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1 Introduction

One of the most important recent developments in the field of heavy-quark physics has
been the formulation of the static limit for a heavy quark as an effective theory [1].
The so-called Heavy Quark Effective Theory (HQET) has put the description of heavy-
hadron physics on a QCD-related and model-independent basis. Aside from this theo-
retical progress there have been numerous phenomenological applications of this idea, in
which the model dependence has completely disappeared or is substantially decreased [2].

Most of these applications deal with systems involving a single heavy quark. In HQET
both the particle and the antiparticle numbers are separately conserved, and the appli-
cations considered so far deal mainly with the one-(anti)particle sector of HQET. Thus
the one-particle sector of HQET is already explored in some detail, including leading and
next-to-leading QCD corrections.

However, there have also been first attempts to deal with the two-(anti)particle sector
and the particle-antiparticle sector [3, 4]. Here it turns out that complex anomalous
dimensions are obtained by a näıve analysis. In HQET the anomalous dimensions in
general depend on the velocities of the heavy quarks and the imaginary parts of the

anomalous dimensions in the two-particle sector diverge as 1/
√

(vv′)2 − 1 for v → v′, if v
and v′ are the velocities of the two heavy quarks. Subsequent investigations have shown
that this singularity is related to the long-range part of the quark-antiquark potential
and that one may remove this divergence by a suitable definition of the multiparticle
states of HQET. In a basis consisting of the redefined states one then has real anomalous
dimensions.

The physical origin of these phases is the same as that of the well-known Coulomb
phases. The one-gluon (one-photon) exchange potential decreases too slowly, leading
to the well-known singularities of the form 1/|~v|, where ~v is the relative velocity of the
outgoing coloured (charged) particles. From its physical interpretation as well as from the
fact that the divergent phase is a property of the states, it is clear that these divergent
contributions are a long-distance effect belonging to the infrared dynamics of the state
with two heavy quarks.

Heavy quarkonium states have to show up as bound states in the particle-antiparticle
sector of HQET. In such a state, however, the two velocities of the heavy quarks differ by
an amount of only ΛQCD/m (m is the heavy-quark mass) and hence we would rather like
to switch to a description in which the two heavy-quark velocities become equal. This
limit, however, cannot be taken in a näıve way, since the static limit of HQET does not
reproduce the above phases, which are related to the potential between the two heavy
quarks and hence to the binding mechanism of the quarkonium state.
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It turns out that this limit may be performed if the evolution of the states is determined
not by the static Lagrangian, but rather by a Lagrangian consisting of the static HQET
part and the first subleading spin symmetric contribution to the Lagrangian, i.e. the
kinetic energy operator. In other words, the presence of the divergent phase forces us to
go beyond the static limit, if we want to consider heavy-quarkonium states, in which the
velocities of the heavy quarks differ only by an amount of order ΛQCD/m. This in turn
introduces a mass dependence into the lowest-order dynamics such that the inverse “Bohr
radius” Λ̃, which sets a small non-perturbative scale, is in general not independent of m.
For this reason we lose heavy-flavour symmetry, but spin symmetry is still present, since
the kinetic energy operator is still spin symmetric.

In the present paper we set up an effective theory approach to processes involving
heavy quarkonia, which is based on the heavy-mass limit of QCD. We focus on inclusive
annihilation-type decays for which we perform a systematic expansion in powers of Λ̃/m,
up to logarithms, which may be accessed via the renormalization group.

The approach proposed here has many features common to the one of Bodwin, Braaten
and Lepage (BBL) [5]. Their method is based on non-relativistic QCD (NRQCD), where
the lowest-order dynamics is determined by the Lagrangian of the Schrödinger equation
for the heavy quarks, which is basically that obtained by including in addition to the static
HQET part also the kinetic energy operator. Based on this they perform an expansion
in terms of v/c, where v is the typical relative velocity of the two heavy quarks. We
shall compare the two approaches between them as well as with previous approaches to
inclusive quarkonium decays (for reviews see e.g. [6, 7]) as we go along.

Our general strategy is as follows. We shall first discuss (section 2) the heavy-mass
limit for quarkonia-like systems and show that the two heavy-particle velocities may be
chosen to become equal, once the subleading kinetic energy operator is added to the
lowest-order dynamics. This however implies that there will be no mass-independent
static limit for the quarkonia, in other words, the “binding energy” Λ̃ will depend on the
heavy mass in a non-trivial way, but it is still a small scale Λ̃ � m, so that an expansion
in powers of Λ̃/m is useful.

The first step to access the inclusive annihilation decays is to separate long and short
distances, where the distance scale is set by the Compton wavelength of the heavy quark.
Technically speaking, the first step is to set up an operator product expansion for the
inclusive decay rate of a heavy quarkonium into light degrees of freedom (section 3). In
section 4 we write down the Λ̃/m expansion for the rate of inclusive heavy quarkonia
annihilation up to and including Λ̃2/m2; up to this order the inclusive decay rate involves
matrix elements of dimension-six and dimension-eight operators.

The coefficients of this expansion may be calculated in perturbation theory, and some
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simple examples are considered in section 5. These perturbatively calculated coefficients
are the ones at the matching scale, i.e. at the scale of the heavy quark mass. In general
the coefficients are scale-dependent, since the operators need to be renormalized. In
section 6 we consider the renormalization group flow of the coefficients. Given their
values at the matching scale one may then use the renormalization group to scale down
to some small scale µ, at which one then tries to estimate the matrix elements of the
corresponding operators. These matrix elements are non-perturbative quantities, but
heavy quark symmetries restrict the number of independent parameters. This is studied in
section 7. Finally, we apply this machinery to some simple examples in section 8. Section
9 contains a further discussion of previous approaches [6, 7] as well as our conclusions.
Some technical details are left for the appendices.

2 Heavy-Mass Limit for Quarkonia

We shall first set up the heavy-mass limit appropriate for heavy-quarkonia states. We
shall start from the Lagrangian and the fields of QCD. We denote the heavy-quark field
of full QCD by Q and define

Q(+)
v (x) = exp(im vx)Q(x) = h(+)

v (x) +H (+)
v (x) , (1)

where v is a velocity (v2 = 1), which is later identified with the velocity of the heavy
hadron. Extracting this phase factor from the full QCD field Q removes the dominant
part mv of the heavy-quark momentum, since this phase redefinition corresponds to a
splitting of the heavy-quark momentum according to p = mv + k, where the residual
momentum k is small, of the order of ΛQCD. Furthermore, h(+)

v (H (+)
v ) is the large (small)

component field, corresponding to the projections

h(+)
v = P+Q

(+)
v , H (+)

v = P−Q(+)
v with P± =

1

2
(1± v/) . (2)

The small component field H(+)
v is related to the large scale m; integrating out H(+)

v from
the generating functional of QCD Green’s functions corresponds to the replacement

H(+)
v = P−

(
1

2m+ ivD

)
iD/h(+)

v (3)

and this yields a non-local Lagrangian of the form [8]

L = h̄(+)
v (ivD)h(+)

v + h̄(+)
v iD/P−

(
1

2m+ ivD

)
iD/h(+)

v , (4)
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which still contains all orders in 1/m. However, the non-locality appearing in the second
term of (4) may be expanded into an infinite series of local terms, which come with
increasing powers of 1/m. Hence one may in this way establish the desired heavy-mass
expansion. The first few terms of the expansion for the Lagrangian are

L = h̄(+)
v (ivD)h(+)

v +
(

1

2m

)
h̄(+)
v iD/P−iD/h(+)

v

+
(

1

2m

)2

h̄(+)
v iD/P−(−ivD)iD/h(+)

v + · · · , (5)

while the field is given by

Q(+)
v =

(
1 +

1

2m
P−iD/+

1

4m2
(−ivD)P−iD/+O(1/m3)

)
h(+)(x) . (6)

The non-local expression (4) is still equivalent to full QCD; in particular it is indepen-
dent of the still arbitrary velocity vector v. In fact, the Lagrangian (4) is invariant under
an infinitesimal shift of the velocity

v → v + δv v · δv = 0

h(+)
v → h(+)

v +
δv/

2

(
1 + P−

1

2m+ ivD
iD/
)
h(+)
v

iD → −mδv . (7)

This invariance is the so-called reparametrization invariance [9], which will play some role
in what follows.

The Lagrangian (4) and its expansion in powers of 1/m (5) is the Lagrangian for a
heavy quark. In the infinite mass limit, the quarks and the antiquarks are separated by an
infinitely large mass gap, and hence in order to describe heavy quark-antiquark systems
we have to introduce the antiquark field as a separate field, the Lagrangian of which is
obtained from (4) or (5) by the replacement v → −v.

Heavy quarkonia should appear in the particle-antiparticle sector of HQET as bound
states. The starting point of our considerations is the Lagrangian of a heavy-quark and
a heavy-antiquark field. In the static limit we obtain from (5)

L = h̄(+)
v (ivD)h(+)

v − h̄(−)
w (iwD)h(−)

w , (8)

where the static quark field h(+)
v (h(−)

w ) moves with velocity v (w). From (8) we obtain
the equations of motion

(ivD)h(+)
v = 0 (iwD)h(−)

w = 0 . (9)
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However, (8) or (9) cannot be used to describe heavy quarkonia states. In order to discuss
this we shall consider the matrix elements

〈A|Q̄(x)ΓQ(x)|0〉 (10)

where A is a state containing a heavy quark and a heavy antiquark moving with velocities
v and w respectively. In the static limit this matrix element becomes

〈̃A|h̄(+)
v (x)Γh(−)

w (x)|0〉 (11)

where the tilde denotes the static limit of the state.
Matrix elements of this kind have been considered already in [3, 4], where the short-

distance corrections have been calculated. It has been observed that for the näıve defi-
nition of the states, the anomalous dimension of the current h̄(+)

v (x)Γh(−)
w (x) acquires an

imaginary part of the general structure

Im γ = f(αs)
1√

(vw)2 − 1
(12)

as v → w, where the function f is known as power series in αs up to two loops [4]

f(αs) =
4

3
αs

(
1 +

αs
4π

[
31

3
− 10

9
nf

]
+ · · ·

)
. (13)

The real part of the anomalous dimension vanishes in the limit v → w to all orders, since
the current h̄(+)

v γµh
(+)
v is a generator of heavy-flavour symmetry. On the other hand, the

anomalous dimensions of h̄(+)
v γµh

(+)
w and h̄(+)

v γµh
(−)
w are related by analytic continuation

and hence the real part is identical.
Thus the only problem is in fact the imaginary part given in (12), which diverges

in the limit v → w, and this is the major obstacle in taking the näıve limit v → w in
(8). Keeping only this imaginary part, the solution of the renormalization group equation
yields a phase factor

exp(iφ(vw)) = exp

i vw√
(vw)2 − 1

αs(µ)∫
αs(m)

dα
f(α)

β(α)

 ; β(α(µ)) = µ
∂

∂µ
α(µ) (14)

for matrix elements such as (11), which is not well defined in the limit v → w.
It has been pointed out in [4] that these phases are related to the Coulombic part

of the one-gluon exchange and that the phase may be removed by a suitable definition
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of the multiparticle states of HQET. After the redefinition of the states, the anomalous
dimensions are real and well behaved in the limit v → w. Furthermore, the phase in (14)
is related to the “long-range” part of the one-gluon exchange potential and indicates the
possibility of having bound states in some of the quark-(anti)quark channels.

Consequently, the phase appearing in (14) is an infrared contribution which should
be contained in the dynamics of the effective theory. In other words, if we want to
describe heavy quarkonia, the phase factor is related to the binding mechanism, which is
an infrared effect. In a state such as a quarkonium, the two velocities differ only by a
small amount of order 1/m which is a hint that we need to go beyond the static limit to
describe quarkonia states.

In order to see how higher-order terms in the Lagrangian cure the problem, we use
the reparametrization invariance (7). The expressions

V = v +

←−
iD

m
and W = w +

iD

m

h̃(+)
v =

(
1 +

iD/

2m

)
h(+)
v and h̃(−)

w =

(
1 +

iD/

2m

)
h(−)
w (15)

are invariant under the reparametrizations v + δv and w + δw, where this is true for
the second line only to order 1/m. This observation has been used in [10] to obtain, for
heavy-heavy currents the renormalization of the subleading terms from the leading ones.
Using reparametrization invariance, we have

exp(iφ(vw))h̄(+)
v Γh

(−)
−w

RPI−→ ˜̄h
(+)

v exp(iφ(VW))Γh̃
(−)
−w . (16)

If we now consider the limit v → w we have also V → W, which yields in the phase factor
the formal expression

exp(iφ(VW)) → exp(iφ(V2)) = exp

i 1√V2 − 1

αs(µ)∫
αs(m)

dα
f(α)

βα

 , (17)

where we have only kept the singular term in the last step.
Hence the divergent phase factor may be shifted from the velocities into the residual

momenta, if the equation of motion of the heavy-quark field is not the one given by (9),
but rather by

m

2

(
V2 − 1

)
h(+)
v = 0 and

m

2

(
W2 − 1

)
h

(−)
−w = 0 . (18)
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In other words, the Lagrangian leading to these equations of motion is the combination

L0 =
m

2
h̄(+)
v (V2 − 1)h(+)

v +
m

2
h̄

(−)
−w(W2 − 1)h

(−)
−w

= h̄(+)
v (ivD)h(+)

v + h̄(+)
v

(iD/)2

2m
h(+)
v − h̄(−)

w (iwD)h(−)
w + h̄(−)

w

(iD/)2

2m
h(−)
w , (19)

where we have replaced w → −w in the last step. This expression for the Lagrangian is
reparametrization-invariant; it is also the same invariance which ensures that the static
and the kinetic terms of the Lagrangian renormalize in the same way. Now one may per-
form the limit v → w without encountering a problem in the short-distance contributions
as in (12). Of course, the phase (14) has not disappeared: it will show up as a singularity
in the residual relative momentum, which will be generated by the infrared dynamics as
given in (19). This also means that it is a long-distance effect and may be absorbed into
the states as discussed in [4].

