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BOUNDS ON THE HIGGS MASS IN THE STANDARD MODEL AND

MINIMAL SUPERSYMMETRIC STANDARD MODEL

MARIANO QUIROS ∗

TH Division, CERN, CH-1211

Geneva 23, Switzerland

ABSTRACT

We present bounds on the Higgs mass in the Standard Model and in the Minimal
Supersymmetric Standard Model using the effective potential with next-to-leading
logarithms resummed by the renormalization group equations, and physical (pole)
masses for the top quark and Higgs boson. In the Standard Model we obtain lower
bounds from stability requirements: they depend on the top mass and the cutoff
scale. In the Minimal Supersymmetric Standard Model we obtain upper bounds
which depend on the top mass and the scale of supersymmetry breaking. A Higgs
mass measurement could discriminate, depending on the top mass, between the two
models. Higgs discovery at LEP-200 can put an upper bound on the scale of new
physics.

1. Introduction

In view of Higgs searches at future colliders (in particular at LEP-200) it is ex-
tremely important to compute theoretical bounds on the Higgs mass as accurately
as possible. Indeed, the very measurement of the Higgs mass, apart from confirming
our knowledge of renormalizable field theories, can shed some light on the particular
model that Nature has chosen at the TeV scale.

The two most appealing models are: the Standard Model (SM), which is being
confirmed at LEP with ∼ 1% precision, and its minimal supersymmetric extension,
the Minimal Supersymmetric Standard Model (MSSM), which is very well motivated
theoretically (it helps in technically solving the gauge hierarchy problem) but has
received no experimental support from present colliders (TEVATRON, LEP). On the
contrary what present colliders are doing is to establish lower bounds on all super-
symmetric parameters, and therefore sending the scale of supersymmetry breaking to
higher values.

The direct confirmation or exclusion of the MSSM will probably have to wait
for the LHC. In the meantime, while present and future accelerators will continue
to rise the bounds on supersymmetric parameters, we would like to know whether
the discovery of the Higgs boson and the measurement of its mass could, apart from
confirming the SM, give information about the possibility that the SM is embedded
in an extended electroweak theory: in particular the MSSM. On the one hand, if
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all supersymmetric parameters are at the TeV scale, the lightest Higgs boson of the
MSSM should have the same couplings to ordinary matter than the SM Higgs. On
the other hand LEP-200 will cover a range of Higgs masses up to ∼ MZ and direct
detection of supersymmetry will not happen if supersymmetric masses are not <

∼ MZ .
If this is the case, the best tool LEP-200 will have to uncover new physics is through
the Higgs search and the measurement of its mass.

In this talk we will review the theoretical knowledge we have on the SM Higgs
mass and on the MSSM lightest Higgs boson mass. In Section 2 we will present
lower bounds on the SM Higgs mass from the requirement of stability of the effective
potential, i.e. from the requirement that we do not live in a metastable minimum.
We will see that it imposes strong lower bounds on the mass of the Higgs boson,
MH , which will be a function of the top mass Mt and of the SM cutoff Λ. In Section
3 we will review the upper bounds on the lightest Higgs boson mass MH that will
depend on various supersymmetric parameters and Mt. In Section 4 we will draw
some conclusions concerning the possible detection of the Higgs at LEP-200.

2. Lower bounds in the Standard Model: stability bounds

The vacuum stability requirement in the SM imposes a severe lower bound on the
mass of the Higgs boson MH

1−5, which depends on the mass of the top quark Mt

and on the cut-off Λ beyond which the SM is no longer valid. Roughly speaking, this
is due to the fact that the top Yukawa coupling ht drives the quartic coupling of the
Higgs potential λ from its initial value at MZ (which determines the Higgs mass) to
negative values at large scales, thus destabilizing the standard electroweak vacuum.

In previous works, the stability bound was obtained from the tree level potential,
improved by one-loop or two-loop renormalization group equations (RGE) for the
β- and γ-functions of the running couplings, masses and the φ-field 2,3. However, it
has been shown that the one-loop corrections to the Higgs potential are important in
order to fix the boundary conditions for the electroweak breaking and calculate the
Higgs mass in a consistent and scale-independent way. As we will see, they are also
significant to properly understand the whole structure of the potential. Typically we
find that the lower bound on MH is O(10 GeV) lower than in previous estimates 3.

