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Abstract

We consider the minisuperspace model arising from the lowest order string e�ective

action containing the graviton and the dilaton and study solutions of the resultingWheeler-

DeWitt equation. The scale factor duality symmetry is discussed in the context of our

quantum cosmological model.
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1. Introduction

Duality transformations relate di�erent, but actually equivalent, conformal string

backgrounds and, in particular, string theories [1]. An example of this duality is the

O(d; d) transformation connecting all toroidal compacti�cations in d-dimensions [2]. In

this latter case, it is shown that the duality transformation holds to all orders in the

string-loop expansion parameter by performing a suitable change in the dilaton �eld when

transforming metric and torsion �elds [3]. An important subset of this duality symmetries

is the so-called scale-factor or abelian duality of string models embedded in 
at homoge-

neous and isotropic spacetimes [4]. Scale-factor duality symmetry is present in the lowest

order string e�ective action and means that the transformation of the scale factor of a

homogeneous and isotropic target space metric, a(t)! a�1(t), leaves the model invariant

provided that, in d spatial dimensions, the string coupling, i.e. the dilaton, is properly

transformed as well

�(t)! '(t) = �(t)� d

2
ln a(t): (1)

Other transformations were also proposed to implement these dualities for back-

grounds with non-abelian isometry groups which are, in principle, compatible with ho-

mogeneous Bianchi cosmological backgrounds [5] (see however [6, 7]).

Scale-factor duality is an important guidance to introduce genuine stringy features

into an already known cosmological framework based on General Relativity. However,

although in the context of the resulting models one is allowed to address important issues

such as the problem of singularities, in
ation, generation of primordial energy density


uctuations and show that a radiation dominated era naturally emerges from a string

cosmological scenario (see e.g. Refs. [8] and [9]), these considerations and conclusions

remain essentially classical and are, therefore, presumably not capable of capturing the

deep quantum gravity features one expects to extract from string theories. Since a complete

quantum string theory is not yet available, a possible way to implement the classical stringy

cosmological scenarios discussed so far is to consider their quantum cosmological extension

by performing the canonical quantization of the corresponding string model and solving

the resulting Wheeler-DeWitt (WDW) equation in the minisuperspace approximation.

In this work, we shall consider the canonical quantization of the lowest order string
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e�ective action using the standard ADM formalism in a R � S3 topology. This choice

allows us to remain within the standard formalism of quantum cosmology and use its in-

terpretative framework [10], although scale factor duality will be lost as an exact symmetry

of the resulting minisuperspace model.

2. The model and Wheeler-DeWitt equation

We consider the following lowest order string e�ective action

S =
1

2

Z
M

dDx
p
�ge�2�[R+ 4(@�)2 � 8V (�)]; (2)

where we have allowed for a potential for the dilaton �eld and we have set the Kalb-Ramond

tensor to vanish. We shall consider a (D=4){dimensional homogeneous and isotropic space-

time described by a closed Friedmann-Robertson-Walker metric.

In the canonical quantization formalism, the dynamical piece of the metric is the

induced three-dimensional metric hij(i; j = 1; 2; 3) on the boundary of the manifold M

over which integration in (2) is performed and, furthermore, to (2) one has to add the

following boundary action:

SB = �
Z
@M

d3x
p
he�2�K; (3)

where h is the determinant of the induced metric and K is the trace of the second funda-

mental form on @M .

One obtains, after some computation, the following minisuperspace Lagrangian den-

sity

L = Na3e�2�
"

3

N2

�
_a

a

�2

+
3

a2
� 6

N2

_a

a
_� + 2

_�2

N2
� 4V (�)

#
; (4)

where N(t) is the lapse function.

Introducing the variable z(t) = ln a(t) and the transformation (1), one �nds, in the

N=1 gauge, that

L = e�2'
�
�3

2
_z2 + 3e�2z + 2 _'2 � 4V ('; z)

�
: (5)

which, except for the second term, exhibits the scale factor duality symmetry under the

transformation z!�z; '! ', provided V ('; z) = V (';�z).
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Aiming to obtain the WDW equation describing the quantum cosmological features

of model (2), we compute the canonical conjugate momenta to z and ':

�z =
@L
@ _z

= �3 _ze�2'; (6)

�' =
@L
@ _'

= 4 _'e�2': (7)

The Hamiltonian density is then given by

H = �z _z+�' _'�L

= e2'
�
�1

6
�2
z
+

1

8
�2
' + e�4'

�
4V ('; z)� 3e�2z

��
;

(8)

and vanishes, on account of invariance under time reparametrization. The WDW equation

is obtained transforming this classical constraint, i.e. H = 0, into the vanishing of the

Hamiltonian operator acting on the wavefunction 	('; z). For the latter step, one has to

promote the canonical conjugate momenta into operators:

�z ! �i @
@z

;

�' ! �i @
@'

:

(9)

Hence, one �nds, after a proper operator ordering choice and trivial rescaling of vari-

ables

�
@2

@z2
� @2

@�2
+ U(�; z)

�
	(�; z) = 0; (10)

where

U(�; z) =
1

2
e��

h
4V (�; z) � 3e

� 1p
3
z
i
; (11)

and � = 4', z = 2
p
3z.