However, if it is (19) that determines the leading term of our expansion, we will not be
able to perform a strict infinite-mass limit, since now L0 depends explicitly on the heavy
mass. In the case of heavy quarkonium, non-perturbative effects will generate binding of
the two heavy objects that will introduce a small scale Λ̃, which now in general depends
on the heavy mass.

The bottomonium and the charmonium are far from being Coulombic systems and
there is no obvious reason why in the heavy-mass limit a heavy quarkonium should become
Coulombic; still the case of a Coulombic system is instructive. Neglecting any running
of α, the size of such a Coulombic system is RBohr = 1/(αm), which is large compared
to the Compton wavelength λQ = 1/m and hence disparate scales appear allowing for an
effective field theory treatment. However, the small scale 1/RBohr depends on the mass
such that it does not approach a finite limit as m→∞, even for running αs.

For the heavy quarkonia we shall not assume any type of potential or binding model,
but rather leave the matrix elements of the operators as non-perturbative entities, which
may not be determined within the effective theory. The only thing that has to be kept in
mind is that these matrix elements depend on the mass, as can be seen from the Coulombic
example. The Coulombic system is, however, an extreme case, since all scales are set there
by the mass of the constituents; we shall argue below that the mass dependence might,
in reality, be much weaker.

Based on the new equations of motion we get for tree-level matrix elements the rela-
tions

(ivD)h(+)
v =

(iD)2

2m
h(+)
v = O(1/m) , (ivD)h(−)

v = −(iD)2

2m
h(−)
v = O(1/m) . (20)

7



As we shall see, this means that the static equations of motion hold up to terms one order
higher in the heavy-mass expansion. This is very similar to what happens in the v/c
expansion of [5], where the right-hand side of (20) is suppressed by an additional power
in v/c.

The magnetic-moment term of order 1/m appearing in the Lagrangian and all higher-
order terms are treated as perturbations and lead to time-ordered products; these terms
may be identified with the corrections to the states. The expansion of the fields Q(±)

v leads
to corrections, which are in general local operators. However, as in any effective theory
we are free to perform field redefinitions [11], and hence the expansions (5) and (6) are
not uniquely defined; one may always move terms appearing in the expansion of the field
into the Lagrangian; these contributions appear in the Lagrangian as terms that would
vanish by a näıve use of the equations of motion (9). However, inserted into time-ordered
products they yield local terms according to

〈ψ|T{h̄(+)Γ(ivD)h(+)h̄(+)Γ′h(+)}|ψ〉 = iδ4(x)〈ψ|h̄(+)ΓP+Γ′h(+)|ψ〉+O(1/m) , (21)

where the higher-order terms appear, since the equation of motion is not quite the static
one. However, this ambiguity of shifting contributions between the Lagrangian and the
fields appears only in terms of order 1/m2 or higher and thus does not affect our arguments
concerning the heavy-mass limit based on reparametrization invariance.

Hence only the combination of (5) and (6) has physical significance and for the present
application it is convenient to use expansions somewhat different from (5) and (6). By a
linear field redefinition we arrive at equivalent expansions, which are up to 1/m2:

L = Lstatic + LI (22)

where

Lstatic = h̄(+) ivD h(−) − h̄(−) ivD h(−)

LI =
(

1

2m

)
L1 +

(
1

2m

)2

L2

=
(

1

2m

)
(K1 +G1) +

(
1

2m

)2

(K2 +G2) +O(1/m3) . (23)

Here we have defined

K1 = K
(+)
1 +K

(−)
1 K

(±)
1 = h̄(±)[(iD)2 − (ivD)2]h(±)

G1 = G
(+)
1 +G

(−)
1 G

(±)
1 = (−i)h̄(±)σµν(iD

µ)(iDν)h(±)

K2 = K
(+)
2 +K

(−)
2 K

(±)
2 = h̄(±)[(iDµ), [(−ivD), (iDµ)]]h(±)

G2 = G
(+)
2 +G

(−)
2 G

(±)
2 = (−i)h̄(±)σµν{(iDµ), [(−ivD), (iDν)]}h(±) . (24)
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The corresponding expansion of the field Q̄(+)
v reads

Q(+)
v (x) =

(
1 +

1

2m
P−iD/− 1

8m2
(ivD)P−iD/

− 1

8m2

(
(iD)2 − (ivD)2 − iσµν iD

µiDν
)

+O(1/m3)
)
h(+)(x) . (25)

In fact this is the form that has been obtained from QCD by a sequence of Foldy-
Wouthuysen transformations [12].

The advantage of this form is that now the Lagrangian no longer contains terms
that would vanish by a näıve use of the equation of motion; all these terms have been
shifted into the expansion of the field Q̄(+)

v . Again the corresponding expressions for the
antiparticle fields are obtained by the replacement v → −v.

In this way one may obtain all terms which explicitly contain a heavy-quark field.
However, there are more contributions appearing in order 1/m2 which are due to closed
loops of heavy quarks in the full theory. These contributions may be expressed as local
higher-dimensional operators involving only gluon fields. To order 1/m2 there are only
two independent operators, leading at tree level to a contribution Lglue to the Lagrangian
(g2
s = 4παs):(

1

2m

)2

Lglue =
αs

30πm2
Tr{[iDµ, G

µν ][iDλ, Gλν ]}+
iαsgs

360πm2
Tr{Gµν [Gνρ, G

ρ
µ]} (26)

where the gluon field strength is defined as

[iDµ, iDν ] = igsGµν . (27)

We may use the equations of motion of the gluon field to rewrite two of the 1/m2

operators as

h̄(+)[(iDµ), [(−ivD), (iDµ)]]h(+) = 4παsh̄
(+)γµT

ah(+)
∑
q

q̄γµT aq

Tr{[iDµ, G
µν ][iDλ, Gλν ]} = −2

∑
qq′

(q̄γµT aq)(q̄′γµT aq′) . (28)

In this form they have a simple interpretation: The first one is the interaction of the
heavy quark with the (virtual) light quarks in the quarkonium, and the second one is the
interaction among these (virtual) light quarks, which is introduced by heavy-quark loops.
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In order to calculate short-distance QCD corrections within this effective theory, one
has to start from the Feynman rules as derived from L0. The propagator H(k) obtained
in this way is

H(k) = P+
i

vk + 1
2m
k2 + iε

(29)

and hence contains all orders of 1/m. However, the reason why we had to include these
higher-order terms was that this removes the divergent phase occurring in the limit of
small relative velocity. This phase is a long-distance effect and may be absorbed into
the states, which thus have to evolve according to the dynamics dictated by L0 given
in (19). Once the phase is removed, we may expand the remaining expression for the
short-distance contribution in powers of 1/mn. Hence, as far as practical calculations are
concerned, we may simply use the static propagator

Hstat(k) = P+
i

vk + iε
(30)

as in usual HQET, which is the leading term of (29). If we chose the velocities of the
heavy quarks to be equal, then ill-defined imaginary parts such as

∫
d4k

(2π)4

1

k2
δ(vk)δ(v′k) →

∫
d4k

(2π)4

1

k2
(δ(vk))2 as v → v′ (31)

will show up at the one-loop level, which are contributions to the divergent phase. How-
ever, these are absorbed into the states and the real parts may be calculated simply in
the static limit, even for equal velocities of the heavy quarks.

In this way we may exploit the full machinery of the static limit, i.e. of HQET. However,
although the short-distance contributions are calculable in the static limit, the matrix
elements of operators composed of static fields will not be flavour-independent in the case
of a quarkonium, since the states contain a non-trivial mass dependence.

This concludes the set-up for the heavy-mass expansion for heavy quarkonia. In the
following section we shall apply these ideas to inclusive annihilation decays of heavy
quarkonia.

3 Separation Between Long and Short Distances

In this section we shall discuss the general set-up for a QCD-based calculation of the
inclusive annihilation of a heavy-quarkonium state. The aim is to establish a separation
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between long- and short-distance physics; the latter may be calculated in perturbation
theory, while the long-distance part is non-perturbative and is parametrized in terms of
hadronic matrix elements.

The starting point is the inclusive transition rate Γ of a quarkonium state |ψ〉, which
is given by the optical theorem in terms of the forward matrix element of the transition
operator T

Γ = 2 Im 〈ψ|T |ψ〉 , (32)

which is itself related to the discontinuities across the cuts of the two-point function of
two fields Ψ interpolating the state |ψ〉

G(p) =
∫

d4p

(2π)4
e−ipx〈0|T{Ψ(x)Ψ(0)}|0〉 . (33)

For the case at hand, (33) has a cut along the real axis of the complex p2 plane starting
at m2

light, where the mass mlight corresponds to the lightest hadronic state the heavy
quarkonium may decay into.

On the other hand, the transition rate Γ is related to the discontinuity across the
cut at the mass of the heavy quarkonium state, which is much larger than mlight. If we
consider only decays into light hadrons we are thus far away from the resonance region,
for which p2 is of order m2

light. Using local duality we may calculate the annihilation of the
two heavy quarks into light hadrons in perturbation theory, since the scale for this process
is set by the heavy-quark mass. In other words, the short-distance piece of the transition
rate Γ has an expansion in inverse powers of the heavy-quark mass, up to logarithms
induced by renormalization, and the coefficients of this expansion may be calculated in
perturbation theory.

The annihilation part of the transition operator T in terms of the heavy-quark fields
is in general given by

T =
∫
d4X d4ρ d4ξ

∑
C=1,8

∑
j,k

K
(C)
ij (X, ρ, ξ) Q̄(X + ρ)ΓjCQ(X − ρ)Q̄(−ξ)Γ̄kCQ(ξ) , (34)

where C is a matrix in colour space; C = 1 (C = 8) corresponds to the colour combination
C
⊗
C = 1

⊗
1 (C

⊗
C = T a

⊗
T a) and the sum over j and k runs over the sixteen Dirac

matrices. The kernel Kjk depends on the c.m.s.-coordinate X of the heavy-quark pair as
well as on the two relative coordinates ξ and ρ.

To set up an expansion in inverse powers of the heavy-quark mass we perform a phase
redefinition of the heavy-quark fields

Q(x) = exp(−im(vx))Q(+)
v (x), Q̄(x) = exp(−im(vx))Q̄(−)

v (x) (35)
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where the superscript (+) ((−)) refers to the annihilation part of the fields for quarks
(antiquarks). Here v is a velocity vector, which we chose to be the same for both the
quark and the antiquark. Hence we shall work in the limit we have discussed in the last
section and finally identify the velocity with the velocity of the heavy quarkonium.

This phase redefinition removes the dominant piece of the space-time dependence of
the heavy-quark field operator; the remaining dependence is only due to the residual
momentum of the heavy quark in the heavy hadron.

Inserting these redefined fields the transition operator takes the form

T =
∫
d4X d4ρ d4ξ

∑
C=1,8

∑
j,k

K
(C)
ij (X, ρ, ξ) exp(i2mXv)

Q̄(+)
v (X + ρ)ΓjCQ

(−)
v (X − ρ)Q̄(−)

v (−ξ)Γ̄kCQ(+)
v (ξ) . (36)

Introducing the Fourier-transform of the kernel as

K
(C)
ij (X, ρ, ξ) =

∫
d4P̃

(2π)4

d4π

(2π)4

d4η

(2π)4
e−iP̃Xe−iπρeiηξK̃(C)

jk (P̃ , π, η) , (37)

we obtain

T =
∫
d4X d4ρ d4ξ

∑
C=1,8

∑
j,k

∫
d4P̃

(2π)4

d4π

(2π)4

d4η

(2π)4
K̃(C)
jk (P̃ , π, η) e−iX(P̃−2mv)e−iπρeiηξ

Q̄(+)
v (X + ρ)ΓjCQ

(−)
v (X − ρ)Q̄(−)

v (−ξ)Γ̄kCQ(+)
v (ξ) . (38)

The dominant momentum dependence is 2mv and we can remove this large piece by
redefining the c.m.s. momentum; hence we introduce the residual c.m.s. momentum

P = P̃ − 2mv (39)

and obtain

T =
∫
d4X d4ρ d4ξ

∑
C=1,8

∑
j,k

∫
d4P

(2π)4

d4π

(2π)4

d4η

(2π)4
K(C)
jk (m;P, π, η) e−iXPe−iπρeiηξ

Q̄(+)
v (X + ρ)ΓjCQ

(−)
v (X − ρ)Q̄(−)

v (−ξ)Γ̄kCQ(+)
v (ξ) , (40)

where the kernel K(C)
jk now depends only on small, i.e. residual, momenta and on the heavy

mass m.
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Furthermore, the kernel has an expansion in inverse powers of the heavy-quark massm,
up to logarithms of the form ln(m/µ), where µ is a factorization scale2. The transition rate
Γ is independent of the factorization scale, and thus the scale dependence of the expansion
of the kernel has to be compensated by the corresponding dependence of the matrix
elements, which appear in the expansion. As usual, this scale dependence is governed by
the renormalization group, and hence one may recover the logarithmic dependence of the
transition rate on the heavy-quark mass m.

