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Abstract

The problem of averaging strongly correlated data is addressed for the case that the

exact correlation pattern is unknown. A procedure is proposed to estimate the e�ective

size of the correlations from the data themselves and to take them properly into account

when forming the average. The properties of the procedure are illustrated by using

it for averaging measurements of the strong coupling constant and QCD colour-factor

ratios.
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1 Introduction

When trying to average experimental results from di�erent experiments, one is sometimes faced

with the problem that the individual results are known to be correlated, with correlations which are

exceedingly di�cult to quantify. Typical examples are the measurements of the strong coupling

constant or the colour-factor ratios of QCD, where the dominant uncertainties are theoretical

errors. This article proposes a scheme for averaging such data and illustrates its properties by

applying it to these examples.

The suggested procedure is based on the standard weighted average ignoring all correlations

between the measurements. In the limiting case of independent measurements with gaussian errors

this average has the smallest possible error. If correlations are present this is no longer the case,

but in return for a non-optimal error one has a robust average which is independent of the details

of the correlation pattern. The size of the correlations is important for a correct determination

of the error of the average. In the scheme proposed in this paper the impact of the correlations

is estimated in an e�ective way from the data, based only on the measurements and their total

errors. Correlation coe�cients or a breakdown of the individual errors into globally correlated

and uncorrelated terms are not needed.

2 The 1-dimensional Case

The input information for the averaging procedure are published values x and errors �x.

Following [1] the errors will be treated as gaussian errors with the range x � �x specifying a

68.3% con�dence interval. The measurements themselves are considered to be unbiased estimates

for the true physical value.

If all errors are truly gaussian and if also the correlations between the individual measurements

are described correctly by a covariance matrix C, the optimal procedure for �nding the average a

of a set of results ~x is obtained by minimizing the �2-function

�2 =
X
i;j

(xi � a)(C�1)ij(xj � a) (1)

with respect to a. The minimum is obtained for

a =

0
@X

i;j

(C�1)ij

1
A
�1
0
@X

i;j

(C�1)ijxj

1
A with �2(a) =

0
@X

i;j

(C�1)ij

1
A
�1

: (2)

This solution a is optimal in the sense, that it is the unbiased estimate for the true underlying

value of all measurements ~x which has the smallest possible error.

Although optimal in a certain sense, the above procedure requires a precise knowledge of the

correlation terms in the covariance matrix C. If the correlations are large, the average tends

to converge to the single most precise measurement entering the procedure. This becomes a

severe problem when the errors of the individual measurements, as e.g. for the case of the strong

coupling constant, to some extend have to be based on subjective judgement. It then is certainly

unacceptable if a global average is pulled towards the single most optimistic result.
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A way out is to abandon the requirement of the smallest possible error for the average. Since

any linear combination of the individual measurements

a =
X
i

wixi with
X
i

wi = 1 (3)

is an unbiased estimate of the true value, the question remains how to choose the weights wi. The

\optimal" way is according to eq.(2) { with the inherent dangers discussed above. Following [1] a

more robust estimate is obtained by ignoring all correlation terms in eq.(2) and using the simple

weighted average instead:

a =

 
nX
i

xi=�
2

i

!
=

 
nX
i

1=�2

i

!
and �2(a) = 1=

 
nX
i

1=�2

i

!
: (4)

If the data are uncorrelated this estimate is optimal, i.e. giving the smallest possible error. In

case they are correlated, optimality is traded for stability.

The quality of the average a can be judged by means of a �2-variable. For uncorrelated data

one expects �2 to be equal to the number of degrees of freedom ndf ,

h�2i = h
nX
i

(xi � a)2

�2

i

i = ndf = n � 1: (5)

If the actual �2 value di�ers signi�cantly from this expectation either the error estimates �i are

wrong or there are strong correlations between the measurements. While the average a in any case

is a valid estimate of the true mean value, a �2 which deviates signi�cantly from its expectation

value implies that the error estimate �2(a) is not reliable. For �2 > n�1 it is recommended [1] to

conservatively assume that all errors are underestimated by a common factor and scale �2(a) by

�2=ndf . This is conservative since a large �2 could also be due to negative correlations between

the measurements. Then already the original error estimate would be too large.