The renormalization group improved effective potential of the SM, V , can be
written in the ’t Hooft-Landau gauge and the MS scheme as 4

V [µ(t), λi(t); φ(t)] ≡ V0 + V1 + · · · , (1)

where λi ≡ (g, g′, λ, ht, m
2) runs over all dimensionless and dimensionful couplings,

and V0, V1 are respectively the tree level potential and the one-loop correction, namely

V0 = −
1

2
m2(t)φ2(t) +

1

8
λ(t)φ4(t), (2a)

V1 =
5
∑

i=1

ni

64π2
M4

i (φ)

[

log
M2

i (φ)

µ2(t)
− ci

]

+ Ω(t), (2b)



where M2
i (φ, t) = κiφ

2(t)−κ′
i (1 ≡ W , 2 ≡ Z, 3 ≡ top, 4 ≡ Higgs and 5 ≡ Goldstones)

are the tree-level expressions for the masses of the particles that enter in the one-
loop radiative corrections, and n1 = 6, κ1 = 1

4
g2(t), κ′

1 = 0, c1 = 5
6
; n2 = 3,

κ2 = 1
4
[g2(t) + g′2(t)], κ′

2 = 0, c2 = 5
6
; n3 = −12, κ3 = 1

2
h2

t (t), κ′
3 = 0, c3 = 3

2
;

n4 = 1, κ4 = 3
2
λ(t), κ′

4 = m2(t), c4 = 3
2
; n5 = 3, κ5 = 1

2
λ(t), κ′

5 = m2(t), and c5 = 3
2
.

Ω(t) ≡ Ω[λi(t), µ(t)] is the one-loop contribution to the cosmological constant 4, which
will turn out to be irrelevant in our calculation.

In the previous expressions the parameters λ(t) and m(t) are the SM quartic
coupling and mass, whereas g(t), g′(t), ht(t) are the SU(2), U(1) and top Yukawa
couplings respectively. All of them are running with the RGE. The running of the
Higgs field is φ(t) = ξ(t)φc, φc being the classical field and ξ(t) = exp{−

∫ t
0 γ(t′)dt′},

where γ(t) is the Higgs field anomalous dimension. Finally the scale µ(t) is related
to the running parameter t by µ(t) = µet, where µ is a fixed scale, we will take equal
to the physical Z mass, MZ .

It has been shown 6 that the L-loop effective potential improved by (L+1)-loop
RGE resums all Lth-to-leading logarithm contributions. Consequently, we will con-
sider all the β- and γ-functions of the previous parameters to two-loop order, so that
our calculation will be valid up to next-to-leading logarithm approximation.

As has been pointed out 4, working with ∂V/∂φ (and higher derivatives) rather
than with V itself allows us to ignore the cosmological constant † term Ω. In fact,
the structure of the potential can be well established once we have determined the
values of φ, say φext, in which V has extremals (maxima or minima). Thus we only
need to evaluate ∂V/∂φ and ∂2V/∂φ2.

The structure of maxima and minima of V for large φ can be evaluated at a scale
µ(t) within the region where V is scale-invariant. As was previously discussed 7,
µ(t) = φ(t) is always a correct choice (other choices, such that µ(t) = φ(t)/2, are
equally valid and lead to essentially the same results). Then the extremal condition,
neglecting the Higgs and Goldstone contributions, reads 8

φ2
ext =

2m2

λ̃
, (3)

λ̃ = λ −
1

16π2

{

6h4
t

[

log
h2

t

2
− 1

]

−
3

4
g4

[

log
g2

4
−

1

3

]

−
3

8

(

g2 + g′2
)2
[

log
(g2 + g′2)

4
−

1

3

]}

, (4)

[all quantities in (3,4) are evaluated at µ(t) = φext(t)]. From (3) we see that, if V
develops an extremal for large values of φ, this must occur for a value of φ such that

0 < λ̃[µ(t) = φ(t)] ≪ 1. (5)
†This holds even if we choose µ(t) to be a function of the φ-field since the scale-invariant properties
of V allow the substitution to be performed either before or after taking the derivative 7 ∂/∂φ.



On the other hand, for large values of φ the second derivative of the potential (1) can
be very accurately expressed as 8

∂2V

∂φ2(t)

∣

∣

∣

∣

∣

φ(t)=φext(t)

=
1

2
(βλ − 4γλ)φ2(t), (6)

where βλ is the one-loop β-function. Since near the extremum λ is very small, we see
from (6) that depending on the sign of βλ we will have a maximum or a minimum.