The expansion of the kernel thus takes the general form (λ = µ/m)

K(C)
jk (m;P, π, η) = R

(C)
jk (λ) +

1

2m

(
PµS

(C)µ
ij (λ) + πµT

(C)µ
ij (λ) + ηµU

(C)µ
ij (λ)

)
+
(

1

2m

)2 (
PµPνS

(C)(1)µν
ij (λ) + PµπνS

(C)(2)µν
ij (λ) + PµηνS

(C)(3)µν
ij (λ)

+ πµPνT
(C)(1)µν
ij (λ) + πµπνT

(C)(2)µν
ij (λ) + πµηνT

(C)(3)µν
ij (λ)

+ηµPνU
(C)(1)µν
ij (λ) + ηµπνU

(C)(2)µν
ij (λ) + ηµηνU

(C)(3)µν
ij (λ)

)
+ O(1/m3) . (41)

The powers of the momenta will simply yield matrix elements of operators involving
derivatives. For later use it is convenient to introduce those that correspond to the
residual-c.m.s.-momentum (RCM)

i∂µ
(
Q̄(+)
v ΓQ(−)

v

)
=
(
Q̄(+)
v Γ(iDµ)Q

(−)
v

)
+
(
Q̄(+)
v (i

←−
D µ)ΓQ

(−)
v

)
(42)

and to the residual-relative-momentum (RRM)(
Q̄(+)
v (i

←→
D µ)ΓQ

(−)
v

)
=
(
Q̄(+)
v Γ(iDµ)Q

(−)
v

)
−
(
Q̄(+)
v (i

←−
D µ)ΓQ

(−)
v

)
(43)

where D = ∂ − igA is the QCD covariant derivative for fields in the fundamental rep-
resentation. For the other bilinear Q̄(−)

v · · ·Q(+)
v we define the derivatives in the same

way.

2We restrict our attention here to the purely perturbative aspects of the operator expansion and ignore
possible problems induced by renormalon poles. These have been discussed recently in the context of the
heavy mass expansion in [13].
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Inserting (41) into the expression for the T operator and using the definitions (42) and
(43) one finds for the transition rate Γ up to and including order 1/m2:

〈ψ|T |ψ〉 =
∑
C=1,8

∑
j,k

{
R

(C)
jk (µ/m)〈ψ|[Q̄(+)

v ΓjCQ
(−)
v ][Q̄(−)

v Γ̄kCQ
(+)
v ]|ψ〉µ

+
1

2m

[
S

(C)µ
ij (λ)〈ψ|[i∂µ(Q̄(+)

v ΓjCQ
(−)
v )][Q̄(−)

v Γ̄kCQ
(+)
v ]|ψ〉µ

+ T
(C)µ
ij (λ)〈ψ|[(Q̄(+)

v Γj(i
←→
D µ)CQ

(−)
v ][Q̄(−)

v Γ̄kCQ
(+)
v ]|ψ〉µ

+ U
(C)µ
ij (λ)〈ψ|[(Q̄(+)

v ΓjCQ
(−)
v )][Q̄(−)

v Γ̄kC(i
←→
D µ)Q

(+)
v ]|ψ〉µ

]
+
(

1

2m

)2 [
S

(C)(1)µν
ij (λ)〈ψ|[i∂µ(Q̄(+)

v ΓjCQ
(−)
v )][i∂µ(Q̄

(−)
v Γ̄kCQ

(+)
v )]|ψ〉µ

+ S
(C)(2)µν
ij (λ)〈ψ|[i∂µ(Q̄(+)

v Γj(i
←→
D ν)CQ

(−)
v )][Q̄(−)

v Γ̄kCQ
(+)
v ]|ψ〉µ

+ S
(C)(3)µν
ij (λ)〈ψ|[i∂µ(Q̄(+)

v ΓjCQ
(−)
v )][Q̄(−)

v Γ̄kC(i
←→
D ν)Q

(+)
v ]|ψ〉µ

+ T
(C)(1)µν
ij (λ)〈ψ|[Q̄(+)

v Γj(i
←→
D µ)CQ

(−)
v )][i∂ν(Q̄

(−)
v Γ̄kCQ

(+)
v ]|ψ〉µ

+ T
(C)(2)µν
ij (λ)〈ψ|[Q̄(+)

v Γj(i
←→
D µ)(i

←→
D ν)CQ

(−)
v ][Q̄(−)

v Γ̄kCQ
(+)
v ]|ψ〉µ

+ T
(C)(3)µν
ij (λ)〈ψ|[Q̄(+)

v Γj(i
←→
D µ)CQ

(−)
v ][Q̄(−)

v Γ̄kC(i
←→
D ν)Q

(+)
v ]|ψ〉µ

+ U
(C)(1)µν
ij (λ)〈ψ|[i∂ν(Q̄(+)

v ΓjCQ
(−)
v )][Q̄(−)

v Γ̄kC(i
←→
D µ)Q

(+)
v ]|ψ〉µ

+ U
(C)(2)µν
ij (λ)〈ψ|[Q̄(+)

v Γj(i
←→
D ν)CQ

(−)
v ][Q̄(−)

v Γ̄kC(i
←→
D µ)Q

(+)
v ]|ψ〉µ

+ U
(C)(3)µν
ij (λ)〈ψ|[Q̄(+)

v ΓjCQ
(−)
v ][Q̄(−)

v (i
←→
D µ)(i

←→
D ν)Q

(+)
v ]|ψ〉µ

]
+ O(1/m3)

}
(44)

where the subscript µ at the matrix elements indicates their renormalization point and
all field operators have to be taken at x = 0. In what follows we shall not display
the dependence on x any more, if x = 0. Furthermore, we have replaced the ordinary
derivatives appearing in the Taylor expansion of the matrix elements by covariant ones in
order to ensure gauge invariance; this could be implemented from the very beginning by
defining the T operator including appropriate Wilson-line operators.

The lengthy expression (44) is the most general short-distance expansion for the matrix
elements of the T operator for the case of heavy quarkonia decay up to 1/m2, and this
is the first ingredient for a 1/m expansion of the transition rate Γ. In a second step, one
has to expand the matrix elements appearing in (44) in powers of 1/m.
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4 1/m Expansion for Inclusive Quarkonia Annihila-

tion

In this section we write down the complete heavy-mass expansion for the matrix elements
appearing in (44). The result we are aiming at is an expansion of the transition rate Γ of
the form

Γ = Γ0 +
(

1

2m

)
Γ1 +

(
1

2m

)2

Γ2 + · · · (45)

where we shall explicitly construct the terms up to and including 1/m2. In this expansion,
the ratio of two successive Γj is set by a small scale

Γj+1

Γj
= Λ̃ (46)

where Λ̃ is small compared to the heavy-quark mass. However, there is some difference
between the heavy quarkonia and the heavy-light systems. In the latter the parameter
corresponding to Λ̃ is Λ̄ = Mhadron −m, which becomes independent of the heavy quark
mass in the heavy-mass limit.

As we have discussed above, in heavy quarkonia systems this is not true, since in order
to perform the limit v → w we had to include subleading terms of the 1/m expansion into
L0, which determines the dynamics of the states. In this way a non-trivial dependence
on m is introduced into the scale Λ̃ induced by the binding of the two heavy quarks.
Nevertheless, this is a small scale and the expansion will be useful.

Since this means that we are not able to perform a static limit for a heavy quarkonium,
we shall no longer have heavy-flavour symmetry. However, if we define the scale Λ̃ in a
similar way as Λ̄ for heavy light systems

Λ̃ =
iv∂〈0|h̄(−)

v Γh(+)
v |ψ(v)〉

〈0|h̄(−)
v Γh

(+)
v |ψ(v)〉

(47)

we may get some idea of the flavour dependence by looking at the level spacings of the
(n3S1) quarkonia of the c and the b quarks. Here it is a well-known fact that the level
spacings are almost the same in the (c̄c) and (b̄b) system, which we take as a hint that
Λ̃ is only weakly dependent on the heavy flavour. We shall return to this point when we
discuss heavy-quark symmetries in section 7.

The way we shall set up the expansion (45) is to use the expansions (23) and (25).
The fields Q(±)

v are expanded as in (25) while the chromomagnetic term G1 and all terms
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of order 1/m2 of the Lagrangian are treated as perturbations, which lead to time-ordered
products. Up to and including 1/m2 only the double insertion of G1 and the single
insertion of the order 1/m2 terms of the Lagrangian will play a role.

The leading-order term Γ0 in the heavy-mass expansion is given by forward-matrix-
elements of dimension-six operators involving the static fields h(±). In general, there are
four dimension-six operators, two with colour structure 1

⊗
1

A
(1)
1 =

(
h̄(+)γ5h

(−)
) (
h̄(−)γ5h

(+)
)

A
(1)
2 =

(
h̄(+)γµh

(−)
) (
h̄(−)γµh(+)

)
(48)

and the corresponding two operators A
(8)
1 , A

(8)
2 with colour structure T a

⊗
T a. In fact,

due to the projections P± = (1 ± v/)/2 implicit in the static operators these are the only
spinor structures that can emerge (see appendix for details).

Thus the leading term Γ0 is always given as a linear combination of the four dimension-
six operators A

(C)
i (the factor 1/2 arises from (32))

1

2
Γ0 =

2∑
i=1

∑
C=1,8

C(A(C)
i )〈ψ|A(C)

i |ψ〉 , (49)

where the coefficients C(A(C)
i ) depend on the specific process, i.e. the kernel Kij appearing

in (44). We shall give a few examples of this “matching procedure” below.
In higher orders of the heavy-mass expansion matrix elements of higher-dimensional

operators appear from the expansion of theQ(±)
v , which have increasing powers of covariant

derivatives acting on the static fields and it is convenient to use the RCM and RRM
derivatives introduced in (42) and (43).

All dimension-seven operators either vanish due to symmetries or they are proportional
to (ivD). The latter may be rewritten using the equations of motion; in the static case
their tree-level matrix element vanishes, while one obtains a dimension-eight contribution,
if we include the higher-order terms of the equation of motion (9). Whatever choice one
prefers, there are no tree-level matrix elements of local dimension-seven operators. The
only contribution which is allowed at order 1/m is a single insertion of the first-order
chromomagnetic-moment operator

〈ψ|T
{
[G

(+)
1 (x) +G

(−)
1 (x)[A

(C)
i

}
|ψ〉 (50)

for which we shall show below that it vanishes due to spin symmetry. Thus for the
inclusive heavy quarkonia decays there is no contribution of order Λ̃/m.

16



The second-order term in the 1/m expansion has contributions from both the La-
grangian and the local operators. The local dimension-eight operators may be classified
according to the derivatives defined above. The first set of operators consists of the contri-
butions with two RCM derivatives (RCM × RCM). There are in general six independent
contributions of this type, three of which are colour 1

⊗
1 and the other four are the

corresponding T a
⊗
T a operators. The colour 1

⊗
1 operators are

B
(1)
1 =

[
i∂µ

(
h̄(+)γ5h

(−)
)] [

i∂µ
(
h̄(−)γ5h

(+)
)]

B
(1)
2 =

[
i∂µ

(
h̄(+)γµh(−)

)] [
i∂ν

(
h̄(−)γνh

(+)
)]

B
(1)
3 =

[
i∂µ

(
h̄(+)γνh(−)

)] [
i∂µ

(
h̄(−)γνh

(+)
)]

. (51)

Note that one may flip the RCM derivatives from one heavy-quark bilinear to the other,
thereby picking up a total derivative, which will not contribute to the forward matrix ele-
ments we shall consider. This is the reason why no terms appear in which both derivatives
act on the same heavy-quark bilinear; these may be rewritten into the B operators.

In the same way one obtains six colour 1
⊗

1 RCM × RRM operators

C
(1)
1 =

{(
h̄(+)γ5(i

←→
D µ)h

(−)
) [
i∂µ

(
h̄(−)γ5h

(+)
)]

+ h.c.
}

C
(1)
2 =

{(
h̄(+)(i

←→
D/ )h(−)

) [
i∂µ

(
h̄(−)γµh

(+)
)]

+ h.c.
}

C
(1)
3 =

{(
h̄(+)γν(i

←→
D µ)h

(−)
) [
i∂µ

(
h̄(−)γνh

(+)
)]

+ h.c.
}

C
(1)
4 =

{(
h̄(+)γν(i

←→
D µ)h

(−)
) [
i∂ν

(
h̄(−)γµh

(+)
)]

+ h.c.
}

C
(1)
5 =

{
iεαβκµvα

(
h̄(+)γβ(i

←→
D κ)h

(−)
) [
i∂µ

(
h̄(−)γ5h

(+)
)]

+ h.c.
}

C
(1)
6 =

{
iεαβκµvα

(
h̄(+)γ5(i

←→
D κ)h

(−)
) [
i∂µ

(
h̄(−)γβh

(+)
)]

+ h.c.
}

(52)

and the corresponding T a
⊗
T a operators.

Finally, there are 22 RRM × RRM operators, half of which are 1
⊗

1 and the other half
are the corresponding colour T a

⊗
T a. These operators fall into two categories, namely

(for the colour singlets)

D
(1)
1 =

(
h̄(+)γ5(i

←→
D µ)h

(−)
)(

h̄(−)γ5(i
←→
D

µ
)h(+)

)
D

(1)
2 =

(
h̄(+)(i

←→
D/ )h(−)

)(
h̄(−)(i

←→
D/ )h(+)

)
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D
(1)
3 =

(
h̄(+)γµ(i

←→
D ν)h

(−)
)(

h̄(−)γµ(i
←→
D

ν
)h(+)

)
D

(1)
4 =

(
h̄(+)γν(i

←→
D µ)h

(−)
)(

h̄(−)γµ(i
←→
D

ν
)h(+)

)
D

(1)
5 =

{
iεαβκµvα

(
h̄(+)γβ(i

←→
D κ)h

(−)
)(

h̄(−)γ5(i
←→
D µ)h

(+)
)

+ h.c.
}

(53)

and

E
(1)
1 =

{(
h̄(+)γ5(i

←→
D )2h(−)

) (
h̄(−)γ5h

(+)
)

+ h.c.
}

E
(1)
2 =

{(
h̄(+)(i

←→
D/ )(i

←→
D µ)h

(−)
) (

h̄(−)γµh(+)
)

+ h.c.
}

E
(1)
3 =

{(
h̄(+)(i

←→
D µ)(i

←→
D/ )h(−)

) (
h̄(−)γµh(+)

)
+ h.c.

