The energy momentum

tensor of the complete N = 2 supersymmetric model is, of course, the simple sum of all

the component energy momentum tensors:

T1(z) + T2(z) + k+3
12k

J2(z) , (4.10)

where T1 and T2 are given by (3.53) and (3.48). The bottom component, S(z), of the W3-

supermultiplet is a spin-2 current, and the naive guess for its form is (2.8). As explained

earlier, even though T2 is not a good conformal field, it can be viewed as defining the

extension of the chiral algebra, and once one has it, one can easily construct S(z). The

proper representative of T2 in the tensor product model will involve a correction of the

form (4.8). Indeed, we find that the complete free-field expression for T2(z) is:

T̂2(z) = −1

2
(∂σ(z))2 + i√

2(k+2)(k+3)
∂2σ(z)

+ k+3
2(k+2)

[
(∂φ̄1) ψ1 ψ̄2 + i√

k+3
(∂ψ1) ψ̄2

]
.

(4.11)

The coefficient of the fermion bilinear terms is determined by requiring that T̂2(z) commute

with the D-type screeners. The extra nilpotent fermion bilinears are, of course, present

in (3.36): the two relevant terms are the bottom components of
α2

0

8 D
+∂Φ+

1 D
−Φ−

2 and

iα0

8
∂Φ−

1 D
−Φ−

2 D
+Φ+

1 .

To summarize, the key to extracting the W -algebra generators is in the identification

of the free bosons, σ, given in (4.3). The lowest component of each W -supermultiplet can

then easily be constructed from them. Since we will need it later, we conclude by giving

the form of these bosons in terms of the Landau-Ginzburg free fields. Indeed, from (4.3)

and (3.46) one easily obtains:

γj · σ =
√

k+n+1
k+n

[(
1 − 1

k+n+1

)
b̂j ĉj − b̂j+1ĉj+1

]
− 1√

(k+n+1)(k+n)
β̂j γ̂j . (4.12)
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5. The elliptic genus and other characters

One of the beautiful features of the Landau-Ginzburg model is that the elliptic genus

of the model can be easily computed solely from the knowledge of the field content and

scaling dimensions [2]. This computation can be refined so as to determine the the U(1)

eigenvalues of the states contributing to the elliptic index [3–5]. One of the basic ideas of

[8,6,7] was that the Landau-Ginzburg potential contains the information about when the

conformal model has an extended chiral algebra. This fact was further employed in [6]

to show how, at least for the model (1.1) with n = 2, the elliptic genus could be further

refined so as to extract exactly how the different eigenstates of the extended chiral algebra

contribute to the elliptic index of the model. The result, for (1.1) with general n, was also

conjectured in [6], and in the last section we have developed enough information to now

show that this conjecture is correct.

5.1. The refined elliptic genus

The idea is to introduce the function:

F(q, µ, ν) = TrH
(
(−1)F qHL q̄HR exp(iµ · j0) exp(iνJ0)

)
. (5.1)

In this expression H is the complete Hilbert space of the model in the Ramond sector,

HL = L0 and HR = L̄0 are the hamiltonians of the left-movers and right-movers, F is the

total fermion number, J0 is the left-moving N = 2, U(1) charge, and j0 is the vector of

zero modes of the left-moving bosons, σ, defined in (4.12). The standard index argument

can be used to show that in the right-moving sector, only the ground-states contribute to

the trace. As a result, the function F is a function of q alone (and not a function of q̄),

and consists of a sum of the (left-moving) Ramond ground-state characters. Unless one

sets µ ≡ 0, the result will not be characters of (1.1). This is because the charges j0 do not

commute with the screening charges that reduce the free field Hilbert space down to that

of the coset model.

However, it was argued in [6] that one can obtain a character of the coset model by

the simple expedient of symmetrizing with respect to the Weyl group of SU(n). That is,

one defines

Fs(q, µ, ν) =
∑

w∈W (SU(n))

F(q, w(µ), ν) . (5.2)
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To see why this is so, one first evades all the subtleties of section 2 by simply deciding to

describe the model as a naive tensor product (3.1), and not as a locked tensor product with

non-standard screening charges. That is, one uses the same set of free fields, but simply

chooses the naive set of screening charges for a tensor product model. The cost of doing

this is that one must remember to lock the Hilbert spaces together by hand once one has

constructed them from the free fields. The advantage of taking the naive tensor product

is, of course, that the W -generators have the simple polynomial form in derivatives of the

free bosons.

