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We propose a general renormalization method, which avoids completely the use of lattice perturbation theory.

We present the results from its numerical applications to two-fermion operators on a 16

3

� 32 lattice, at � = 6:0.

1. Introduction

Following the ideas presented last year at this

conference [1], we have pursued a theoretical

and numerical study, described in detail in [2],

on the feasibility of a non-perturbative renor-

malization of generic composite operators in lat-

tice QCD. We propose a renormalization method

which avoids completely the use of lattice pertur-

bation theory, known to be an important source of

uncertainty in the extraction of physical results.

This method, applicable to any general composite

operator, is particularly useful when other non-

perturbative techniques, based onWard identities

[3] or on renormalization conditions on hadron

states [4], are not viable. A similar, but lim-

ited attempt, can be found in [5]. Here we

present the main results of numerical application

to two-fermion operators. Further applications to

the four-fermion operators of the e�ective weak

hamiltonian, and to heavy-light currents in the

heavy quark e�ective theory, are under way [6].

2. Non-Perturbative Renormalization

Our renormalization method consists in mimi-

cking on the lattice what is usually done in per-

�
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turbation theory. One may �x the renormaliza-

tion conditions of a certain operator by impos-

ing that suitable Green functions, computed be-

tween o�-shell quark and gluon states, in a �xed

gauge, at a scale �, coincide with their tree level

value. For illustrative purposes, we consider spe-

ci�c applications to matrix elements of two-quark

operators. We de�ne the renormalized operator

O(�) = Z

O

O(a), by introducing the renormaliza-

tion constant Z

O

, which is found, by imposing

the non-perturbative renormalization condition

Z

O

�

�a; g(a)

�

Z

�1

 

�

�a; g(a)

�

�

O

(pa)j

p

2

=�

2
= 1: (1)

�

O

is the forward amputated Green function

2

of the bare operator, computed between o�-

shell quark states with four-momentum p, with

p

2

= �

2

, in the Landau gauge. Z

 

is the quark

wave function renormalization, which can be non-

perturbatively de�ned from the conserved vector

current, or from the quark propagator (Z

0

 

).

This scheme solves the problem of large correc-

tions in lattice perturbation theory, which are au-

tomatically included in the renormalization con-

stants. The renormalized operator is independent

of the regularization scheme; it depends, however,

2

Suitably projected on the tree-level, and traced over

colour and spin [2].
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Figure 1. Z

V

as a function of �

2

a

2
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on the external states and on the chosen gauge.

Matching with the corresponding operators, in

some other standard continuum renormalization

scheme (e.g. MS), then requires a continuum

perturbative calculation only, which is a common

step in all approaches, standard or \boosted" per-

turbation theory [7] and non-perturbative renor-

malization. Our proposal is expected to work,

whenever it is possible to �x the virtuality of the

external states � so that �

QCD

� �� 1=a, in or-

der to keep under control both non-perturbative

and discretization e�ects. If such a \window"

does not exist at current � values, an accurate

matching becomes impossible, not only in our ap-

proach, but also with any other method.

3. Numerical Results

In order to study the �-dependence of the

renormalization constants, we have performed a

simulation with 36 quenched con�gurations, on

a 16

3

� 32 lattice, at � = 6:0, in the Landau

gauge. To reduce discretization errors, we con-

sider improved operators with the Clover fermion

action, at K = 0:1425 (am

q

� 0:07). Our non-

perturbative (NP) results are shown in �gs.1-

Figure 2. Z

A

as a function of �

2

a

2

,

4. We compare them with \Boosted Perturba-

tion Theory" (BPT), using an e�ective coupling

�

V

s

' 1:68 �

LATT

s

. To monitor the distortions

due to discretization, the perturbative computa-

tion has also been performed on a lattice of the

same size as the non-perturbative one, with a

�xed spacing. We call this procedure \Boosted

Discrete Perturbation Theory" (BDPT). In the

�gures the dashed line is from BPT, the curve

is from BDPT, and the straight line is from the

Ward identities (WI) method.

Z

V

: as expected, it is independent from the scale,

within statistical errors, up to large values of

�

2

, where discretization errors become important.

By using the points at �

2

a

2

� 1, corresponding

to � � 2 GeV, we get Z

NP

V

= 0:84(1), to be com-

pared with Z

WI

V

= 0:824(2) and Z

BPT

V

= 0:83.

The three methods are in good agreement.

Z

A

: it is also �nite at all orders, and can be de-

termined from WI. However, in the axial case

(as in the pseudoscalar case) we expect to �nd

a non-perturbative contribution from the pion

pole, vanishing for large �

2

[2]. We interpret

the strong �-dependence of Z

A

, at low �

2

, as

the non-perturbative e�ect of the pseudoscalar

state. There is no clear plateau between the non-
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Figure 3. Z

S

as a function of �
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perturbative regime and the large � region. Nev-

ertheless, it attens around �

2

a

2

� 1, just before

lattice artefacts become large in DBPT, and we

get Z

NP

A

= 1:04(3), which agrees with the value

Z

WI

A

= 1:06(2). BPT gives Z

A

smaller than one,

indicating a � 15% higher orders e�ect.

Z

S

: this is an ideal quantity to check the valid-

ity of our method, since it cannot be determined

using WI, and it is not a�ected by the pion pole.

It is logarithmically dependent on the scale, and

gauge dependent. We do not expect agreement

with BPT, either at low �

2

, due to higher order

e�ects, or at high �

2

, where lattice distortions are

important, as shown by BDPT. NP results fol-

low the theoretical expectations and we �nd good

agreement with BPT in the range 0:3 � �

2

a

2

� 1.

Z

P

: the pseudoscalar density (not shown here)

is coupled to the pion, at low �

2

; moreover it

has large one-loop perturbative corrections, of or-

der � 35%. It is then not surprising that the

NP result lies well below the BPT value, because

of higher orders, not accounted for by one-loop

BPT.With standard perturbation theory, the dis-

crepancy would have been even worse.

Z

S

=Z

P

: this ratio has a behaviour similar to Z

A

.

At �

2

a

2

� 1, the value obtained is in agreement

Figure 4. Z

S

=Z

P

as a function of �
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with that determined by WI, whereas, given the

result for Z

S

, the signi�cant di�erence with BPT

should be due to Z

P

. In conclusion, our numerical

study suggests that there does exist a window, 1:1

� � � 2 GeV, where the method can be applied,

already at � = 6:0, and we expect the useful range

to get larger, as � increases.

We thank S. Petrarca for an early partecipation

to this work.
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