If the �2 is signi�cantly smaller than its expectation value the measurement errors are

either overestimated or positively correlated. In the �rst case also the error of the average is

overestimated, in the latter one it is underestimated. The key point is, that if positive correlations

are known to be present, then the �2 can be used to estimate the size of the correlations and

reevaluate the error estimate for the average.

In order to achieve this, the full covariance matrix of the measurements needs to be speci�ed.

Not knowing any details about its detailed structure, it is assumed that di�erent measurements i

and j are correlated with a �xed fraction f of the maximum possible correlation Cmax
ij

Cij = f � Cmax
ij i 6= j; with Cmax

ij =
q
Cii

q
Cjj : (6)

For f = 0 the measurements are treated as uncorrelated, for f = 1 as 100% correlated entities.

The value f then is adjusted such that

�2(f) =
X
i;j

(xi � a)(xj � a)(C�1)ij = n� 1: (7)
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Having thus constructed an e�ective global covariance matrix Cij the error estimate for the average

a according to eq.(4) becomes

�2(a) =
X
i;j

wiwjCij; (8)

i.e. it is increased due to the presence of positive correlations.

Some remarks are in order here. First, it should be noted that the inclusion of correlations as

proposed here is not the only possible way. Alternatively one might consider making f a function

of the di�erence xi�xj, reasoning that the correlation should be smaller when two measurements

are further apart. However, the objective is to estimate in a consistent way the amount to which

correlations a�ect the size of the error of a weighted average and this turns out to be rather

insensitive to the details of the assumed correlation pattern. Therefore only the most simple

ansatz is pursued here. It also has to be emphasized that the scaling procedure de�ned above

should only be applied if correlations are known to exist. Due to statistical uctuations �2 values

smaller than their expectation values are not unlikely to exist, especially if the number of degrees

of freedom is small. An unconditional application of the scaling procedure thus will bias the error

estimate towards large values.

The properties of the method are most easily illustrated by the simple case of two measurements

x1 and x2 with the same error �. The average is a = (x1 + x2)=2. For a given correlation

coe�cient � the �2 for this average is �2 = �2

0
=(1 � �) with �2

0
= (x1 � x2)

2=(2�2). If the two

measurements are correlated one expects �2

0
< 1, and the condition �2 = 1 yields � = 1��2

0
as an

estimate for the size of the correlation coe�cient. With this the variance of the average a becomes

�2(a) = �2(1 + �)=2 = �2(2 � �2

0
)=2, i.e. it grows linearly with the correlation coe�cient. In the

extreme case that the two measurements are much closer than one would expect them to be for

uncorrelated errors, averaging does not lead to any error reduction.

Numerical Example

The numerical behaviour of the proposed procedure will be illustrated by using it to average

measurements of the strong coupling constant �s done at LEP/SLC with global event shape

variables. As the basic concept is a scaling procedure for the error estimate based on the value

of a �2 test variable, errors are implicitly assumed to be gaussian. The experimental errors were

treated as follows: If more than one error is quoted, then all uncertainties are added in quadrature

and the combination used in the average. Asymmetric errors are treated such, that the quadratic

sum of all positive and all negative errors is formed independently. Of the �nal errors the bigger

one is symmetrized. This is more conservative than the practice adopted in [1], but the existence

of asymmetric errors means that the likelihood function de�nitely is non-gaussian { which suggests

that some caution should be exercised.

The input data are collected in table 1. Section (a) contains a compilation of measurements

based on single event shape variables, section (b) averages from several event shape variables

as published by the di�erent experiments. Details about the origin of the data can be found

in [2]. All numbers are highly correlated, where the partial averages in (b) aready take the

correlation between their respective inputs into account. Both sections thus essentially contain

the same amount of information, although the exact correlation pattern is di�erent. However, the
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averaging procedure for obtaining the correlated average of all data should be insensitive to this

and give the same result when applied to either section of table 1.