If one temporarily ignores the oscillator contributions to the bosonic Hilbert space of

M2 of (3.1), one can see, by performing integral transforms as in [6], that Fs contains

the same information as refining the elliptic genus with respect to the zero-modes of the

W -algebra of M2. This is simply a version of the theorem that a weight of a Lie algebra is

uniquely specified, up to Weyl rotations, by the values of all the Casimirs on that weight.

The problem is with the oscillator contributions. The zero-modes of W -generators are

notorious for only really being diagonalizable on pure momentum states. We do not know

how to make a compelling argument solely from the perspective of the Landau-Ginzburg

formulation. However, based on the results of the last section, we know that the bosons

σ are precisely those of the standard Coulomb gas formulation of M2. These characters

consist of trivial oscillator η-function factors multiplying sums over pure σ-momentum

states. Thus the null states introduced by the full screening charges of (3.1) only involve

the pure momentum states and are thus correctly reproduced in (5.2). As a result, the

Weyl symmetrized F will suffice to produce a function on the Hilbert space of M2 and

hence on the Hilbert space of (1.1).

The argument can be made rather more directly if one merely concentrates upon the

zero mode, S0, of S(z). Since this is a linear combination of the energy momentum tensors

in the tensor product, this grades the elliptic genus according to the energies associated

with the factors in (3.1). (It is the higher spin generators of the W -algebra that cause the

problems with simultaneous diagonalization.) As was observed in [6], this refinement of

the elliptic genus is related fo Fs by a Laplace transform. The oscillator parts are dealt

with by multiplying by ratios of η-functions in such a manner as to reflect the fact the

n− 1 of the bosons have their energies measured in M2. Thus the component parts of the

tensor product can be factored out easily from Fs.
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To be more specific, the M2 components of (5.2) will consist of functions of the form:

χ
λ−
λ+

=
1

η(τ)ℓ

∑

w∈W (SU(n))

∑

γ∈M(G)

ǫ(w)

× q
1
2

[
β+w(λ++ρ) − β−(λ−+ρ) +

√
(k+n)(k+n+1) γ

]2

× eiµ·
[
β+w(λ++ρ) − β−(λ−+ρ) +

√
(k+n)(k+n+1)γ

]
.

(5.3)

For µ ≡ 0 these functions are characters of the model M2. Therefore, if we extract the

coefficient of

eiµ·
[
β+w(λ++ρ) − β−(λ−+ρ) +

√
(k+n)(k+n+1)γ

]
× eiνa , (5.4)

in Fs, then we will obtain the character of the model M1 that is paired with the states in

the Hilbert space of M2 labelled by χ
λ−
λ+

, and which also have N = 2, U(1) charge equal to

a. While we have not rigorously proved the foregoing statement, we think it is emminently

plausible, and in the next sub-section we will confirm our results by computing branching

functions in the factors of (3.1).

Thus the refined elliptic genus, Fs, enables us to completely decompose and isolate

the component parts of the partition function of (1.1).

5.2. Explicit formulae and a simple example

Following the arguments of Witten, we know that the elliptic genus can be expressed

very simply in terms of the free fields in the Ramond sector. That is, it can be expressed

as a simple product of ratios of theta functions. The refined “elliptic character,” F , is

obtained by grading this product of theta functions with the bosonic zero-modes J0 and

j0. Using (3.45) and (4.12) we obtain the following formula for F :

F(τ, µ, ν) =
n∏

j=1

θ1(aj|τ)
θ1(bj|τ)

, (5.5)

where
aj =

(
1 − 1

k+n+1

)
µj − µj−1 +

(
1 − j

k+n+1

)
ν ,

bj = − 1
k+n+1 µj − j

k+n+1 ν ,
(5.6)

with the convention that µ0 = µn ≡ 0. The parameters, µj are defined by writing µ·j(z) =
∑

j

√
k+n

k+n+1 µjγj · ∂σ(z). Recall that we may write γj = ej − ej+1, j = 1, . . . , n− 1. The

Weyl group of SU(n) is the permutation group on n objects, acting in the obvious manner
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on the ej . From this it is trivial to determine the Weyl action on the µj , and hence obtain

the function Fs from F .

For example, taking n = 2, one obtains:

F(q, y, z) = y−1zk

∞∏

p=1

{
(1 − qp−1y−(k+2)z(k+2)) (1 − qpy(k+2)z−(k+2))

(1 − qp−1y−1z) (1 − qpyz−1)

(1 − qp−1y(k+3)z(k+1)) (1 − qpy−(k+3)z−(k+1))

(1 − qp−1z2) (1 − qpz−2)

}
.