}
E

(1)
4 =

{(
h̄(+)(i

←→
D )2γµh

(−)
) (

h̄(−)γµh(+)
)

+ h.c.
}

E
(1)
5 =

{
iεαβκµvα

(
h̄(+)γβ(i

←→
D κ)(i

←→
D µ)h

(−)
) (

h̄(−)γ5h
(+)
)

+ h.c.
}

E
(1)
6 =

{
iεαβκµvα

(
h̄(+)γ5(i

←→
D κ)(i

←→
D µ)h

(−)
) (

h̄(−)γβh
(+)
)

+ h.c.
}
. (54)

Thus there are in general 40 dimension-eight operators. Note that we have already
dropped the operators which vanish because of the equations of motion for the heavy
quark.

The general expression for Γ2 is thus given by a linear combination of the 40 local
dimension-eight operators and the non-local contributions from the time-ordered products
with the Lagrangian (recall the factor 1/(4m2) in the definitions (45), (23), and (26) and
the factor 1/2 in (32))

1

2
Γ2 =

3∑
i=1

∑
C=1,8

C(B(C)
i )〈ψ|B(C)

i |ψ〉+
6∑
i=1

∑
C=1,8

C(C(C)
i )〈ψ|C(C)

i |ψ〉

+
5∑
i=1

∑
C=1,8

C(D(C)
i )〈ψ|D(C)

i |ψ〉+
6∑
i=1

∑
C=1,8

C(E(C)
i )〈ψ|E(C)

i |ψ〉

+
2∑
i=1

∑
C=1,8

C(A(C)
i )(−i)

∫
d4x 〈ψ|T

{
L2(x)A

(C)
i (0)

}
|ψ〉

+
(−i)2

2

2∑
i=1

∑
C=1,8

C(A(C)
i )

∫
d4x d4y 〈ψ|T

{
G1(x)G1(y)A

(C)
i (0)

}
|ψ〉
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(a) (b)

Figure 1: Fermion loop diagrams. Diagram (a) contributes to the electromagnetic kernel
for the quarkonia decays into e+e−, diagram (b) contributes to the strong interaction
kernel for the quarkonia decays into light hadrons. The dashed line means that the
intermediate states are on-shell.

+
2∑
i=1

∑
C=1,8

C(A(C)
i )(−i)

∫
d4x 〈ψ|T

{
Lglue(x)A(C)

i (0)
}
|ψ〉 (55)

where the coefficients in the time-ordered product terms are again given by the lowest-
order coefficients C(A(C)

i ). This expression is still quite general and simplifies once the
heavy-quark symmetry and the fact that we have to take forward matrix elements is taken
into account.

5 The Operator Coefficients to Leading Non-Trivial

Order

In this section we shall calculate two simple kernels in order to show how our method is
applied, namely the fermion loop diagrams depicted in fig. 1.

These diagrams yield contributions of order α (fig. 1a) and αs(m) (fig. 1b). Calculating
the electromagnetic contribution (fig. 1a) one obtains for the kernel

Kµν(P, π, η) = − 4π

3P 2
α2c2Qgµν , (56)

where cQ is the charge of the heavy quark in units of the electron charge. Furthermore,
P = p+ p̄ is the sum of the momenta of the quark p and the antiquark p̄. Hence only the
Dirac matrix combination γµ⊗ γµ contributes in the sum over the Dirac matrices in (44).
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The kernel is expanded using

p = v
√
m2 − p2

⊥ + p⊥ = v
(
m− 1

2m
p2
⊥ + · · ·

)
+ p⊥

and the result is matched to the operators by identifying the momenta with the deriva-
tives appearing in the operators (see appendix for more details). The only non-vanishing
coefficients are

Cee(A(1)
2 , m) = Cee(B(1)

3 , m) = − π

3m2
α2c2Q

Cee(E(1)
2 , m) = Cee(E(1)

3 , m) = − π

12m2
α2c2Q

Cee(E(1)
4 , m) = − π

6m2
α2c2Q. (57)

From this one may obtain the coefficients for the quark-loop diagram of fig. 1b by the
replacements c2Qα

2 → nfα
2
s(m)/2 in the coefficients and 1

⊗
1 → T a

⊗
T a in the operators,

where nf is the number of light flavours which are allowed in the quark loop. In this way
we obtain

Cqq(A(8)
2 , m) = Cqq(B(8)

3 , m) = − π

6m2
α2
s(m)nf

Cqq(E(8)
2 , m) = Cqq(E(8)

3 , m) = − π

24m2
α2
s(m)nf

Cqq(E(8)
4 , m) = − π

12m2
α2
s(m)nf . (58)

The matching calculation yields these coefficients at the scale µ = m and hence it is αs
taken at this scale that enters the expression. We have indicated the µ dependence of
the coefficients by an additional argument for these functions. A change of this scale is
governed by the renormalization group of the effective theory, which is discussed in the
next section.

6 QCD Evolution of the Coefficients C

In general QCD corrections render the operators and the coefficients scale-dependent in
such a way that the transition rate Γ is scale-independent. Schematically this may be
written as

Γ =
∑
i

Ci(µ)〈Oi〉|µ (59)
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where 〈〉|µ means that the matrix element is normalized at scale µ. The scale dependence
of the matrix elements and the coefficients Ci is governed by the anomalous-dimension
matrix γ

µ
∂

∂µ
〈Oi〉|µ = −γij 〈Oj〉|µ , (60)

which is obtained in the standard fashion from the ultraviolet divergences of the matrix
elements. In order to have the transition rate scale-independent, the coefficients Ci(µ)
have to obey the renormalization group equation

µ
d

dµ
Cj = Ci γij , (61)

where the initial condition at the scale µ = m is given from the matching calculation, i.e.
the calculation of the hard kernels as performed in the last section.

The four dimension-six operators A
(C)
i have a vanishing anomalous-dimension matrix

and hence there is no mixing between these four operators. Keeping the velocity of the
quark operator different from the one for the antiquark we find that the anomalous-
dimension matrix – after the redefinition of the states – vanishes as

γ
(6)
ij ∝ ωr(ω)− 1 , (62)

where ω is the product of the two velocities and

r(x) =
1√

x2 − 1
ln(x+

√
x2 − 1) . (63)

Hence the coefficient functions C(A(C)
i ) are scale-independent.

In a similar way we find that there is no mixing between the local dimension-eight
operators. In order to access the renormalization of the non-local time-ordered product
terms, we have to first study the renormalization of the terms in the Lagrangian. The
renormalization of the first-order Lagrangian is [14]

K1

∣∣∣∣
µ

= C0C1 K1

∣∣∣∣
m

C1 = 1

G1

∣∣∣∣
µ

= C0C2 G1

∣∣∣∣
m

C2 = η−9/(33−2nf ) (64)

where

η =
αs(µ)

αs(m)
(65)
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(a) (b) (c)

(d) (e)

Figure 2: Feynman diagrams leading to mixing between the non-local and the local oper-
ators. The square boxes correspond to insertions of the first-order kinetic energy operator
K1 and the shaded blob corresponds to the dimension-six operators A

(C)
i . The diagrams

(a) to (e) have to be calculated for all permutations of the external lines.

and C0 is the wave function renormalization constant of the static field, which reads in
Feynman gauge

C0 = η8/(33−2nf ) . (66)

The subscripts µ and m label at which scale the matrix elements, in which the operators
are inserted, have to be normalized. We note that C1 = 1 ensures that both terms
of the Lagrangian (19) renormalize in the same way; in other words, the wave-function
renormalization is the same in both the static and the effective theory based on (19).

Of the second-order Lagrangian we need only the contributions K
(±)
2 and Lglue, since

there will be no contribution from a single insertion of G
(±)
2 due to spin symmetry. Fur-

thermore, we shall not include the renormalization of the second-order Lagrangian, since
its contribution is hard to estimate, no matter at which scale we consider the matrix
elements.

One important effect of the renormalization in the present application is the mixing
of the time-ordered products of the Lagrangian into the local operators, since non-local
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operators may require a local counterterm. The only contribution that leads to an ultra-
violet divergence is a double insertion of the first-order kinetic energy operator K1. We
define the non-local operators

T
(C)
i =

(−i)2

2

∫
d4x d4y T

{
K1(x)K1(y)A

(C)
i (0)

}
, (67)

and the one-loop diagram types leading to ultraviolet-divergent contributions are depicted
in fig. 2. Diagrams (a) to (c) are one-particle irreducible pieces, while (d) and (e) may be
interpreted as the mixing of the time-ordered product T{K1(x)K1(0)} into local terms of
the Lagrangian.

We define two sets of seven operators, the first corresponds to the spin singlet, the
second to the spin triplet coupling

(O[1]
i ) = (T

(1)
1 , T

(8)
1 , D

(1)
1 , E

(1)
1 , B

(8)
1 , D

(8)
1 , E

(8)
1 )

(O[3]
i ) = (T

(1)
2 , T

(8)
2 , D

(1)
3 , E

(1)
4 , B

(8)
3 , D

(8)
3 , E

(8)
4 ) . (68)

These two sets have the same anomalous-dimension matrix and we find

γij = − g2

6π2



0 0 0 −2 0 4 0
0 0 8/9 0 −6 5/3 −7/6
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


. (69)

Using the anomalous-dimension matrix, one may calculate the scale dependence of the
coefficient functions

(C[1]
i ) = (C(T (1)

1 ), C(T (8)
1 ), C(D(1)

1 ), C(E(1)
1 ), C(B(8)

1 ), C(D(8)
1 ), C(E(8)

1 ))

(C[3]
i ) = (C(T (1)

2 ), C(T (8)
2 ), C(D(1)

3 ), C(E(1)
4 ), C(B(8)

3 ), C(D(8)
3 ), C(E(8)

4 )) , (70)

by solving the renormalization group equation (61) with the initial conditions given at
µ0 = m. The solutions may be expressed in terms of the value of the coefficients at the
scale m and one obtains

C(T (1)
1 , µ) = C(T (1)

1 , m) = C(A(1)
1 , m)

C(T (8)
1 , µ) = C(T (8)

1 , m) = C(A(8)
1 , m)
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C(D(1)
1 , µ) = C(D(1)

1 , m) +
32

9

1

33− 2nf
C(T (8)

1 , m) ln η

C(E(1)
1 , µ) = C(E(1)

1 , m)− 8

33− 2nf
C(T (1)

1 , m) ln η

C(B(8)
1 , µ) = C(B(8)

1 , m)− 24

33− 2nf
C(T (8)

1 , m) ln η

C(D(8)
1 , µ) = C(D(8)

1 , m) +
16

33− 2nf
C(T (1)

1 , m) ln η

+
20

3

1

33− 2nf
C(T (8)

1 , m) ln η

C(E(8)
1 , µ) = C(E(8)

1 , m)− 14

3

1

33− 2nf
C(T (8)

1 , m) ln η (71)

and the same solution for the second set of coefficients.
The non-trivial evolution of all the coefficients of the local operators is driven by the

coefficient of the time-ordered product corresponding to a double insertion of K1; in turn,
this coefficient is simply the one of the dimension-six operator with the corresponding
spin structure.

The scale µ0 is the matching scale, which we chose to be µ0 = m. On the other
hand, we want to study the matrix elements of the operators at some lower scale, say
the scale of the binding energy of the quarkonium, where we expect to have a reasonable
approximation using a wave-function model. The evolution equation (61) allows us to
change the renormalization scale, thereby inducing mixing of the non-local operators into
the local ones.

7 Forward Matrix Elements and Heavy Quark Sym-

metry

Once we have scaled down to the small scale of the order of the binding energy of the
quarkonium, we have to evaluate the forward matrix elements appearing in (55). This
requires in general non-perturbative input, which has to be supplied by other methods
such as lattice gauge theory or by model estimates. However, we may use heavy-quark
symmetry to count the number of independent non-perturbative parameters.

The Lagrangian L0 given in (19) still has the heavy-quark spin symmetry. As a
consequence, the heavy quarkonia systems fall in general into spin symmetry quartets:
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For a given orbital angular momentum ` and radial excitation quantum number n, the
four states (in the spectroscopic notation 2S+1`J)

[n1`` n3``−1 n3`` n3``+1] (72)

form such a spin symmetry quartet. An exception are the S waves (` = 0), for which the
three polarization directions of the n3S1 and the n1S0 form the spin symmetry quartet.

In order to exploit the consequences of the spin symmetry for the inclusive hadronic
decays we shall use the trace formalism. We denote with |Y`〉 the spin symmetry quartet
consisting of the spin singlet and the spin triplet for a given orbital angular momentum
`. The coupling of the heavy-quark spins may be represented by the matrices

HY (v) =

{
P+γ5 for the spin singlet
P+ε/ for the spin triplet

, (73)

where P+ = (1+v/)/2 is the projection of the “large components”. Note that the matrices
HY are independent of `.

For the dimension-six operators this implies

〈Y`|
(
h̄(+) C Γ h(−)

) (
h̄(−) C Γ′ h(+)

)
|Y`〉 = a

(C)
` Tr

{
HY Γ

}
Tr {Γ′HY } , (74)

which means that there are only two independent parameters for a given ` describing
the dimension-six matrix elements, namely a

(1)
` and a

(8)
` . In the study of exclusive non-

leptonic decays of heavy-light mesons, matrix elements of four-quark operators are usually
estimated in vacuum insertion. Applying this approximation to (74) suggests that a

(1)
0 is

the dominant coefficient.
The generic dimension-eight colour 1

⊗
1 operators may be written in terms of these

representations as

〈Y`|[i∂µ
(
h̄(+)Γh(−)

)
][i∂ν

(
h̄(−)Γ′h(+)

)
]|Y`〉 = bµν` Tr

{
HY Γ

}
Tr {Γ′HY }[

〈Y`|
(
h̄(+)(i

←→
D

µ
)Γh(−)

)
[i∂ν

(
h̄(−)Γ′h(+)

)
]|Y`〉+ h.c.