Doing a simple weighted average of the numbers given in table 1(a) yields �s = 0:1219�0:0011

with �2=ndf = 37:4=71. The small �2 is a clear reection of the correlations between the results.

Using the scaling procedure to bring the �2 up to its expectation value increases the error for �s
by more than a factor of �ve and one obtains �s = 0:1219 � 0:0059. The simple weighted mean

of all single-experiment averages, table 1(b), yields �s = 0:1215 � 0:0022 with �2=ndf = 3:0=10.

Accounting for correlations this becomes �s = 0:1215 � 0:0059, which is very close to the value

obtained before from all single results and illustrates nicely the robustness of the procedure.

a) Individual measurements for �s(MZ)

0.119 � 0.029, 0.186 � 0.058, 0.112 � 0.030, 0.136 � 0.017, 0.142 � 0.015, 0.121 � 0.014

0.123 � 0.015, 0.115 � 0.012, 0.124 � 0.012, 0.118 � 0.011, 0.126 � 0.005, 0.126 � 0.007

0.124 � 0.008, 0.126 � 0.012, 0.122 � 0.008, 0.123 � 0.010, 0.124 � 0.009, 0.121 � 0.010

0.110 � 0.010, 0.134 � 0.009, 0.123 � 0.012, 0.121 � 0.025, 0.122 � 0.011, 0.122 � 0.009

0.119 � 0.008, 0.116 � 0.009, 0.108 � 0.008, 0.114 � 0.009, 0.123 � 0.008, 0.123 � 0.005

0.126 � 0.008, 0.117 � 0.006, 0.133 � 0.006, 0.132 � 0.005, 0.121 � 0.012, 0.115 � 0.009

0.115 � 0.013, 0.121 � 0.009, 0.119 � 0.008, 0.120 � 0.014, 0.110 � 0.006, 0.132 � 0.008

0.122 � 0.007, 0.123 � 0.009, 0.128 � 0.016, 0.122 � 0.047, 0.129 � 0.017, 0.129 � 0.010

0.120 � 0.013, 0.128 � 0.010, 0.119 � 0.012, 0.120 � 0.009, 0.125 � 0.008, 0.122 � 0.009

0.128 � 0.016, 0.118 � 0.009, 0.112 � 0.010, 0.119 � 0.008, 0.116 � 0.007, 0.118 � 0.008

0.124 � 0.012, 0.123 � 0.010, 0.125 � 0.011, 0.128 � 0.021, 0.118 � 0.013, 0.116 � 0.009

0.114 � 0.008, 0.108 � 0.009, 0.126 � 0.007, 0.136 � 0.015, 0.122 � 0.007, 0.122 � 0.012

b) Single experiment averages for �s(MZ)

0.117 � 0.010, 0.113 � 0.007, 0.118 � 0.010, 0.122 � 0.006, 0.123 � 0.010, 0.118 � 0.011

0.125 � 0.005, 0.123 � 0.006, 0.124 � 0.009, 0.120 � 0.006, 0.126 � 0.007

Table 1: Individual �s measurements based on single global event shape variables (a) and averages

combining information from di�erent event shape variables (b). All errors are the combined

experimental and theoretical uncertainties.

3 The n-dimensional Case

The basic formalism introduced above for 1-dimensional data shall now be generalized for higher

dimensional cases where a single measurement consists of a vector ~x and an error matrix C.

Again the error matrix will be treated as if it were a covariance matrix of a multi-variate gaussian

probability density function around a central value ~x.

As in the 1-dimensional case, the optimal procedure to average several measurements ~xi
with gaussian covariance matrices Cii is given by minimizing a �2-function eq.(11). The formal

treatment is completely analogous. The only technical di�erence is, that now the variances are
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described by matrices and the measurements and averages by vectors. With this replacement

all expressions derived for 1-dimensional data also hold in the general n-dimensional case. In

particular the weighted average, assuming that the di�erent measurements are uncorrelated,

becomes

~a =
X
j

Mj~xj with Mj =

 X
i

(Cii)
�1

!
�1

(Cjj)
�1: (9)

The sum of all weight matrices Mj is the unit matrix, i.e. if the individual measurements are

unbiased estimates for the true value, so is ~a.