(5.7)

where y = exp
[
− iµ√

(k+2)(k+3)

]
and z = exp[− iν

k+3 ]. One can immediately see that this

function is singular at z = 1, and thus it cannot be a character of a unitary coset model.

However, to Weyl symmetrize, one simply replaces µ by −µ, and obtains:

Fs(q, y, z) = F(q, y, z) + F(q, y−1, z) = F(q, y, z) + F(q, y, z−1) . (5.8)

This function is regular at z = 1, and extensive expansion using MathematicaTM confirms

that it generates the proper characters of the factors in (3.1).

5.3. Decomposing the refined elliptic character

To complete the process of isolating the component characters of the model we need

to extract the coefficient of terms of the form (5.4) in the Weyl symmetrized form of (5.5).

To do this, one needs to expand the theta functions in the denominator of (5.5) using the

identity [29]:

1

θ1(ν|τ)
=

[ (
eiπν − e−iπν

) ∞∏

p=1

(
1 − qpe2πiν

) (
1 − qpe−2πiν

) ]−1

= i q−
1
8

[ ∞∏

n=1

(1 − qn)−3
]
×

∞∑

ℓ=−∞

∞∑

p=0

(−1)p e2πi(ℓ− 1
2 )ν q

1
2 (p±ℓ+ 1

2 )2− 1
2 (ℓ− 1

2 )2 .

(5.9)

In this formula one can choose the ± sign in any manner one pleases because of the identity:

2m−1∑

p=0

(−1)p q
1
2 (p−m+ 1

2 )2− 1
2 (m− 1

2 )2 ≡ 0 . (5.10)
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To give the expressions for the branching functions of M1 as they emerge from the

elliptic genus, we need to introduce some notation. We will need another basis for the

roots of SU(n+ 1):

ᾱj ≡ en+1−j − en+1 , j = 1, . . . , n ; (5.11)

along with the corresponding dual weight basis (satisfying λ̄i · ᾱj = δij):

λ̄j ≡ en+1−j − 1

n+ 1
(e1 + . . .+ en+1) , j = 1, . . . , n . (5.12)

Given any vector, ζ, define vector and scalar projections, ζ0 and ζ̂, via:

ζ =

n∑

j=1

ζj ᾱj ; ζ̂ = 2(ρ̃− ρ) · ζ = (n+ 1)

n∑

j=1

ζj ;

ζ0 = ζ − 2ζ̂
n(n+1)

(ρ̃− ρ) =
n∑

j=1

ζj
[
en+1−j − 1

n
(e1 + . . .+ en)

]
.

(5.13)

Recall that ρ̃ and ρ are the Weyl vectors of SU(n + 1) and SU(n) respectively, and that

ρ̃ − ρ defines the U(1) direction in M1. Thus ζ0 and ζ̂ are the components of ζ parallel

and perpendicular to the U(1). Introduce two vectors:

v ≡ 1
k+n+1

[
ν ρ̃ +

n−1∑

j=1

µj λ̄j

]
,

u ≡ 2ν
n+1 (ρ̃ − ρ) − v −

n−1∑

j=1

µj (λ̄j+1 − λ̄j) .

(5.14)

The whole point of these vectors is that ᾱj · u = aj and ᾱj · v = −bj , where aj and bj

are given by (5.6). Finally, introduce a vector ξ defined by

ξ ≡
n∑

j=1

pj λ̄j , with pj ≥ 0 . (5.15)

This vector will generate all the sums over pj ≥ 0 when we invert the denominators of

(5.5) using (5.9).

The function, F(q, µ, ν), can then expanded according to:

F(q, µ, ν) =
1

η(q)n

∑

β∈Γ

∑

λ∈Γ∗

eiπ(û+v̂+ 1
(n+1)

β̂) e−
2πi

(k+n+1)(n+1)
(û+v̂)λ̂

e−2πi(u+v)·(β+ λ
k+n+1 ) q∆(β,λ) Gβ,λ(q) ,

(5.16)
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where Γ is the root lattice of SU(n+ 1), Γ∗ is the weight lattice of SU(n+ 1), and

∆(β, λ) ≡ 1
2(k+n)(k+n+1)

[
λ0 + (k + n+ 1)β0

]2

+ 1
2kn(n+1)2(k+n+1)

[
(n+ 1)λ̂ + (k + n+ 1)β̂

− 1
2n(n+ 1)(k + n+ 1)

]2
.