]
= cµν` Tr

{
HY Γ

}
Tr {Γ′HY }

〈Y`|
(
h̄(+)(i

←→
D

µ
)Γh(−)

)(
h̄(−)Γ′(i

←→
D

ν
)h(+)

)
]|Y`〉 = dµν` Tr

{
HY Γ

}
Tr {Γ′HY }[

〈Y`|
(
h̄(+)(i

←→
D

µ
)(i
←→
D

ν
)Γh(−)

) (
h̄(−)Γ′h(+)

)
]|Y`〉+ h.c.

]
= eµν` Tr

{
HY Γ

}
Tr {Γ′HY } .

(75)

The tensors bµν` , cµν` , dµν` and eµν` have to be constructed from the velocity vector v and the
metric tensor. Furthermore, if one contracts one of the indices with v, one may use the
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equation of motion of the fields h(±)
v ; in the static limit this simply vanishes, while with

an equation of motion as (18) one obtains a term one order higher in the 1/m expansion,
which may be dropped, since we work only to order 1/m2. Consequently, the tensors are
given by

bµν` = b`(g
µν − vµvν) , cµν` = c`(g

µν − vµvν) ,

dµν` = d`(g
µν − vµvν) , eµν` = e`(g

µν − vµvν) . (76)

Spin symmetry thus places a very strong restriction on the local matrix elements, since
for a given orbital angular momentum ` there are only eight non-perturbative parame-
ters b

(1)
` , · · · e(1)` and the corresponding octet partners b

(8)
` , · · · e(8)` , which describe all the

forward matrix elements of the local dimension-eight operators given above.
From an estimate based on vacuum insertion one would guess that b

(1)
0 , d

(1)
1 and e

(1)
0

dominate all other coefficients; in particular all the c
(C)
` are expected to be small, if vacuum

insertion makes any sense.
In a very similar way one may analyse the spin symmetry structure of the non-local

terms. The kinetic energy terms are spin symmetric; furthermore there is no contribu-
tion from insertions of K1, since this is already contained in the dynamics of the states;
however, we note that this does not mean that K1 does not show up at all: A double
insertion of K1 mixes under renormalization into local dimension-eight operators, but this
is a short-distance effect which was calculated in the last section.

For an insertion of the second-order kinetic energy term K2 we obtain from the trace
formalism

(−i)
∫
d4x 〈Y`|T{K2(x)

(
h̄(+)Γh(−)

) (
h̄(−)Γ′h(+)

)
|Y`〉 = k

(1)
2 Tr

{
HY Γ

}
Tr {Γ′HY } (77)

and a corresponding expression for the colour T a
⊗
T a contribution.

Furthermore, spin symmetry implies that a single insertion of a chromomagnetic mo-
ment operator vanishes. We have (j = 1, 2):

(−i)
∫
d4x 〈Y`|T{Gj(x)

(
h̄(+)Γh(−)

) (
h̄(−)Γ′h(+)

)
|Y`〉 =

gµνj
[

Tr
{
HY σµνP+Γ

}
Tr {Γ′HY }+ Tr

{
HY ΓP−σµν

}
Tr {Γ′HY }

+ Tr
{
HY Γ

}
Tr {Γ′P+σµνHY }+ Tr

{
HY Γ

}
Tr {σµνP−Γ′HY }

]
. (78)

Thus the tensor gµνj has to be antisymmetric, but it may only be built from the velocity
vector and the metric tensor; from these only symmetric combinations are possible, and
hence these contributions have to vanish.
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Finally, there is also a double insertion of the chromomagnetic moment operator G1.
Analysing the spin structure of this term gives

(−i)2

2

∫
d4x d4y 〈Y`|T{G1(x)G1(y)

(
h̄(+)Γh(−)

) (
h̄(−)Γ′h(+)

)
|Y`〉 = Sµναβ[

Tr
{
HY σµνP+σαβP+Γ

}
Tr {Γ′HY }+ Tr

{
HY P+σµνΓP−σαβ

}
Tr {Γ′HY }+ · · ·

]
(79)

where the ellipses stand for all other possible insertions of the two sigma-matrices. The
tensor S now has to be antisymmetric and it may only be built from the metric tensor
gµν , since we have P±σµνvµP± = 0 as well as P±σµνvµP∓ = 0. Hence we have only a single
parameter for this contribution

(−i)2

2

∫
d4x d4y 〈Y`|T{G1(x)G1(y)

(
h̄(+)Γh(−)

) (
h̄(−)Γ′h(+)

)
|Y`〉 = G(1)[

Tr
{
HY σµνP+σ

µνP+Γ
}

Tr {Γ′HY }+ Tr
{
HY P+σµνΓP−σµν

}
Tr {Γ′HY }+ · · ·

]
(80)

and a corresponding relation for the colour combination T a
⊗
T a.

The constraints from spin symmetry thus allow us to drop the operators C
(C)
5 , C

(C)
6 ,

D
(C)
5 , E

(C)
5 and E

(C)
6 in a calculation for the total rate. Of course, the contribution of Lglue,

(26), is spin-symmetric, since it involves only the light degrees of freedom. Furthermore,
the only contribution of chromomagnetic-moment operators is the double insertion of G1,
which in turn is the only spin-symmetry-violating contribution that appears.

At the end of this section we want to discuss the flavour symmetry. Let us recall
that for heavy-light systems both the spin and the flavour symmetries hold. As already
mentioned several times, the flavour symmetry is broken in the present case of heavy
quarkonia, because the states acquired a mass dependence. The interesting question
arises about the amount of flavour-symmetry violation. As a simple example, we study
the simpler problem of flavour-symmetry breaking for mass splittings. In the heavy-mass
limit the four states in (72) should be degenerate; splitting between the members of
the spin-symmetry quartet is induced by spin-orbit and spin-spin interactions. We may
analyse this by looking at the mass of a heavy quarkonium in terms of the Lagrangian

M(n2S+1`J) = 2m+ Λ̃(n, `) +
1

2m
〈ψ|[G(+)

1 +G
(−)
1 ]|ψ〉

+
(

1

2m

)2

〈ψ|[K(+)
2 +K

(−)
2 +G

(+)
2 +G

(−)
2 ]|ψ〉

+(−i)
(

1

2m

)2 ∫
d4x 〈ψ|T{[G(+)

1 (x) +G
(−)
1 (x)][G

(+)
1 +G

(−)
1 ]}|ψ〉

+O(1/m3) . (81)
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Note that no insertions of K
(±)
1 appear, since this term is already included in L0.

The first contribution Λ̃(n, `) is the “binding energy”, as one would obtain from the
solution of the Schrödinger-type of equations corresponding to L0. This parameter can
only depend on the quantum numbers n and `, since spin symmetry is still unbroken.

Breaking of spin symmetry occurs first at order 1/m; it is given by the expectation
value of the first-order chromomagnetic moment operator. In a non-relativistic language,
this would correspond to a coupling of the form (~s (+) +~s (−)) · ~B, where ~B is the chromo-

magnetic field, which is created by the orbital motion. Hence we expect ~B ∝ ~L, where
~L is the orbital angular momentum. In other words, the first-order term is a spin-orbit
coupling term.

The spin symmetric local terms of order 1/m2 are corrections to Λ̃(n, `), while the
second-order chromomagnetic operator yields a correction to the spin-orbit term. The
time-ordered product of the two first-order chromomagnetic moment operators will give
(aside from a correction term to Λ̃(n, `)) a spin-spin coupling term, which in a non-
relativistic form is ~s(+) ·~s(−) for ` = 0. Hence we arrive at a mass formula of the form (for
` = 0):

M(n2S+1`J) = 2m+ Λ̃(n, `) +
ω(n, `)

2m

1

2
[J(J + 1)− `(`+ 1)− S(S + 1)]

+
τ(n, `)

4m2

[
1

2
S(S + 1)− 3

4

]
, (82)

where ω(n, `) and τ(n, `) are given in terms of matrix elements involving the Lagrangian.
Spin-dependent relativistic corrections can be systematically studied in the Wegner–

Wilson loop approach. Their general structure up to order 1/m2 (under the assumption
of a fixed background field Aµ(x), cf. ref. [15]) has been obtained by Eichten and Feinberg
(EF) [16]

V (r) = V0(r) +
V0(r)

′ + 2V1(r)
′ + 2V2(r)

′

2m2r
~L · ~S +

V4(r)

3m2
~s1 · ~s2

+
V3(r)

m2

(
~r · ~s1 ~r · ~s2

r2
− 1

3
~s1 · ~s2

)
+ spin-independent corrections , (83)

where V0(r) is the spin-independent potential and Vi(r) are related to expectation values
of the colour-electric and magnetic fields, e.g. (~r = ~r1 − ~r2 and the limit T → ∞ is
understood):(

rirj
r2

− δij
3

)
V3(r) +

δij
3
V4(r) =

g2

T

∫ T/2

−T/2

∫ T/2

−T/2
〈Bi(~r1, t)Bj(~r2, t

′)〉 dt dt′ / 〈1〉 . (84)
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While (83) is exact for the spin-dependent relativistic corrections (for equal masses), the
question of the spin-independent relativistic corrections appears not to be yet completely
understood at the present time (for a review see e.g. [15]).

The potentials Vi(r) are usually assumed to be flavour-independent. This assumption
is not only in agreement with observed mass splittings of charmonium and bottomonium,
but also confirmed by lattice-QCD studies (for a recent study see e.g. ref. [17]). The flavour
dependence of mass splittings in the EF formulation (83) enters through the explicit 1/m2

factors, but also through the mass dependence of the expectation values

〈rq V (p)
i (r)〉nl =

∫ ∞
0

dr r2R2
nl(r) r

q V
(p)
i (r) , (85)

where Rnl(r) are the radial wave functions (normnalized to
∫∞
0 dr r2 R2

nl(r) = 1). Our
result (81,82) has a structure similar to that of (83). For example, we may identify

τ(n, l) = 〈3
4
V4(r)〉nl . (86)

On the other hand, it is straightforward to include one-loop corrections to our result
(81), while the EF representations seem to be non-renormalizable objects, and hence any
attempt to calculate them in one-loop order should end up with a divergent result [15].

Although the functions ω(n, `) and τ(n, `) are matrix elements of flavour-independent
operators, they in fact depend on the flavour through the states. We may obtain some idea
on the flavour dependence of ω(n, `) and τ(n, `) by comparing the spectra of bottomonium

and charmonium. For example, the spin-orbit term (proportional to ~L · ~S in (83)) and the
tensor interaction (last term in (83)) do not contribute to either of the mass differences
m(23S1)−m(13S1) or m̄(13PJ) −m(13S1), where m̄(13PJ) denotes the centre of gravity
of the three 3PJ (J = 0, 1, 2) states. Experimentally these mass differences are 563 MeV
(589 MeV) and 440 MeV (428 MeV), respectively, for bottomonium (charmonium). Hence,
certainly Λ̃(n, l) and τ(n, l) are basically flavour-independent.

Thus the parameters entering (82) seem to be only weakly dependent on the heavy
quark flavour for the observable states of heavy quarkonia, although heavy-flavour sym-
metry is not present any more once we include subleading terms into L0. However, it
is generally believed that in the heavy-mass limit a quarkonium should behave as an al-
most Coulombic system. This would imply that Λ̃(n) ∼ m, ω(n) ∼ m2 and τ(n) ∼ m3,
which is not compatible with the data from charmonium and bottomonium. (For (83),
the vector-Coulomb case means spin-independent terms are proportional to α2

sm, while
all spin-dependent terms are ∝ α4

sm.) This could mean that either these systems are not
close enough to the heavy-mass limit to become Coulombic, or that the heavy-mass limit
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is not the Coulombic one. Let us recall that the heavy-light systems with a b quark and
to a lesser extent the ones with a c quark already behave as one would expect in the
heavy-mass limit. This clearly indicates that the flavour dependence of the matrix ele-
ments parametrizing the long-distance effects is smaller than suggested by the Coulombic
limit.

8 Some Phenomenology

In this section we shall consider a few applications of the formalism outlined above. We
shall not give a full discussion of the phenomenological applications of the heavy-mass
expansion for heavy quarkonia, but rather study a few simple examples in some detail,
based on the matching calculation performed in section 5.

Compared to the conventional approach, and also compared to the v/c expansion
advocated by BBL [5], we have a much larger list of parameters, although spin symmetry
reduces this number to some extent. In a given order of the 1/m expansion they are all
of the same dimension and there is no a priori reason why some of them should be less
important than some others; at least the 1/m expansion does not give any hint.

The most simple example (although maybe academic) is the semi-inclusive decays of
a heavy quarkonium into e+e− and light hadrons. In leading order of the expansion we
have that ηQ → e+e− light hadrons vanishes, while we have for the ψQ

1

2
Γ0(ψQ → e+e− light hadrons) = Cee(A(1)

2 , µ)〈ψ|A(1)
2 |ψ〉 =

4π

3m2
α2c2Qa

(1)
0 (87)

with
Cee(A(1)

2 , µ) = − π

3m2
α2c2Q . (88)

There are no corrections of order 1/m, since there are no local dimension-seven oper-
ators having non-vanishing matrix elements, and also the only non-local term, which is
an insertion of a first-order chromomagnetic moment operator G

(±)
1 , vanishes due to spin

symmetry.
The first subleading contribution appears at order 1/m2. Using the matching cal-

culation of section 5 and taking into account the running considered in section 6, we
obtain

1

2
Γ2 = Cee(B(1)

3 , µ)〈ψ|B(1)
3 |ψ〉µ + Cee(D(8)

3 , µ)〈ψ|D(8)
3 |ψ〉µ

+Cee(E(1)
2 , µ)〈ψ|E(1)

2 |ψ〉µ + Cee(E(1)
3 , µ)〈ψ|E(1)

3 |ψ〉µ
+Cee(E(1)

4 , µ)〈ψ|E(1)
4 |ψ〉µ + Cee(A(1)

2 , µ)(k
(1)
2 +G(1) + F (1)) (89)
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where µ is the renormalization point µ < m, and F (1) is the contribution of the single
insertion of the purely gluonic piece Lglue of the 1/m2 Lagrangian.