Figure 1: Plot of λ (dashed line) and λ̃ (solid line) as a function of the scale µ(t) for
Mt = 175 GeV, Λ = 2 TeV, MH = 68 GeV and αS = 0.124.

We have illustrated these features in Fig. 1 with a typical example. It represents
the evolution of λ (dashed line) and λ̃ (solid line) with µ(t). It is worth noticing that
they do not cross the horizontal axis at the same value of µ(t), but they differ by a
relatively large amount. This is important since the point where the maximum of the
potential is located, say φMAX , does correspond 8 to λ̃ ∼ 0 rather than λ ∼ 0. This
is so in Fig. 2, where the scalar potential, V (φ), has been represented for a typical
choice of parameters. Notice that for values of φ very slightly higher than φMAX , the
potential is negative and much deeper than the electroweak minimum. This is simply
because for values of µ(t) just beyond µMAX = φMAX , the value of λ̃ becomes negative

and the potential is dominated by the contribution 1
8
λ̃φ4. Consequently, a sensible

criterion for a model to be safe is to require one of the two following conditions: a) The



potential has no maximum; b) The maximum occurs for φM > Λ. In the following
we will assume Λ ≤ 1019 GeV. With this criterion [in particular condition (b)] we see
that the model represented in Fig. 2 is acceptable for Λ ≤ 2.7 × 1011 GeV. Beyond
this scale, the stability of the vacuum requires the appearance of new physics. Note
from this discussion that conditions (a), (b) are not equivalent to require λ(µ) > 0

for µ(t) < Λ, as is usually done. Instead, the significant parameter is λ̃ rather than
λ.

Figure 2: Plot of the effective potential V (φ) corresponding to Mt = 160 GeV,
MH = 100 GeV, αS = 0.124 and Λ = 1019 GeV, represented in a convenient choice
of units.

The running Higgs mass, m2
H(t), defined as the curvature of the scalar potential

at the minimum, can be readily obtained from

m2
H(t∗) =

∂2V

∂φ2(t∗)

∣

∣

∣

∣

∣

φ(t∗)=〈φ(t∗)〉

, (7)

where t∗ is the scale at which we define the electroweak minimum 7. The scale
invariance of the second derivative of the potential, ∂

∂t

[

ξ2(t) ∂2V
∂φ2(t)

]

= 0, allows us to

write m2
H(t) at any arbitrary scale

m2
H(t) = m2

H(t∗)
ξ2(t∗)

ξ2(t)
. (8)



The physical (pole) Higgs mass, M2
H , is then given by

M2
H = m2

H(t) + Re[Π(p2 = M2
H) − Π(p2 = 0)], (9)

where Π(p2) is the renormalized self-energy of the Higgs boson 7 (the t-dependence
drops out from (9)).

Figure 3: SM lower bound on MH as a function of Mt for αS(MZ) = 0.124 and
different values of Λ in the range 103 GeV ≤ Λ ≤ 1019 GeV. The values of Λ for
consecutive curves differ by two orders of magnitude.

As has been stated above, the choice of µ∗, i.e. the scale at which we evaluate the
minimum conditions, is not important for physical quantities, provided it is within a
(quite wide) region around the optimal value 8. The lack of flatness of MH reflects
the effect of all non-considered (higher-order) contributions in the calculation and,
therefore, it is a measure of the total error in our estimate of MH . We deduced 8

that the error is typically <
∼ 3 GeV, which is the uncertainty we should assign to our

results. Had we performed the previous calculations just with the (RGE-improved)
tree-level part of V in Eq. (1) 2,3, the Higgs mass would have a strong dependence on
µ∗. Choosing 2,3 µ∗ = MZ results in an error in the estimate of MH , whose precise
value depends on the top mass and is typically of O(10 GeV), showing the need of a
more careful treatment of the problem, as the one exposed above 8.