(5.17)

The quadratic form, ∆(β, λ), is the energy in M2 ×U(1) of the momentum state labelled

by β + λ
k+n+1 . After a considerable amount of work, the functions Gβ,λ can be written:

Gβ,λ ≡ 1

η(q)2n

∑

η∈Γ∗

∑

ξ

eiπ(ξ̂+η̂) qΩ(β,λ;ξ,η) , (5.18)

where ξ is defined by (5.15) and the sum is, of course, only over pj ≥ 0. Because of

the conditional convergence of the double sum in (5.9), one must perform the sum over ξ

before performing the sum over η in (5.18). One must also be very careful in performing

any reordering of this sum, and in shifting summation variables. The quadratic form

Ω(β, λ; ξ, η) is defined by:

Ω(β, λ; ξ, η) ≡ 1
2(k+n+1)

[
(k + n+ 1)(ξ + wc(η)) + wc(λ)

]2

− 1
2(k+n)

[
(k + n)(ξ0 + η0) + (β0 + λ0)

]2

− 1
2kn(n+1)

[
k(ξ̂ + η̂) + (λ̂ + β̂) − 1

2n(n+ 1)
]2
.

(5.19)

The function, wc, is a cyclic Weyl rotation of SU(n + 1) that takes e1 → e2 → . . . →
en+1 → e1. Note that one does not sum over wc in any manner, it is simply used to

transform the vectors λ and η in (5.19).

Finally, to get the branching functions, G
(s)
β,λ, of M1, we must Weyl symmetrize. That

is,

G
(s)
β,λ ≡

∑

w∈W (SU(n))

Gw(β),w(λ) . (5.20)

5.4. Branching functions of
SUk(n+1)

SUk(n)×U(1)

The direct way of obtaining the branching functions of M1 is from the Weyl-Kac

character formula. We will now do this so as to obtain expressions that can be compared

with those for G
(s)
β,λ. One expands the appropriate parts of the denominator of the character

formula using (5.9) and then factors out the characters of SUk(n)×U(1) from the resulting

expression. The coefficient functions of the SUk(n)×U(1) characters are then the branching
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functions. If Λ is a highest weight of SUk(n+1), and χ is a weight of SUk(n)×U(1), then

the branching functions are only non-zero if χ = Λ + β for some root β of SU(n+ 1), and

then one has

bΛχ =
1

η(q)2n

∑

w∈W (SU(n+1))

∑

γ∈Γ

∑

ξ

ǫ(w) (−1)ξ̂ qΩ̃w(Λ,χ;ξ,γ) . (5.21)

The sum over ξ is exactly as above, and ǫ(w) is, as usual, the determinant of w. Note that

unlike above, the sum over w is over the Weyl group of SU(n + 1) and not just that of

SU(n). The quadratic form Ω̃w(Λ, χ; ξ, γ) is closely related to Ω in (5.19):

Ω̃w(Λ, χ; ξ, γ) ≡ 1
2(k+n+1)

[
(k + n+ 1)(ξ + γ) + w(Λ + ρ̃)

]2

− 1
2(k+n)

[
(k + n)ξ0 + (χ0 + ρ)

]2

− 1
2kn(n+1)

[
kξ̂ + χ̂

]
.

(5.22)

These branching functions have the following symmetries:

bΛχ = bΛχ+(k+n)β0
= bΛχ+2k(ρ̃−ρ) , (5.23)

where β0 is a root of SU(n). There are also the spectral flow identifications: The vector

λn+1 = 2
n+1 (ρ̃ − ρ) is a weight of SU(n + 1). For any given Λ, there is a root, β, of

SU(n+ 1), and an element, w′, of the Weyl group of SU(n+ 1), such that the vector, Λ′,

defined by:

Λ′ ≡ w′(Λ + ρ̃) + (k + n+ 1)(λn+1 + β) − ρ̃ , (5.24)

is once again an affine label of SUk(n+ 1). For such vectors Λ and Λ′ one has:

bΛχ = ǫ(w′) bΛ
′
χ+kλn+1

. (5.25)

From the Weyl-Kac character formula, it is natural to extend the label Λ, of the

branching function, to any vector Λ′ on the weight lattice of SU(n+1). That is, one takes

bΛ
′
χ = 0 if (Λ′ + ρ̃) ·β ≡ 0 mod k+n+1 for any root β of SU(n+1). For any other weight,

Λ′, there is a root β, and a Weyl rotation, w, such that Λ = w(Λ′ + ρ̃) − ρ̃+ (k + n+ 1)β

is a highest weight of affine SUk(n+ 1). We therefore take:

bΛ
′
χ = ǫ(w) bΛχ where Λ = w(Λ′ + ρ̃) − ρ̃+ (k + n+ 1)β . (5.26)
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From our general arguments about the properties of the refined elliptic genus, the

foregoing branching functions are related to the functions G
(s)
β,λ by:

bΛχ = G
(s)
β,λ with λ = w(Λ + ρ̃) ; β + λ = χ+ ρ̃ . (5.27)

The Weyl element w in this relation can be chosen at will.