The coefficients are given by

Cee(B(1)
3 , µ) = − π

3m2
α2c2Q

Cee(D(8)
3 ) = − π

3m2
α2c2Q

16

33− 2nf
ln η

Cee(E(1)
2 , µ) = Cee(E(1)

3 , µ) = − π

12m2
α2c2Q

Cee(E(1)
4 , µ) = − π

3m2
α2c2Q

[
1

2
− 8

33− 2nf
ln η

]
. (90)

Note that we have an additional factor 1/(2m)2 in front of the second-order contribution
according to our definition (45).

This expression looks relatively complicated, but it simplifies somewhat due to spin
symmetry. The matrix elements of the local operators are given in terms of the three pa-
rameters b

(1)
0 , e

(1)
0 and d

(8)
0 , while the non-local terms introduce another three parameters:

k
(1)
2 , G(1), and F (1). At order 1/m2 there are thus six parameters describing the decay

rate, which may then be expressed as

1

2
Γ2 =

π

3m2
α2c2Q

[
12b

(1)
0 + 8e

(1)
0

(
1− 12

33− 2nf
ln η

)

+12d
(8)
0

16

33− 2nf
ln η − k

(1)
2 −G(1) − F (1)

]
. (91)

A further simplification can only be achieved with additional theoretical prejudices.
A popular assumption (although ad hoc) for non-leptonic inclusive decays of heavy-light
mesons is vacuum insertion. Note, however, that this is not a scale-invariant statement.
Usually vacuum insertion is applied at some small scale, where the matrix elements are
estimated by e.g. a wave-function model. There the local contributions are related to the
wave function and its derivatives at the origin ~x = ~0, and the non-local contributions
correspond to corrections to the wave function. The application of vacuum insertion to
the present case of heavy-quarkonium decays is quite a strong assumption, because it
removes already all the operators with a RCM derivative. This follows from the fact
that, with this assumption, the c.m.s. frame of the hard annihilation process has to be
the same as the one of the heavy quarkonium. Furthermore, this assumption leads to
vanishing matrix elements for all colour T a

⊗
T a operators at the small scale µ. And
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finally, in such a picture the contributions of the purely gluonic piece (26) vanish (e.g. the
term F (1) in (91)).

If we nonetheless use vacuum insertion at a small scale µ we find

Γ =
α2c2Q
m2

[
8π

3
a

(1)
0 +

4π

3m2
e
(1)
0

(
1− 12

33− 2nf
ln η

)
− π

6m2

(
k

(1)
2 +G(1)

)]
. (92)

The first term is the one familiar from non-relativistic potential models: Identifying

a
(1)
0 =

3

2
|Ψ(0)|2 =

3

8π
|R(0)|2 (93)

we recover the well-known Royen–Weisskopf formula (M = M(3S1) ≈ 2m):

Γ(3S1 → `¯̀) =
4α2c2Q
M2

|R(0)|2 , (94)

which holds for the exclusive decay. However, it is this expression we obtain to leading
order also for the inclusive decay; this indicates that the exclusive mode ψ → e+e− will
saturate a large portion of the inclusive decay ψ → e+e−+ light hadrons.

The non-logarithmic part of the e
(1)
0 1/m2 correction in (92) has also been discussed

by BBL [5] and by Keung and Muzinich (KM) [18]. It is in fact the only correction that

occurs in either approach. BBL propose to identify (the analogon to) e
(1)
0 with the limit as

r → 0 of −~∆2R(r) with appropriate regularization. KM calculate kinematical corrections
to the leading-order amplitude. They denote by ε the binding energy and by ~p the relative
three-momentum of the heavy quark and antiquark. Then they evaluate the amplitude
at ~p 2 = mε rather than at ~p 2 = 0, as is the usual wave-function prescription for S-wave
decays. Their corrections proportional to ε/m are thus ~p 2/m2 corrections and can be
identified with those arising from the E-operators in our approach.

Let us emphasize that the appearance of the logarithm in (92) indicates the breakdown
of the näıve potential-model calculations also for S-wave decays as was conjectured a long
time ago [19]. Expanding

6

33− 2nf
ln η ≈ αs(m)

π
ln
m

µ
, (95)

we obtain a contribution to the decay width proportional to |R′′(0)|2 ln(m/µ). This
manifestly violates the potential-model ansatz that the infrared dynamics is given by the
meson’s non-relativistic wave function (and its derivatives), while the short-distance part
is free of infrared singularities.
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As a further example, let us study the hadronic decay of spin-triplet P -wave quarkonia
n3PJ = χQJ(nP ). In the wave-function approach, the leading-order (in αs(m)) decay is
into two gluons for the J = 0, 2 states, Γ(3P0,2 → gg) = O(α2

s), while the J = 1 state
can first decay at O(α3

s) into either three gluons or a quark-antiquark-pair plus a gluon.
Moreover, it was found [19, 20, 21] that the quark-antiquark-gluon cuts are singular in
the limit of zero binding energy ε

Γ(3PJ → qq̄g) =
nf
3

128

3π

αs(m)3

M4
ln
m

ε
|R′1P (0)|2 . (96)

The magnitude of the logarithm is usually estimated by identifying 1/ε with the av-
erage radius of the 3P states. Again, the presence of an infrared sensitive logarithm
signals the breakdown of the usual factorization assumption that is behind the wave-
function approach. It has been argued that the decay into qq̄g has to be considered as
being of the same perturbative order O(α2

s) as the two-gluon decay since the expresion
αs ln(m/ε)R′(0)2 has to be considered as a new nonperturbative parameter besides R′(0)2

describing P -wave decays [22, 7].
The present formalism reproduces this result by generating the large logarithm through

the renormalization group running. In fact, formally the decay into a pair of quarks is the
dominant one, since it is of the same order in αs as the two-gluon decay but logarithmically
enhanced, see (102) below. To see how this comes about consider the qq̄ decays of the
spin-triplet P -wave states in more detail. At the matching scale m only colour-octet
contributions are present (section 5) and hence the leading-order result is

1

2
Γ0(3χ→ qq̄ → light hadrons) = − π

6m2
α2
s(m)nf 〈ψ|A(8)

2 |ψ〉 =
2π

3m2
α2
s(m)nf a

(8)
0 . (97)

For the second-order contributions we find

1

2
Γ2 = +Cqq(B(8)

3 , µ)〈ψ|B(8)
3 |ψ〉µ + Cqq(D(8)

3 , µ)〈ψ|D(8)
3 |ψ〉µ + Cqq(D(1)

3 , µ)〈ψ|D(1)
3 |ψ〉µ

+Cqq(E(8)
2 , µ)〈ψ|E(8)

2 |ψ〉µ + Cqq(E(8)
3 , µ)〈ψ|E(8)

3 |ψ〉µ
+Cqq(E(8)

4 , µ)〈ψ|E(8)
4 |ψ〉µ + Cqq(A(8)

2 , µ)(k
(8)
2 +G(8) + F (8)) . (98)

The coefficients of the local operators are (at a scale µ < m):

Cqq(B(8)
3 , µ) = − π

6m2
α2
s(m)nf

(
1− 24

33− 2nf
ln η

)
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Cqq(D(8)
3 ) = − 10π

9m2
α2
s(m)nf

1

33− 2nf
ln η

Cqq(D(1)
3 ) = − 16π

27m2
α2
s(m)nf

1

33− 2nf
ln η

Cqq(E(8)
2 , µ) = Cqq(E(8)

3 , µ) = − π

24m2
α2
s(m)

Cqq(E(8)
4 , µ) = − π

12m2
α2
s(m)2

(
1− 28

3

1

33− 2nf
ln η

)
. (99)

It is interesting to note that the renormalization group flow induces operators (D
(8)
3 and

D
(1)
3 ) which have not been present at the matching scale. We may express the local

contributions to the second-order contribution in terms of the parameters b
(8)
1 , d

(8)
1 , d

(1)
1 ,

and e
(8)
1 :

1

2
Γ2 =

π

6m2
α2
s(m)nf

[
12b

(8)
1

(
1− 24

33− 2nf
ln η

)
+ 8e

(8)
1

(
1− 7

33− 2nf
ln η

)

+
128

3
d

(1)
1

1

33− 2nf
ln η + 80d

(8)
1

1

33− 2nf
ln η − k

(8)
2 −G(8) − F (8)

]
.(100)

We note that not only the leading contribution (97), but also the first subleading one (100)
is the same for all three states 3P0,

3P1, and 3P2. Thus, if the channel involving a qq̄-
pair really dominates the decays of these states into light hadrons due to the logarithmic
enhancement, we have

Γ(3P2 → light hadrons) = Γ(3P1 → light hadrons) = Γ(3P0 → light hadrons) . (101)

The second-order contribution (100) is given in terms of seven parameters, but this
number reduces once vacuum insertion is assumed. Then only one of them is non-zero,
namely the parameter d

(1)
1 , and the rate takes the simple form

Γ(3χQ → qq̄(g) → light hadrons ) =
32π

9m4
α2
s(m)nfd

(1)
1

1

33− 2nf
ln η . (102)

Furthermore, in a wave-function model the parameter d
(1)
1 is given in terms of the deriva-

tive of the wave function at the origin

d
(1)
1 (n) =

3

2π
|R′nP (0)|2 , (103)

and if one expands (102) again in powers of αs(m), see (95), we reproduce the result (96).
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9 Comparison with previous approaches and conclu-

sion

Traditionally [6] inclusive hadronic (and electromagnetic) decays of heavy quarkonia are
calculated in the framework of the Bethe–Salpeter description of the bound state. As-
suming an instantaneous potential and working in the extreme non-relativistic limit, the
decay width of a heavy quark-antiquark bound state into light hadrons (l.h.) is written
as

Γ(n 2S+1LJ → l.h.) = G(n) Γ̂(QQ̄(2S+1LJ ) → partons) . (104)

This ansatz of separation into a short-distance part Γ̂ describing the decay of a free (un-
bound) QQ̄-pair to decay into partons (qq̄-pairs and gluons) and a long-distance one G(n)
representing the non-perturbative bound-state formation, is motivated by the observation
that the problem involves two widely separated scales, the QQ̄ radius of the order of 1 fm
and the heavy-quark Compton wavelength λQ ∼ 1/m� rQQ̄. The non-perturbative part
G(n) is expressed in terms of the non-relativistic (Schrödinger) wave function at zero rela-
tive coordinate RnS(0) (for S-wave decays, and the derivative R′nP (0) for P -wave decays),
which is calculated in a potential model or extracted from data. The factor G(n) thus
depends explicitly on the binding energy ε. The QQ̄ decay, on the other hand, is governed
by a scale of the order of µ ∼ m, and can hence be expanded in a series of αs(m). The
decay rate is called factorizable into a long- and a short-distance contribution [19] if the
short-distance factor Γ̂ is calculable without encountering infrared divergencies.

Let us elaborate on the assumptions of the conventional approach in some more detail.
Consider the transition amplitude M(JP , P ; ki) of a JP quark-antiquark bound state of
mass M (and four-momentum P = (M,~0)) into partons (light qq̄-pairs and gluons) of
four-momenta ki in terms of which the width is given by Γ ∼ |M|2 dPS. (For illustration
we suppress colour and polarization indices.) Introducing the Bethe–Salpeter bound-
state wave function Φ(JP , P ; q), dependent on the relative quark and antiquark momenta
q (pQ,Q̄ = 1

2
P ± q), the transition amplitude is written in this picture as

M =
∫

d4q

(2π)4
Tr Φ(P, q)O(P, q, ki) (105)

such that O(P, q, ki) is the amplitude of a free (unbound) QQ̄-pair to decay into light
hadrons. Upon a non-relativistic reduction

Φ(P, q) = 2πδ(q0)
∑
m,Sz

ψnlm(~q) 〈lmSSz |JJz 〉PSSz(P, q) , (106)
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the amplitude becomes

M =
∑
m,Sz

∫
d3q

(2π)3
ψnlm(~q) 〈lmSSz |JJz 〉TrPSSz(P, q)O(P, q, ki)︸ ︷︷ ︸

A(~q 2,ε)

(107)

where p2
i = M2/4− ~q 2 = m2 + εm− ~q 2, ε is the binding energy, and PSSz is a projection

operator. The Schrödinger wave function in coordinate space extends over distances of
the order of the Bohr radius. Correspondingly, the Fourier transform ψnlm(~q ) is non-zero
only for |~q |/m � 1, and hence |~q |/m becomes a reasonable expansion parameter. For
S-wave decays, the leading term of this expansion yields the usual expression for the decay
amplitude proportional to the non-relativistic wave function calculated at the origin in
the relative coordinate space:

M≈ 1√
4π
RnS(0)A(~q 2 = 0, ε) . (108)

Here Rnl(0) = 4πψnl(0) (l = S, P,D, etc.) is the radial wave function at zero distance
r = 0. For P -wave decays, the terms linear in ~q in the expansion of O, as well as terms
linear in ~q coming from the small components of the relativistic wave function, must be
retained yielding a final expression for the amplitude M proportional to the derivative of
the wave function for the l = P state at zero r, R′nP (0). Factorization is now said to hold
if the limit ε→ 0 exists for the amplitude A.