Finally, let us note that in the previous equations the top Yukawa coupling ht(t)
enters in several places. Therefore, the Higgs mass depends on the boundary condition



chosen for ht(t), and thus on the top mass Mt. However the running top mass, defined
as mt(t) = vht(t), does not coincide with the physical (pole) mass Mt. In the Landau
gauge the relationship between the running mt and the physical (pole) mass Mt is
given by 9

Mt =







1 +
4

3

αS(Mt)

π
+

[

16.11 − 1.04
5
∑

i=1

(

1 −
Mi

Mt

)

](

αS(Mt)

π

)2






mt(Mt), (10)

where Mi, i = 1, . . . , 5 represent the masses of the five lighter quarks.
As has become clear from the previous discussion, the lower bound on MH is a

function of Mt and Λ. However, apart from the previously estimated error <
∼ 3 GeV

in our calculation, there is an additional source of uncertainty coming from the value
of αs, which enters in several places in the previous calculation. The most recent
estimate of αs gives

αs = 0.124 ± 0.006. (11)

Using the central value of (11), we have represented in Fig. 3 the lower bound on MH

as a function of Mt for different values of Λ. The form of the curves is easily under-
standable from the previous discussion. In Fig. 4, we have fixed Λ at its maximum
value, Λ = 1019 GeV, and represented the lower bound on MH for the central value
of αs in (11) (diagonal solid line) and the two extreme values (diagonal dashed lines).

If we use the recent evidence for the top quark production at CDF with a mass
Mt = 174 ± 17 GeV 10, we obtain the following lower bound on MH :

MH > 128 ± 33 GeV, (12)

i.e. MH > 95 GeV (1σ). If the Higgs is observed in the present or forthcoming
accelerators with a mass below the bound of Eq. (12), this would be a clear signal of
new physics beyond the SM.

Comparing these bounds with previous evaluations 3, we see that our values of MH

are lower by an amount increasing with Mt, going from ∼ 5 GeV for Mt ∼ 130 GeV
to ∼ 15 GeV for Mt ∼ 200 GeV. As has been discussed previously the main reason
of this difference is the way in which the Higgs mass was previously computed 3.
Accordingly, our results give more room to the Higgs mass in the framework of the
Standard Model.

3. Upper bounds in the Minimal Supersymmetric Standard Model

The MSSM has an extended Higgs sector with two Higgs doublets with opposite
hypercharges: H1, responsible for the mass of the charged leptons and the down-type
quarks, and H2, which gives a mass to the up-type quarks. After the Higgs mechanism
there remain three physical scalars, two CP-even and one CP-odd Higgs bosons. In
particular, the lightest CP-even Higgs boson mass satisfies the tree-level bound

m2
H ≤ M2

Z cos2 2β, (13)



where tanβ = v2/v1 is the ratio of the Vacuum Expectation Values (VEVs) of the
neutral components of the two Higgs fields H2 and H1. Relation (13) implies that
m2

H < M2
Z , for any value of tanβ, which, in turn, implies that it should be found

at LEP-200 11. However, the tree-level relation (13) is spoiled by one-loop radiative
corrections, which were computed by several groups using: the effective potential ap-
proach 12, diagrammatic methods 13 and renormalization group (RG) techniques 14.
All methods found excellent agreement with one another and large radiative correc-
tions, mainly controlled by the top Yukawa coupling, which could make the lightest
CP-even Higgs boson escape experimental detection at LEP-200. In particular, the
RG approach (which will be followed in this talk) is based on the fact that supersym-
metry decouples and, below the scale of supersymmetry breaking MS, the effective
theory is the SM, with some matching conditions at MS. Assuming M2

Z ≪ M2
S the

tree-level bound (13) is saturated at the scale MS and the effective SM at scales be-
tween MZ and MS contains the Higgs doublet H = H1 cos β + iσ2H

∗
2 sin β, with a

quartic coupling taking, at the scale MS, the (tree-level) value of

λ =
1

4
(g2 + g′2) cos2 2β. (14)

In these analyses 14 the Higgs mass was considered at the tree level, improved by one-
loop renormalization group equations (RGE) in the γ- and β-functions, thus collecting
all leading logarithm corrections.

Since the relative size of one-loop corrections to the Higgs mass is large (mainly
for large top quark mass and/or small tree-level Higgs mass) it was compelling to
analyse them at the two-loop level. A first step in that direction was given some time
ago 15 where two-loop RGE-improved tree-level Higgs masses were considered. It was
found that two-loop corrections were negative and small. The Higgs mass received
all leading logarithm and part of the next-to-leading logarithm corrections 15. As we
have described in Section 2, for fully taking into account all next-to-leading logarithm
corrections the one-loop effective potential (improved by two-loop RGE) is needed.