As before, the n-dimensional weighted average eq.(9) de�nes the combined result of various

measurements, independent of whether or not correlations between the input data are present.

Correlations between the measurements again only a�ect the error estimate for ~a. One obtains

C(~a) =
X
i;j

MiCij(Mj)
T (10)

with the matrices M as introduced in eq.(9). Note that each element Cij now stands for an

n� n-covariance matrix. The �2 for the combined average ~a is

�2(~a) =
X
i;j

(~xi � ~a)TWij(~xj � ~a) (11)

whereW is the inverse of the global covariance matrix C, andWij the n�n sub-matrix ofW at the

same position as Cij in C. As before the �
2 eq.(11) serves as an indicator. If the �2 is signi�cantly

larger than its expectation value the errors may be scaled up by a corresponding factor. For too

small �2-values and if correlations are known to be present, the e�ective size of the correlations

can be estimated from the requirement that �2 be equal to its expectation value. Formally this can

be done exactly as before, by taking the correlation matrix between two di�erent measurements i

and j to be a certain fraction f of the maximal correlation Cmax
ij , i.e. Cij = fCmax

ij .

It remains to generalize the notion \maximally correlated" to the n-dimensional case. If all

single covariance matrices are diagonal, the problem reduces to a set of independent 1-dimensional

measurements and the maximal correlation matrix between two measurements ~xi and ~xj is given

by Cmax
ij = C

1=2
ii C

1=2
jj . The square-roots are understood to be taken element by element. The

same prescription works if the o�-diagonal elements are the same. A di�culty only arises when

the correlations terms in Cii and Cjj are di�erent. However, arguing that the result of averaging

any two measurements should be independent under any linear transformation of the variables,

one can always chose a basis such, that the o�-diagonal elements of the two covariance matrices

become identical. In this basis the Cmax
ij can be de�ned as before and transforming back to the

original variables yields the wanted matrix. The sought for transformation always exists and is

given by the orthogonal matrix Q which diagonalizes the di�erence Cii � Cjj. One thus obtains

the following general expression

Cmax
ij = QT

�q
QCiiQT

q
QCjjQT

�
Q where Q diagonalizes Cii �Cjj : (12)
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Numerical Example

A practical application for averaging 2-dimensional correlated data is the combination of

measurements of the QCD colour-factor ratios as done by the LEP collaborations. The results are

based on an analysis of kinematical correlations in 4-jet events, and again the highly correlated

theoretical errors are the dominant uncertainties. The data taken from [2] are listed in table 2

together with the uncorrelated and the correlated averages. Also here the presence of correlations

between the results manifest itself through the small �2 of the uncorrelated average. Taking the

correlations into account the uncertainties of the correlated average are close to the errors of the

most precise single measurement. The decrease in the size of the error-ellipse is only 2.3%.

CA=CF TF=CF correlation

2.24 � 0.40 0.58 � 0.29 0.043

1.95 � 0.37 0.23 � 0.14 0.

2.32 � 0.25 0.27 � 0.15 -0.242

2.11 � 0.32 0.40 � 0.17 -0.450

uncorrelated average (�2=ndf = 2:20=6)

2.195 � 0.156 0.316 � 0.082 -0.208

correlated average (�2=ndf = 6:00=6)

2.195 � 0.264 0.316 � 0.138 -0.220

Table 2: Individual results for colour-factor ratios from the analysis of 4-jet events, together with

the uncorrelated and the correlated averages. The errors are the combined experimental and

theoretical uncertainties.

4 Summary and Conclusions

A procedure for averaging correlated measurements is proposed for the case, that the correlations

are not known quantitatively. The central value is taken to be the simple weighted average of the

individual results, which gives the minimal error when the input data are uncorrelated, and is a

stable estimator also in the presence of large correlations. In the latter case optimality is traded

for robustness. In order to calculate an error estimate for the average, the e�ective size of the

correlations has to be known. Here it is inferred from the data, using the requirement that the

(correlated) �2 for the average is equal to its expectation value. The robustness of the method

has been demonstrated in averaging actual measurements of QCD parameters.
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