Within this potential-model approach, next-to-leading-order (NLO) perturbative QCD
corrections have been calculated. Both the NLO corrections to 1S0 (i.e. ηc) [23] and 3S1

(i.e. J/ψ) [24] decays indeed obey the factorized form (104). However, there are three
observations from which it becomes obvious that this picture is too simple:

• Infrared sensitive logarithms ∼ ln(m/ε) appear in the calculation of P -wave de-
cays, to be precise in the NLO corrections to 3P0,2 decays [20] and already in the
leading-order expressions of 1P1 and 3P1 decays [19]. That is, without keeping the
binding energy non-zero, the perturbative part of the calculation would diverge.
The factorization (104) thus breaks down.

• The description of S-wave decays based on the strict non-relativistic limit is not in
agreement with data. For example, a reasonable αs determination from the ratio
Γ(3S1 → l.h.)/Γ(3S1 → `¯̀) is possible only once a (rather large) adhoc relativistic
correction factor is applied. Other failures are the photon spectrum of 3S1 decays and
photo- and hadroproduction of J/ψ [7]. In fact, logarithmic infrared divergences,
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predicted to arise also in relativistic corrections to S-wave decays a long time ago
[19], show up, cf. (92,95). Within the wave-function approach one can distinguish
two sources of relativistic corrections, namely corrections to (i) the amplitude O and
the (ii) the wave function ψ, cf. (107). Relativistic corrections to the wave function
are very difficult to access since at present no full analysis of the spin-independent
relativistic corrections to the potential exists, cf. (83). Kinematical corrections of
type (i) have been discussed by Keung and Muzinich some time ago [18] for S-wave
decays and more recently applied also to J/ψ photo- [25] and hadroproduction [7].
The prescription is to evaluate the amplitude A(~q 2, ε), (107), at ~q 2 = mε rather
than at ~q 2 = 0. In this way certain binding-energy corrections ∝ ε/m = ~q 2/m2 are
kept.

• Sizeable, non-perturbative corrections have been predicted [26] for annihilation de-
cays of heavy quarkonia, at least for the charmonium system. Such higher-twist
corrections could arise from non-zero condensates (in particular, the gluon conden-
sate) and/or colour-octet intermediate states, e.g. via a non-perturbative colour-E1

transition of the J/ψ into a (coloured) χcJ state 3S1 → 3P
(8)
J + g, followed by a

“hard” (µ ∼ m) decay 3P
(8)
J → gg.

In this paper we aim at a systematic, QCD-based treatment of inclusive annihilation
decays of heavy quarkonia. In our approach, the factorization of long- and short-distance
contributions is well defined. Furthermore, “genuine” relativistic corrections, i.e. the ones
proportional to the relative velocity of the heavy quarks in the conventional language,
and what is usually called non-perturbative corrections come out to have the same origin,
namely the higher-order terms of the 1/m expansion. In fact, since we may shift certain
contributions from the operators into the states in this expansion, there is no unique
distinction between the two kinds of corrections.

To achieve such a systematic description of quarkonia decays we formulate an effective
field theory for heavy quarkonia, which follows rigorously from the QCD Lagrangian. As
a first step we write down an operator product expansion for the inclusive annihilation
decays of heavy quarkonia in order to separate long- and short-distance contributions.
Herein the distance scale is set by the Compton wavelength of the heavy quark. This
provides us with a systematic 1/m expansion of the short-distance contributions with
mass-independent operators. As the next step we expand the heavy-quark fields Q(±)

v (x)
and the Lagrangian. In the wave-function picture, the expansions of the states and of the
kernel correspond to corrections to the amplitude A in (107), while time-ordered insertion
of the higher-order Lagrangian correspond to corrections of the wave function.
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In the set-up of an effective theory approach to heavy quarkonia we now observe a
crucial difference compared to heavy-light systems: The static limit does not exist for a
heavy quarkonium state. Divergent phases appear in the quark-antiquark sector of HQET
once the velocities of the two heavy quarks differ by an amount of only ΛQCD/m. These
divergent phases can be and have to be absorbed into the heavy-quark states. Using
reparametrization invariance, we have shown that it is necessary and sufficient to include
the 1/m kinetic term into the leading-order Lagrangian in order to consider two heavy
quarks moving with the same velocity. The dynamics defined by this static-plus-1/m-
kinetic-energy Lagrangian already contains the divergent phases (and the binding of the
two heavy quarks) as an infrared effect, and this is the physical reason why the limit
v → v′ exists. Since the redefined states of a heavy quarkonium (seemingly) do not have
a static limit, it is, in contrast to heavy-light systems, not possible to describe the full
mass dependence of the relevant matrix elements in a 1/m expansion. Although the short-
distance part may still be written as a 1/m expansion with mass-independent operators
(once divergent imaginary parts have been shifted from the operators into the states by
a suitable redefinition), the matrix elements of these operators with the redefined states
become mass-dependent due to the mass dependence of the states.

As a result of the mass dependence of the states, heavy-flavour symmetry does not hold
anymore. However, judging from the spectra and also from the widths of charmonium
compared to bottomonium, the flavour dependence of the matrix elements does not seem
to be very strong; at least it appears to be much weaker than one would expect for a
Coulombic system.

On the other hand, spin symmetry is still preserved since the extra (kinetic) 1/m term
in the leading-order Lagrangian is spin-symmetric. Hence the heavy quarkonia states
described by our leading-order Lagrangian have to fall into degenerate spin symmetry
quartets. Spin symmetry, furthermore, allows a restriction of the number of independent
parameters describing matrix elements involving heavy quarkonia states.

We have applied our approach to inclusive heavy-quarkonia decays into light quarks
and leptons. The effective theory machinery allows us to calculate the logarithmic depen-
dence on the heavy mass m by studying the renormalization of the operators mediating
the decay. The matching of QCD to the effective theory is performed at the large scale m,
where the coefficients of the operator are determined by comparing the QCD result with
the effective theory. This determines the initial conditions of the operator coefficients.
The renormalization group of the effective theory then allows the coefficients to be run
down to some smaller scale µ. We now see how the factorization assumption of (104) is
generalized in a proper QCD treatment: A given inclusive annihilation decay is, in gen-
eral, the sum of various contributions, each of which is the product of a non-perturbative
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contribution, parametrized as the matrix element of an operator renormalized at a scale
µ, and a Wilson coefficient evaluated at the same scale.

In addition to matrix elements of local operators also non-local contributions appear.
From the conventional point of view these correspond to corrections to the wave functions
of the states. Among these non-local terms one may identify spin-symmetry breaking cor-
rections, which in the wave-function language generate differences between, for example,
the 1S0 and the 3S1 wave functions.

The rate to leading order is given in terms of forward matrix elements of dimension-
six operators, which at the one-loop level are scale-invariant, and hence no logarithmic
enhancement through terms as ln(m/µ) is present. Due to symmetries, the leading-order

contribution is in general given in terms of only two parameters (a
(1)
` and a

(8)
` ) for a given

orbital angular momentum ` (and a given n) of the heavy quarkonium state.
The first subleading contribution is suppressed by two powers of the heavy mass and

involves forward matrix elements of dimension-eight operators as well as non-local con-
tributions corresponding to corrections to the states. The number of dimension-eight
operators is quite large, although it is somewhat reduced by spin symmetry. In total, the
number of independent parameters is in general still large, namely 14 (b

(C)
` , c

(C)
` , d

(C)
` ,

e
(C)
` , k

(C)
2 , G

(C)
` and F

(C)
` ) for each heavy quarkonium angular momentum `.

Intuitively one may expect that some of the parameters are smaller than others. If one
assumes vacuum insertion, then all matrix elements may be interpreted as wave functions
and its derivatives taken at the origin. In this way one is led to assume that all the colour
combinations T a

⊗
T a are suppressed compared to the 1

⊗
1 operators. Furthermore, the

wave functions for P -wave states vanish at the origin, and this suggests that the matrix
elements of the operatorsD(1)

n dominate for the P -wave states. Let us emphasize, however,
that our analysis is independent of these assumptions. Although our approach has many
common features with the expansion advocated by BBL [5] it is more general since we
give the expansion before additional, less rigorous assumptions have been applied:

1. Within a set of operators of a given dimension we do not neglect those that are
suppressed by powers of the relative QQ̄ velocity v/c in the wave-function language.
For instance, we do not neglect an operator involving a gluon field strength [iD, iD]
in comparison to (iD)2, although the two operators correspond to different powers of
v/c in the language of [5]. Such a procedure is adequate for Coulombic systems but
may be a bad approximation for charmonium and bottomonium, which certainly do
not behave Coulomb-like. Yet, up to order (Λ̃/m)2 no difference appears between the
two approaches, since the matrix elements of antisymmetric products of covariant
derivatives vanish due to spin symmetry.
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2. We do not restrict the heavy quarkonium to the leading Fock state. Corresponding
arguments are again based on counting of powers of v/c: Using perturbation theory,
each additional gluon associated with the (assumed) dominant QQ̄ pair is ascribed
an extra power of v/c [5] via the identification v ∼ αs(mv), valid for a colour-
Coulomb potential. Although this estimate may be underlined by the multipole
expansion, we do not know of any rigorous derivation.

3. The non-local contributions from the time-ordered products with the Lagrangian in
Γ2 (55) allows us to rigorously define the spin-symmetry breaking terms that appear
at order 1/m2. Thus in principle we can calculate the coefficients that appear
in relations as Rψ = Rηc [1 + O(v2/c2)], although in practise additional unknown

parameters enter, namely G
(c)
l for each l.

If we apply these additional assumptions, a large number of our non-perturbative param-
eters may be dropped, and our approach yields the same result up to order (Λ̃/m)2 as the
one of ref. [5].

In conclusion, the approach presented here is based on QCD and hence provides a
model-independent basis for the description of heavy-quarkonium physics. It allows us to
separate long and short distances, where the short-distance contribution may be evaluated
perturbatively. The long-distance part is parametrized in terms of matrix elements, which
involve up to order 1/m2 operators of dimension six and dimension eight. These matrix
elements are beyond the effective theory approach and have to be taken either from data,
estimated via non-perturbative methods such as sum rules, or they may eventually be
calculated from lattice QCD.

40



APPENDIX

A Spinorology

Similar to the case of only upper components [27], we also have only four independent
matrices once we project on upper and lower components. The projectors are

P+ =
1

2
(1 + v/) P+ =

1

2
(1− v/) (109)

and we have the mapping of the sixteen Dirac matrices

1 −→ P+P− = 0 γµ −→ P+γµP−
γµγ5 −→ P+γµγ5P− = P+γ5P−vµ γ5 −→ P+γ5P−

(−i)σµν −→ P+(−i)σµνP− = P+(vµγν − vνγµ)P− . (110)

We chose the four matrices to be P+γ5P− (corresponding to the unit matrix) and P+γµP−
(corresponding to the three Pauli matrices). Note that vµP+γµP− = 0, so these are indeed
only three matrices. Hence, stricktly speaking, all Lorentz indices in (48) and (51–54)
should be written as perpendicular indices only defined by

a⊥µ = aρ (gρµ − vρ vµ) . (111)

Note that
gµν g⊥µν = 3 . (112)

One may obtain the projections for any Dirac matrix Γ in terms of these four matrices
by the trace formula

P+ΓP− =
1

2
Tr {ΓP+γ5P−}P+γ5P− +

1

2
Tr {ΓP+γ

µP−}P+γ
⊥
µ P− . (113)

The projections with P− and P+ interchanged are obtained by replacing v → −v in the
above equations.

B Matching calculation to O(1/m2)

In this appendix we collect a few useful relations that appear frequently in the matching
calculation.
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B.1 Expansions of bilinears

Using (25), (42), and (43) we obtain, for the bilinears up to and including order 1/m2:

Q̄(+)ΓQ(−) = h̄(+)Γh(−)

+
1

4m

(
i ∂⊥µ

(
h̄(+) [Γ, γµ]h(−)

)
+ h̄(+)

{
Γ, i

←→
D⊥/

}
h(−)

)

+
1

16m2

(
i ∂⊥µ i ∂

⊥
ν

(
h̄(+)γµΓγνh(−)

)
+i ∂⊥µ

(
h̄(+)γµΓi

←→
D⊥/ h(−)

)
− i ∂⊥µ

(
h̄(+)i

←→
D⊥/ Γγµh(−)

)

−h̄(+)i
←→
D⊥/ Γi

←→
D⊥/ h(−)

)
+O

(
1

m3

)
. (114)

With the help of (113) and the equations of motion i v ·∂⊥
(
h̄(+)Γh(−)

)
= 0 = h̄(+) v ·i

←→
D⊥/

Γh(−) we find the following expansions of the bilinears up to and including order 1/m2:

Q̄(+)Q(−) =
1

2 m
A6

Q̄(+) γ5Q
(−) = A1 +

1

16 m2
(−A9 + 2 A12 + A14 − A17)

Q̄(+) γαQ(−) = Aα2 +
1

2 m
vαA3

+
1

16 m2
(−Aα10 + 2 Aα11 − 2 Aα13 + Aα15 − Aα16 + Aα18)

Q̄(+) γ5 γ
αQ(−) = −vαA1 +

1

2 m
(Aα4 + Aα7 )

+
1

16 m2
vα (−A9 + 2 A12 + A14 −A17)

Q̄(+) (−i) σαβ Q(−) = vαAβ2 − vβ Aα2

+
1

2 m

(
Aβα5 − Aαβ5 − Aαβ8

)
+

1

16 m2

(
vα

(
Aβ10 − 2 Aβ11 + 2 Aβ13 − Aβ15 + Aβ16 −Aβ18

)
− (α↔ β)

)
. (115)

Here we have introduced

A1 = h̄(+) γ5 h
(−)
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Aα2 = h̄(+) γ⊥α h(−)

A3 = i ∂⊥α
(
h̄(+) γ⊥α h

(−)
)

Aα4 = i ∂⊥α
(
h̄(+) γ5 h

(−)
)

Aαβ5 = i ∂⊥α
(
h̄(+) γ⊥β h(−)