One can easily see that the following replacements:

ξ → ξ − η ; wc(η) − η → γ ; λ→ w(Λ + ρ̃) ; β → χ− [w(Λ + ρ̃) − ρ̃] , (5.28)

transform Ω of (5.19) directly into Ω̃w′ with w′ = wcw. The problem with going further

and directly establishing the identity (5.27), independently of the elliptic genus, is that

the sums in (5.18) and (5.21) are conditionally convergent, and thus must be handled with

considerable care. We have thus only been able to prove (5.27) directly for n = 1 and

n = 2, and based upon this, we believe that a general direct proof will require breaking

sums over the root or weight lattice into many sums over different cones on the lattice and

then making extensive rearrangements and use of the identity (5.10). Since we have the

general argument based on the elliptic genus, the direct proof for n = 1 and n = 2, as well

as extensive checks using MathematicaTM , we have not pursued a general direct proof

any further.

5.5. A simple example

For n = 1 the forgoing functions, G(s), are labelled with by two integers (a root

and a weight of SU(2)) and are the branching functions of SU(2)/U(1). That is, we will

recover the string functions, cℓm, that are the partition functions for parafermions. Taking

ξ = p
2
(e1 − e2), η = −n

2
(e1 − e2), λ = − (ℓ+1)

2
(e1 − e2) and β = (s + 1)(e1 − e2) in (5.18),

one arrives at:

G
(s)
s,ℓ(τ) =

1

η(q)2

∞∑

n=−∞

∞∑

p=0

(−1)n+p q
1

4(k+2)
[(k+2)(n+p)+(ℓ+1)]2 − 1

4k
[k(p−n)+2s−ℓ]2 . (5.29)

The standard form of the string functions of parafermionic models is [30,31]:

cℓm(τ) =
∑

−|x|<y≤|x|
sign(x) q(k+2)x2−ky2

;

with (x, y) or ( 1
2 − x, 1

2 + y) ∈
(

ℓ+1
2(k+2) ,

m
2k

)
+ ZZ

2
.

(5.30)
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An equivalent form for the string function can also be obtained from (5.21). Taking

ξ = p
2 (e1 − e2), γ = n(e1 − e2), Λ = ℓ

2 (e1 − e2) and χ = m
2 (e1 − e2), one obtains:

cℓm(τ) =
1

η(q)2

∑

ǫ=±1

∞∑

n=−∞

∞∑

p=0

ǫ (−1)p q
1

4(k+2)
[(k+2)(2n+p)+ǫ(ℓ+1)] − 1

4k
[kp+m]2 , (5.31)

with the selection rule m ≡ ℓ mod 2.

It turns out to be a little involved to establish directly that these three forms for cℓm of

are equivalent. The easiest is to show that G
(s)
s,ℓ(τ) = cℓ2s−ℓ(τ), where the latter is given by

(5.30). One simply has to parametrize the sums in (5.30) over the four sectors of the (x, y)

plane, make modest use of (5.10), and then regroup the sums into the form of (5.29). The

equivalence with (5.31) requires that one start by first breaking the sum into n ≥ 0 and

n < 0, and then breaking one of the two resulting sums into sums with p ≥ n and p < n,

while the other sum is broken into sums with p > n and p ≤ n. One then appropriately

relabels the summation variables, makes use of (5.10), and regroups the terms. The result

is (5.31).

Thus one sees that the refined elliptic genus provides us with precisely the proper

branching functions.

6. Fermionic screening

Before making some general comments about our results, there is one minor, and

perhaps interesting, loose end that needs to be addressed.

So far we have accounted for all of the D-type screening that is involved in the N = 2

supersymmetric Coulomb gas description, but we have, as yet, said very little about the

fermionic screening. This is most easily understood by looking at the simplest model, with

n = 1. This model is based upon SUk(2), which has a Kac-Wakimoto realization in terms

of a bosonic β–γ, or superghost, system and a single free boson. There is a single screening

current for this model, and it can be written as a product of β(z) and a bosonic vertex

operator. To get to the Coulomb gas realization of the N = 2 model, one first bosonizes

the superghost system according to [32]:

β = (∂ξ) e−φ = i(∂χ) eiχ−φ

γ = η eφ = e−iχ+φ .
(6.1)
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Next, one tensors in a new U(1), and factors out the appropriate diagonal U(1) factor

to arrive at the coset model SU(2) × U(1)/U(1). In this process, the SUk(2) screening

current maps directly onto the D-type screener of the N = 2 supersymmetric model.