3. Solutions of the Wheeler-DeWitt equation

We shall �rst study the case where the dilaton has no potential (a scenario favoured

e.g. in ref. [11]) and then proceed to analyse the e�ect of the introduction of a potential;

we shall consider the following simple cases:
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V (�) = �; (12)

=
m2

2
(�� �o)

2; (13)

= Voe
���: (14)

The case of a cosmological constant, (12), is the one which is compatible with scale

factor duality in a 
at 3-dimensional spacetime [12]. We shall see, however, that the wave

function is fairly insensitive to the 3-dimensional curvature and, using the interpretational

rules of quantum cosmology, that the most likely initial con�guration for the universe is

approximately compatible with scale factor duality. The second choice for the dilaton

potential leads, in the classical case, to chaotic in
ationary solutions provided �i>�4MP ,

where �i is the initial dilaton con�guration and MP is the Planck mass [13,14]; our quan-

tum analysis indicates that these con�gurations are actually favoured. Finally, choice

(14) is of interest in connection with scenarios of supersymmetry breaking due to gaugino

condensation in the hidden sector of the theory [15].

For the case where the dilaton has no potential, the corresponding WDW equation is

given by

�
@2

@z2
� @2

@�2
� 3

2
e
��� 1p

3
z

�
	(�; z) = 0: (15)

Introducing the variables x = exp[�1
2
(�+ 1p

3
z)] and y = �+ z, this equation becomes

�
x
@2

@x2
� 1

2

@

@x
� A

2

@2

@x@y
+ 9x

�
	(x; y) = 0; (16)

where A = 4(3 �
p
3). This equation is separable, i.e. writing the wave function as

	(x; y) = F (x)G(y), one obtains

d2F

dx2
� 1

2
(A� + 1)

1

x

dF

dx
+ 9F = 0; (17)

dG

dy
� �G = 0; (18)

where � is a separation constant. The solution of (15) is then given by [16]:
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	(x; y) = ce�yx�C�(3x); (19)

where c is an integration constant, � = 1
4
[3 + A�] and C� is a generic Bessel function

of order �. To ensure that lima!0	 = 0, i.e. a singularity free cosmological scenario,

we require that � > �1 = 1

12(
p
3�1) and, for � > 3�1, the wave function is an increasing

function in �.

We shall now consider the situation where the dilaton potential is non-vanishing.

Since the WDW equation becomes more involved in this case and, within the spirit of the

quantum cosmology framework, we shall not look for exact solutions but rather for the

striking features of the wave function. We start with the simple case of a constant dilaton

potential, eq. (12). In this case, the minisuperspace potential is given by U(�; z) =

1
2
e��

h
4�� 3e

� 1p
3
z
i
, which we shall analyse by patching up solutions for � > 0 (the

wave function clearly vanishes in the � < 0 region due to the steepness of the potential)

in the following three regions: z > 0, z < 0 and around the origin. In fact, it is quite

straightforward to show that 	 essentially vanishes in the z < 0 region. For z > 0, assuming

that 4� � 3e
� 1p

3
z
and that the second term in U(�; z) can therefore be neglected, the

resulting WDW equation becomes separable, i.e. the wave function can be written as

	(�; z) = F (z)G(�). It then yields the following ordinary di�erential equations

d2F (z)

dz2
� �F (z) = 0; (20)

d2G(�)

d�2
�
�
2�e�� + �

�
G(�) = 0; (21)

where � is the separation constant. The solution is given by [16]

	(�; z) = ce�
p
�zZip�

�p
2�e��=2

�
; for � > 0; (22)

= c sin
�p

j�j z
�
Zpj�j

�p
2�e��=2

�
; for � < 0; (23)

for � > 0, Z� is a generic modi�ed Bessel function of order �. If � < 0, Z� should be

replaced by C� and � by j�j in the above equations. Usual quantum cosmology interpre-

tational formalism is suitable for the ground-state wave function of the universe [10] and
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we shall consider henceforth the case � = 0. It then follows that the wave function, in the

original variables, is given by

	('; z) = czK0

�p
2�e�2'

�
; (24)

for � > 0, where K0 is the modi�ed Bessel function of order zero; if � < 0, K0 should

be replaced by the Bessel function J0 and � by j�j. Notice that, in both cases, the wave

function is positive and has a regular behaviour at the origin. Moreover, (24) implies that

	 � 2' ln a; for '! +1; (25)

hence 	 increases for large ' and a.