)
A6 = h̄(+) i

←→
D⊥/ h(−)

Aα7 = i εαµνρ vµ h̄
(+) γ⊥ν i

←→
D⊥ρ h(−)

Aαβ8 = i εαβµρ vµ h̄
(+) γ5 i

←→
D⊥ρ h(−)

A9 = i ∂⊥ρ i ∂⊥ρ h̄(+) γ5 h
(−)

Aα10 = i ∂⊥ρ i ∂⊥ρ h̄(+) γ⊥α h(−)

Aα11 = i ∂⊥α i ∂⊥ρ h̄(+) γ⊥ρ h
(−)

A12 = i εαµνρ vα i ∂
⊥
µ h̄(+) γ⊥ν i

←→
D⊥ρ h(−)

Aα13 = i εαµνρ vµ i ∂
⊥
ν h̄(+) γ5 i

←→
D⊥ρ h(−)

A14 = h̄(+) i
←→
D⊥ρ γ5 i

←→
D⊥ρ h(−)

Aα15 = h̄(+) i
←→
D⊥ρ γ⊥α i

←→
D⊥ρ h(−)

Aα16 = h̄(+) i
←→
D⊥α i

←→
D⊥/ h(−) + h̄(+) i

←→
D⊥/ i

←→
D⊥α h(−)

A17 = i εαρµσ vα h̄
(+) i

←→
D⊥ρ γ⊥µ i

←→
D⊥σ h(−)

Aα18 = i εαµρσ vµ h̄
(+) i

←→
D⊥ρ γ5 i

←→
D⊥σ h(−) . (116)

B.2 Expansions of quatrilinears

With the help of the bilinears (116), we obtain 1/m expansions of quatrilinears Ai⊗{g, ε}⊗
A∗j . Owing to the fact that quatrilinears have to be parity-even, and that total derivatives
may be neglected, we find that there are two dimension-six operators, no dimension-
seven operator, and 17 dimension-eight operators. Three more dimension-eight operators
(C3 +C4, D3 +D4, E2−E3) appear only if also the kernel is expanded. Including colour,
there are twice as many operators

O
(8)
i = T a ⊗ T aO

(1)
i . (117)
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The dimension-six operators are

−A(1)
1 = A1A

∗
1

A
(1)
2 = Aα2A

∗
2α . (118)

The dimension-eight operators that can be constructed from (116) are:

B
(1)
1 = Aα4A

∗
4α = A9A

∗
1

−B(1)
2 = A3A

∗
3 = Aα11A

∗
2α

−B(1)
3 = Aαβ5 A∗5αβ = Aα10A

∗
2α (119)

C
(1)
1 =

1

2
i εαβµν vµA8αβ A

∗
4ν

−C(1)
2 = A6A

∗
3 + A3A

∗
6

C
(1)
3 − C

(1)
4 = i εαβµν vµA5αβ A

∗
7ν

C
(1)
5 = A12A

∗
1 + A1A

∗
12 = − (Aα7A

∗
4α + Aα4A

∗
7α)

−C(1)
6 = Aα13A

∗
2α + Aα2A

∗
13α = Aαβ8 A∗5αβ (120)

−D(1)
1 =

1

2
Aαβ8 A∗8αβ

−D(1)
2 = A6A

∗
6

D
(1)
3 −D

(1)
4 = Aα7A

∗
7α

D
(1)
5 = −1

2
i εαβµν vµA8αβ A

∗
7ν + h.c. (121)

−E(1)
1 = A14A

∗
1 + A1A

∗
14

E
(1)
2 + E

(1)
3 = Aα16A

∗
2α + Aα2A

∗
16α

E
(1)
4 = Aα15A

∗
2α + Aα2A

∗
15α

E
(1)
5 = A17A

∗
1 + A1A

∗
17

−E(1)
6 = Aα18A

∗
2α + Aα2A

∗
18α . (122)
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B.3 Two-component representation

In the rest frame of the quarkonium we have vµ = (1,~0). Using the Dirac representation
of the gamma-matrices let us introduce the two-component spinors ψ and χ via

h(+) =

(
ψ
0

)
, h(−) =

(
0
χ

)
. (123)

Then we can express the bilinears as follows

A1 = ψ† χ
~A2 = ψ† ~σ χ (A0

2 = 0)

A3 = −i ~∂ ·
(
ψ† ~σ χ

)
~A4 = i ~∂

(
ψ† χ

)
(A0

4 = 0)

Aij5 = i ∂i
(
ψ† σj χ

)
A6 = −ψ† i

←→
~D ·~σ χ

Ai7 = −i ψ†
(
~σ × i

←→
~D

)
i

χ

Aij8 = i εijk ψ† i
←→
Dk χ

A9 = −
(
i ~∂
)2
ψ† χ

~A10 = −
(
i ~∂
)2
ψ† ~σ χ

~A11 = −i ~∂
(
i ~∂ ·

(
ψ†~σ χ

))
A12 = i εijk i ∂i ψ

† σj i
←→
Dk χ

Ai13 = −i εijk i ∂j ψ† i
←→
Dk χ

A14 = −ψ†
(
i
←→
~D

)2

χ

~A15 = −ψ† ~σ
(
i
←→
~D

)2

χ

~A16 = −ψ†
[
i
←→
~D

(
i
←→
~D ·~σ

)
+

(
i
←→
~D ·~σ

)
i
←→
~D

]
χ

A17 = i εijk ψ†i
←→
Di σj i

←→
Dk χ
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Ak18 = −i εijk ψ† i ←→Di i
←→
Dk χ . (124)

The complex-conjugate expressions are obtained from (124) by the replacements ψ† → χ†,
χ→ ψ, i→ −i (using σ†i = σi). The quatrilinears are obtained using εijk εijl = 2 δkl. The
connection to the operators of ref. [5] is then straightforward (c = 1 or 8)

A
(c)
1 = −Oc(

1S0)

A
(c)
2 = −Oc(

3S1)
1

4
D

(c)
1 = Oc(

1P1)

1

4
D

(c)
2 = 3Oc(

3P0)

1

4
D

(c)
3 = Oc(

3P0) +Oc(
3P1) +Oc(

3P2)

1

4
D

(c)
4 = Oc(

3P0)−Oc(
3P1) +Oc(

3P2)

1

4
E

(c)
1 = 2Pc(1S0)

1

4
E

(c)
4 = 2Pc(3S1)

1

4

[
E

(c)
2 + E

(c)
3

]
= 4Pc(3S1,

3D1) +
4

3
Pc(3S1) . (125)

B.4 Matching calculation

The short-distance coefficients appearing in (49) and (55) at the scale µ = m are obtained
from the annihilation part of the scattering amplitude M for QQ̄ → QQ̄ computed in
full QCD. The amplitude, calculated in QCD perturbation theory for on-shell quarks and
antiquarks, is Taylor-expanded in the “small” components of the heavy quark momenta.
The small component of a momentum is defined as the component perpendicular to the
direction of the quarkonium momentum Mv. Denoting the momenta of the initial QQ̄
pair by p and p̄ for Q and Q̄, respectively, and the ones of the final QQ̄-pair by p′ and p̄′

for Q and Q̄, respectively we have:

p = v
√
m2 − p2

⊥ + p⊥

= mv
[
1− 1

2m2
(P + π)2 + . . .

]
+ P + π

46



p̄ = mv
[
1− 1

2m2
(P − π)2 + . . .

]
+ P − π

p′ = mv
[
1− 1

2m2
(P + η)2 + . . .

]
+ P + η

p̄′ = mv
[
1− 1

2m2
(P − η)2 + . . .

]
+ P − η , (126)

where π2 = η2. Note that both the kernel and the spinors have to expanded to the desired
order. The latter expansion follows from (25). For example, up to order 1/m2 we have

Q(+) =

(
1 +

P 2 + π2

8m2

) (
1 +

P/+ π/

2m

)
P+ . (127)

The result of this procedure is then matched to the operators in (49) and (55) by identi-
fying the momenta with the derivatives appearing in the operators

h̄(+) Γ i
←→
D µ h

(−) → h̄(+) Γ ηµ h
(−)

h̄(−) Γ i
←→
D µ h

(+) → h̄(−) Γ πµ h
(+)

i∂µ
(
h̄(±) Γ h(∓)

)
→ h̄(±) ΓPµ h

(∓) . (128)

Then the coefficients C(O(c)
i ) of (55) can be read off from the dimension-eight contribution

to the amplitude

Md=8 =
(

1

2m

)2 ∑
c=1,8

[
3∑
i=1

C(B(c)
i , m)B

(c)
i +

6∑
i=1

C(C(c)
i , m)C

(c)
i

+
5∑
i=1

C(D(c)
i , m)D

(c)
i +

6∑
i=1

C(E(c)
i , m)E

(c)
i

]

≡ 1

4m2

∑
c=1,8

Xc

{
C(B(c)

1 , m)P 2 γ5 ⊗ γ5

+C(B(c)
2 , m)P/ ⊗ P/ + C(B(c)

3 , m)P 2 γα ⊗ γα

+ C(C(c)
1 , m) (π + η) · P γ5 ⊗ γ5 + C(C(c)

2 , m) [π/ ⊗ P/ + P/ ⊗ η/ ]

+ C(C(c)
3 , m) (π + η) · P γα ⊗ γα + C(C(c)

4 , m) [P/ ⊗ π/ + η/ ⊗ P/ ]

+ C(C(c)
5 , m) (−i) εαβγδ vα Pβ [πγ γδ ⊗ γ5 + ηγ γ5 ⊗ γδ]

+ C(C(c)
6 , m) (−i) εαβγδ vα Pβ [πγ γ5 ⊗ γδ + ηγ γδ ⊗ γ5]

+ C(D(c)
1 , m) π · η γ5 ⊗ γ5 + C(D(c)

2 , m) π/ ⊗ η/
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+ C(D(c)
3 , m) π · η γα ⊗ γα + C(D(c)

4 , m) η/ ⊗ π/

+ C(D(c)
5 , m) (−i) εαβγδ vα πβ ηγ [γ5 ⊗ γδ + γδ ⊗ γ5]

+ C(E(c)
1 , m)

[
π2 + η2

]
γ5 ⊗ γ5 +

{
C(E(c)

2 , m) + C(E(c)
3 , m)

}
[π/ ⊗ π/ + η/ ⊗ η/ ]

+ C(E(c)
4 , m)

[
π2 + η2

]
γα ⊗ γα

}
, (129)

where we suppressed the spinors and abbreviated the colour structure

X1 = 1⊗ 1 , X8 = T a ⊗ T a . (130)

Note that E5 and E6 give only field-strength terms, i.e. vanish for commuting Dirac
matrices. The dimension-six part is simply

Md=6 =
1

m2

∑
c=1,8

2∑
i=1

C(A(c)
i , m)A

(c)
i

≡ 1

m2

∑
c=1,8

Xc

{
C(A(c)

1 , m) γ5 ⊗ γ5 + C(A(c)
2 , m) γα ⊗ γα

}
. (131)

C Operators in terms of quarkonia quantum num-

bers

In order to calculate the hadronic matrix elements using vacuum insertion, it is convenient
to re-express the operators B, C and D in terms of other operators in which for both of the
heavy-quark bilinears the “orbital angular momentum” corresponding to the derivative
is coupled to the total spin of the quarks to some total angular momentum J . If ∇µ is

either the RRM or the RCM derivative (i
←→
D µ or i∂µ, respectively), these couplings are

1P1 ⊗ 1P1 =̂
(
h̄(−)γ5∇µh

(+)
) (
h̄(−)γ5∇µh(+)

)
3P0 ⊗ 3P0 =̂

1

3

(
h̄(−)γµ∇µh

(+)
) (
h̄(−)γν∇νh

(+)
)

3P1 ⊗ 3P1 =̂
1

2
iεαβµνv

β
(
h̄(−)γµ∇νh(+)

)
iεαβ

′µ′ν′
vβ′

(
h̄(−)γµ′∇ν′h(+)

)
3P2 ⊗ 3P2 =̂

(
h̄(−)γ[µ∇ν]h(+)

) (
h̄(−)γ[µ∇ν]h

(+)
)

(132)

where the bracket denotes the symmetric traceless combination of a tensor (cf. (111,112))

X
[µν]
⊥ =

1

2
(Xµν
⊥ +Xνµ

⊥ )− 1

3
gµν⊥ Xµ

⊥µ . (133)
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The first operator of the three sets B, C and D is already the 1P1 combination; the other
three may be rewritten as linear combinations

3P0 ⊗ 3P0
3P1 ⊗ 3P1
3P2 ⊗ 3P2

 =

 1/3 0 0
0 1/2 −1/2

−1/3 1/2 1/2


∇µγ

µ ⊗∇νγν
∇µγν ⊗∇µγν

∇µγν ⊗∇νγµ

 . (134)

By inverting (134) we have∇µγ
µ ⊗∇νγν

∇µγν ⊗∇µγν

∇µγν ⊗∇νγµ

 =

 3 0 0
1 1 1
1 −1 1




3P0 ⊗ 3P0
3P1 ⊗ 3P1
3P2 ⊗ 3P2

 . (135)

Explicitly, for the D-operators we have, for example,

D(c)(1P1) = D
(c)
1

D(c)(3P0) =
1

3
D

(c)
2

D(c)(3P1) =
1

2

{
D

(c)
3 −D

(c)
4

}
D(c)(3P2) =

1

2

{
D

(c)
3 +D

(c)
4

}
− 1

3
D

(c)
2 . (136)

Similarly we can define operators with appropriate S-wave quantum numbers

E(c)(1S0) =
1

2
E

(c)
1

E(c)(3S1) =
1

2
E

(c)
4

E(c)(3S1,
3D1) =

1

4

(
E

(c)
2 + E

(c)
3

)
− 1

6
E

(c)
4 . (137)
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