The necessity of having a fermionic screener creeps in at the point where one bosonizes

the β–γ system. To recover the Hilbert space of the superghosts from the Hilbert space of

the ξ–η, and φ system, or from the φ–χ Fock space, of (6.1), one has to fix the momenta

pφ−pχ and exclude all states involving the zero mode, ξ0 [32]. An equivalent way of accom-

plishing the same thing is that one can allow states with pφ − pχ ≥ 0, and then compute

the cohomology of the fermionic charge Q =
∮
η [28]. Once again, if one translates this

across to the N = 2 supersymmetric Coulomb gas language, one finds that this is precisely

what is done by the fermionic screener. If one does not employ the fermionic screeners, one

obtains infinitely many copies of the Hilbert space of the N = 2 supersymmetric model.

These infinitely many copies are related by shifts in the momenta pφ − pχ.

The foregoing observations generalize in a fairly obvious way to the N = 2 supersym-

metric Coulomb gas description of (1.1) for arbitrary n. Indeed in [33] it was shown how

the copies of the physical Hilbert space can be reinterpreted as gravitational descendants

of the matter sector. In terms of the characters derived in the last section, the fermionic

screening can be seen rather explicitly as being responsible for the sums over the vector ξ

in (5.18) and (5.21). As a consequence of this we see that the elliptic genus has implicitly

taken care of this fermionic screening as well. The moral reason for why this happens is

probably related to the fact that the elliptic genus originates from the Landau-Ginzburg

formulation which can be intrinsically expressed in terms of superghosts as in sect. 3.3. It

is only when the superghosts are bosonized that one needs to worry about the fermionic

screeners explicitly.

The Landau-Ginzburg formulation, along with the work of [33], suggests another

interesting possibility for the fermionic screening charges. Specifically, they can also be

incorporated as parts of the supercharges, as in (3.47). The immediately apparent obstacle

to doing this in the Coulomb gas language is that by definition, the screening charges

commute with the chiral algebra, whereas the supercharges have non-zero U(1) charge.

To rectify this, one makes a very simple change to the fermionic screeners. Introduce the

operators:

G̃−(z, z̄) =
n∑

i=1

ψ̄i e
i
√

k+n+1 φ̄i(z,z̄) ,

G̃+(z, z̄) =
n∑

i=1

(ψi − ψi−1) e
i
√

k+n+1 (φi(z,z̄)−φi−1(z,z̄)) .

(6.2)
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At first sight, these operators appear to be nothing other than sums of the fermionic

screeners in (3.34). The crucial difference is that the bosons in the vertex operator part

are to be taken as the complete boson, i.e. as a function of z and z̄, and not just the

holomorphic, or left-moving, part. The effect of doing this is to give the operators, G̃±(z, z̄)

a right-moving U(1) charge of ±1. The idea is to now view G̃∓(z, z̄) as anti-holomorphic

components of a conserved current whose holomorphic components are G±(z). (There will

be similar holomorphic components to the anti-holomorphic, or right moving supercurrents

Ḡ∓(z̄).) The motivation for doing this comes from the Landau-Ginzburg formulation and

the corresponding corrections to the supercurrent due to the presence of a non-trivial

superpotential. In the Coulomb gas language, the corrections to the supercharge become

essential if one imagines perturbing the model by the conformal weight (1, 1) operators
∑

i Si(z)S̄i(z̄), where the Si are the fermionic screening currents. In correlators, such

perturbations yield the proper screening prescriptions in the conformal blocks. Hence if

one does not perform the fermionic screening, then the supercharges receive the foregoing

corrections. This is analogous to viewing the Landau-Ginzburg potential as a perturbation

of the free theory.

One might naturally ask what one learns from this apparently somewhat perverse

perspective. First, the Landau-Ginzburg potential does generate the foregoing modifica-

tions to the conserved supercurrents, and so connecting these modifications with screening

currents yields a rather better understanding of the infra-red limit of the renormalization

group flow of the Landau-Ginzburg theory. On a much more practical level, it was very

much part of the original thinking in the Landau-Ginzburg program [23] that the Landau-

Ginzburg potential should encode the structure of the modular invariant partition function.