Let us now study the region where � and z are close to the origin. Expanding the

exponentials up to second order and separating variables, i.e. setting 	(�; z) = F (z)G(�),

we obtain the following ordinary di�erential equations

d2F (z)

dz2
+

�p
3

2
z + �

�
F (z) = 0; (26)

d2G(�)

d�2
+ [�(�� 1)� �]G(�) = 0; (27)

where � = 2��3=2. The solutions of these equations can be given again in terms of Bessel

functions, respectively

F (z) = cẑ1=2C1=3
�
2
2ẑ3=2

�
for ẑ > 0; (28)

= c jẑj1=2 Z1=3

�
2
2jẑj3=2

�
for ẑ < 0; (29)

where ẑ =
p
3

2
z � �, 
2 = 2

p
3

9
and

G(�) = c�̂1=2C1=3
�

2

3�
�̂3=2

�
for �̂ > 0; (30)

= cj�̂j1=2Z1=3

�
2

3�
j�̂j3=2

�
for �̂ < 0; (31)

where �̂ = �(�� 1)� �. For the vacuum state, � = 0, we have
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	(�; z) = B(z�j�� 1j)1=2J1=3(
z3=2)I1=3
�
2

3
�1=2j�� 1j3=2

�
; (32)

for � < 1, � > 0 and B a constant. If � < 0, I1=3 should be interchanged by J1=3 in

the above equation and � replaced by j�j. Hence, the ground-state wave function 	(�; z)

around the origin is essentially an increasing function of � and z [16].

We �nd that the salient features of the ground-state wave function are that it is an

increasing function of � and z and vanishing in the � and z negative region. Hence, we

conclude that the favoured initial conditions are the ones for which � and z are large.

We turn our attention to the case where the dilaton potential is given by (13). As

discussed in Refs. [13,14], conditions for successful chaotic in
ation require 10�8MP < m <

10�6MP , �o � MP and �i>�4MP . For this choice of parameters, the potential U(�; z)

is controlled by the overall exponential factor, which implies that the previous results for

the case of a constant dilaton potential remain essentially unaltered. This means that, as

before, large values of � and z are the favoured �eld con�gurations.

Let us now turn to the case where the dilaton potential is given by (14). The value of

� depends of the gauge group of the hidden sector and for the known models �>�24�2=10

[15]. For these values of �, the contribution of the dilaton potential to U(�; z) is negligible

and the ground-state wave function is essentialy the one for the case where there is no

potential and given by (19). Thus the conclusions drawn for that case are equally valid

here.

4. Conclusions

Let us summarize our results and comment on some of its implications. We have

seen that for any of the potentials we have analysed, including the case of a vanishing

potential, the ground-state wave-function vanishes for z negative, which is consistent with

the expectation that 	(a = 0;�) = 0 in order to solve the singularity problem. Another

generic feature of our results is that for all cases we have analysed the ground-state wave

function of the universe is an increasing function of �. The is true for the variable z in

the z > 0 region. We can then conclude that the striking features of the wave function

of the universe are fairly independent on the dilaton potential, being also insensitive to

the presence of the spatial curvature. Moreover, these conclusions imply that the favoured
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initial �eld con�gurations are the ones for which � and z are large (in Planck units)

and that the scale factor duality, although not a symmetry of the classical closed FRW

metric-dilaton system, actually holds as an approximate symmetry. Thus, our results are

compatible with conclusions drawn from classical cosmological scenarios in which string

features are introduced through the scale factor duality [8] and, in particular, with a pre-

big-bang era [9]; furthermore, our approach shows that quantization naturally solves the

singularity problem.

This approximate scale factor duality symmetry displayed by the system we have

analysed implies that the ground-state wave function of the universe will consist e�ectively

of a superposition of 	(�; a) and 	(�; a�1). It is interesting to speculate on the possiblity

that the transition from this superposed state to the classical state, where scale factor

duality is lost, can be achieved through the process of decoherence, with the inhomogeneous

modes of a massive dilaton �eld playing the role of the environment. For this latter purpose,

one could also consider massless dilaton and Yang-Mills �elds. For a �xed value of the

dilaton �eld, the ground-state wave function for the Yang-Mills �elds is essentially the one

describing an anharmonic oscillator with a quartic potential [17]. Inhomogeneous modes

of dilaton and Yang-Mills �elds could together drive decoherence due to their coupling.

Decoherence could be also driven by massive vector �elds [18].

Interestingly, one �nds that, as in the case where one considers only the dilaton and

this �eld is endowed with a potential, there exist chaotic in
ationary solutions if �i>�4MP ,

a feature which holds even when including Yang-Mills �elds [14]. One expects likewise that

large initial values for the dilaton will also be favoured in the quantum cosmological analysis

of the metric-Yang-Mills-dilaton system.
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