Thus one would hope that the same is true for the foregoing modifications of the super-

currents. In particular, if one looks at the right-moving vertex operator parts of (6.2) then

these will map one between different representations of the extended N = 2 super-chiral

algebra, whereas the left-moving screening charge part will map into effectively equivalent

representations. Some preliminary investigations for the simplest model indicate that this

is true. If one considers the model (1.1) with n = 2, then the partition function contains

combinations of string functions and U(1) characters for both the left and right moving

sector. The foregoing vertex operator shifts the N = 2, U(1) charge by one, and shifts

the m quantum number on cℓm by two units. This suggests that in the modular invariant

partition function, a given left-moving character cℓm will be paired with all the right mov-

ing characters cℓm+2p for all p. It also indicates a particular correlation of these quantum
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numbers and N = 2 U(1) charges. This is in fact what one finds when one decomposes

the partition function into its component parts. This particular example is a little trivial

since we have deduced something that the we could have easily inferred from the presence

of the supercharge itself. However, for models with more than one Landau-Ginzburg vari-

able the foregoing procedure will generate more than one vertex operator, and we will get

more than one set of correlations between left-moving and right-moving characters. The

situation is a little reminscent of the lattice structure that underlies non-trival modular

invariants of affine Lie algebras [34].

Thus we suspect that the Landau-Ginzburg potential, and its Coulomb gas concomi-

tants, contain the information about how left-moving and right-moving representations are

locked together, and that the foregoing might provide a method of explicitly extracting

this information.

7. Final Comments

We have shown in some considerable detail how the various formulations of the N = 2

super-W minimal models are interrelated and have shown how the elliptic genus and the

Landau-Ginzburg potential can be used to get very detailed information about the partition

functions of these models. There also remains the interesting question as to how to decode

from the Landau-Ginzburg potential the content of the modular invariant. One would also

like to know if one can get information from the elliptic genus about the complete partition

function of the model, and not just about the characters above the Ramond ground states.

There are also natural questions about the underlying exactly solvable lattice models.

Given that these models have now been constructed [35,36], one might hope to adapt

some of the topological index results to the lattice model. One possible hope might be to

extract the elliptic index from the lattice formulation without having to resort to detailed

computations involving Bethe Ansatz or the corner transfer matrix. The fact that the free

energy of these lattice models vanishes for topological reasons [36] gives us hope that the

lattice models may contain other pieces of topological information.

From the point of view of the field theory alone, we think it remarkable that so much

of the structure of the theory can be deduced from the Landau-Ginzburg potential alone.

It compelling to see if yet more information can be obtained about other related, and

perhaps even massive, models using Landau-Ginzburg methods.
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Appendix A. Determining W3 in the Landau-Ginzburg formulation

In this appendix we will consider the Landau-Ginzburg formulation of the model (1.1),

with n = 2, and we will obtain the W3-current by writing down the most general Ansatz

in superspace, imposing chirality and using the Landau-Ginzburg equations of motion.

The current we are looking for has dimension two and therefore the top component of the

current has dimension three. The possible terms in the ansatz can be reduced by realizing

that current has to be neutral. This means that it contains an equal number of Φ+
i and

Φ−
i fields. The most general Ansatz contains eighteen terms and has the form:

W = a1D
+Φ+

1 D
−Φ−

1 D
+Φ+

2 D
−Φ−

2 + a2Φ
+
1 ∂Φ−

1 D
+Φ+

2 D
−Φ−

2 +

a3Φ
+
1 ∂Φ−

1 D
+Φ+

1 D
−Φ−

1 + a4Φ
+
2 ∂Φ−

2 D
+Φ+

2 D
−Φ−

2 +

a5Φ
+
2 ∂Φ−

2 D
+Φ+

1 D
−Φ−

1 + a6Φ
+
1 ∂Φ−

2 D
+Φ+

2 D
−Φ−

1 +

a7Φ
+
2 ∂Φ−

1 D
+Φ+

1 D
−Φ−

2 + a8∂Φ+
2 ∂Φ−

2 + a9∂Φ+
1 ∂Φ−

1 +

a10D
+Φ+

1 ∂D
−Φ−

1 + a11D
−Φ−

1 ∂D
+Φ+

1 + a12D
+Φ+

2 ∂D
−Φ−

2 +

a13D
−Φ−

2 ∂D
+Φ+

2 + a14Φ
+
1 ∂

2Φ−
1 + a15Φ

+
2 ∂

2Φ−
2 +

a16Φ
+
1 Φ+

1 ∂Φ−
1 ∂Φ−

1 + a17Φ
+
2 Φ+

2 ∂Φ−
2 ∂Φ−

2 + a18Φ
+
1 Φ+

2 ∂Φ−
1 ∂Φ−

2 ,

(A.1)

where ai are unknown coefficients. Most of these coefficients are determined by requiring

that W satisfy:

D̄−W = 0 . (A.2)

In simplifying the expression that results from (A.2) one uses the Landau-Ginzburg equa-

tions of motion:

D̄−D−Φ−
i = 1

2

∂W

∂Φ+
i

, (A.3)

along with the fact that the superpotential W (Φ+
1 ,Φ

−
1 ) has a very specific form. First, one

needs to use the fact that W is quasihomogeneous, and hence:

W =
1

k + 3

[
Φ+

1

∂W

∂Φ+
1

+ 2 Φ+
2

∂W

∂Φ+
2

]
. (A.4)

Secondly, the fact that the potential comes from a coset model determines its form uniquely.

Indeed, the exact form is given implicitly by [9]:

W = ξk+3
1 + ξk+3

2 , (A.5)
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where

Φ+
1 = ξ1 + ξ2 and Φ+

2 = ξ1 ξ2 . (A.6)

This form of the potential is uniquely characterized (up to trivial scaling) by the equation

∂2W/∂ξ1∂ξ2 = 0, which may be rewritten as:

∂2W

(∂Φ+
1 )2

+ Φ+
1

∂2W

∂Φ+
1 Φ+

2

+ Φ+
2

∂2W

(∂Φ+
2 )2

+
∂W

∂Φ+
2

= 0 . (A.7)

This, along with quasihomogeneity, implies numerous relationships between partial deriva-

tives of W . In particular, one finds:

∂2W

(∂Φ+
1 )2

= − k + 2

k + 1
Φ+

1

∂2W

∂Φ+
1 ∂Φ+

2

− k + 3

k + 1
Φ+

2

∂2W

(∂Φ+
2 )2

∂W

∂Φ+
1

=
Φ+

1

k + 2

∂2W

(∂Φ+
1 )2

+
2Φ+

2

k + 2

∂2W

∂Φ+
1 ∂Φ+

2

∂W

∂Φ+
2

=
Φ+

1

k + 1

∂2W

∂Φ+
1 Φ+

2

+
2Φ+

2

k + 1

∂2W

(∂Φ+
2 )2

.

(A.8)

Conversely, it is only when these relations (A.8) are satisfied that one can find a non-trivial

solution to (A.2) for some choice of the coefficients ai. After some algebra we found the

following solution:

W = b1 J 2 + b2 ∂J + b3 (D+D− −D−D+)J

+ b4

(
−1

2 Ĵ
2 + i√

2(k+2)(k+3)
∂Ĵ − 1

2(k+2)Φ
−
1 Φ+

2 D
+∂Φ+

1 D
−Φ−

2

− i
√

k+3
2(k+2)

Φ+
1 ∂Φ−

1 D
−∂Φ−

2 D
+Φ+

1

)
,

(A.9)

where

Ĵ ≡ i√
2(k+3)(k+2)

(
Φ+

1 ∂Φ−
1 − 1

2 (k + 2)D+Φ+
1 D

−Φ−
1 + 1

2(k + 3)D+Φ+
2 D

−Φ−
2

)
(A.10)

The terms J 2, ∂J and (D+D− −D−D+)J correspond to trivial solutions since J is the

only dimension one supercurrent that is conserved (i.e. satisfies the chirality condition

(A.2)). We can fix the coefficients in W up to an overall normalization by demanding W
has the appropriate operator product expansion with J . This gives:

W = k(k+5)
2(k+2)(k+3) (D

+D− −D−D+)J − (k+5)
k+2 : J 2 :

− (5k−3)
k+3

(
−1

2 Ĵ
2 + i√

2(k+2)(k+3)
∂Ĵ

− 1
2(k+2) Φ−

1 Φ+
2 D

+∂Φ+
1 D

−Φ−
2 − i

√
k+3

2(k+2) Φ+
1 ∂Φ−

1 D
−∂Φ−

2 D
+Φ+

1

)
(A.11)

Note that (A.11) has a form that is identical to the one we obtained from the Drinfel’d-

Sokolov reduction (3.38). The only apparent difference is in the definitions of the currents

J and Ĵ . However, these currents can be mapped onto one another using the translation

table (3.46).
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