The tree-level quartic coupling (14) receives one-loop threshold contributions at
the MS scale. These are given by

∆λ =
3h4

t

16π2

X2
t

M2
S

(

2 −
X2

t

6M2
S

)

, (15)

where ht is the top Yukawa coupling in the SM and Xt = At + µ cotβ is the stop
mixing.

The correction (15) has a maximum for X2
t = 6M2

S. For that reason, in our
numerical applications we will take X2

t = 6M2
S, i.e. maximal threshold effect. Notice

also that X2
t = 6M2

S is barely consistent with the bound from colour-conserving
minimum 16, so that the case of maximal threshold really represents a particularly
extreme situation. In addition to the previous effect, there appear effective higher-
order operators (D ≥ 6), which for MS ≥ 1 TeV turn out to be negligible 7.

Upper bounds on the lightest Higss boson mass in the MSSM depend therefore on
three supersymmetric parameters (besides Mt): MS (from naturality reasons MS

<
∼



1 TeV 17), tanβ and Xt = At + µ/ tanβ, which is responsible for the threshold
correction to the Higgs quartic coupling. The larger the threshold correction and
tan β, the less stringent the supersymmetric bounds. Therefore, the most conservative
situation takes place considering maximum threshold correction (which is achieved
for X2

t = 6M2
S) and tan β = ∞. Likewise, the larger MS , the less stringent the

bounds; but, as mentioned above, it is not sensible to consider MS much larger than
1 TeV. Consequently, to be on the safe side, we have represented in Fig. 4 the MSSM
upper bounds (transverse solid and dashed lines), as recently obtained up to next-to-
leading-log order 7, in the most conservative situation with MS = 1 TeV.

Figure 4: Diagonal (thick) lines: SM lower bound on MH as a function of Mt for
Λ = 1019 GeV and αs = 0.124 (solid line), αs = 0.118 (upper dashed line), αs = 0.130
(lower dashed line). Transverse (thin) lines: MSSM upper bounds on MH for ΛS = 1
TeV and αs as in the diagonal lines.

Two papers have recently tried to incorporate radiative corrections to the Higgs
mass up to the next-to-leading order, and with qualitatively different results. Using
the RG approach, positive and large next-to-leading corrections, with respect to the
one-loop results, were found by Kodaira, Yasui and Sasaki (KYS) 18. Using dia-
grammatic and effective potential methods in a particular MSSM, as well as various
approximations, Hempfling and Hoang (HH) 19 found that two-loop corrections are
also sizeable, but negative with respect to the one-loop result! Using the RG ap-
proach, we have found 7 that two-loop corrections are negative with respect to the



one-loop result. We have traced back the origin of this disagreement with KYS 18

in their choice of the minimization scale. Furthermore KYS neglected various effects
(as the contribution of gauge bosons to the one-loop effective potential, or the wave
function renormalization of top quark and Higgs boson) and considered only the case
with zero stop mixing. On the other hand, we have found that the abnormal size of
the two-loop corrections obtained by HH 19 is a consequence of an excessively rough
estimate of the one-loop result, but we are in agreement with their final two-loop
result. In fact our two-loop results differ from those of HH 19 by less than 3%. Also
our results show a large sensitivity of the Higgs mass to the stop mixing parameter.

Finally we would like to comment briefly on the generality of our results. As
was already stated, we are assuming average squark masses M2

S ≫ M2
Z , and that all

supersymmetric particle masses are >
∼ MS. If we relax the last assumption, i.e. if

some supersymmetric particles were much lighter, the value of the quartic coupling
at MS (see Eq. (14)) would be slightly increased and, correspondingly, our bounds
would be slightly relaxed. We have made an estimate of this effect. Assuming an
extreme case where all gauginos, higgsinos and sleptons have masses ∼ MZ , we have
found for MS = 1 TeV and cos2 2β = 1 an increase of the Higgs mass ∼ 2%. For
values of tanβ close to 1 (as those appearing in infrared fixed point scenarios) the
corresponding effect is negligible. On the other hand, our numerical results have been
computed for MS = 1 TeV. For values of MS < 1 TeV the bounds on the lightest
Higgs mass are lowered. Hence, in this sense, all our results can be considered as
absolute upper bounds.

4. Conclusions

We want to conclude with comments on the two questions we raised at the begin-
ning of this talk: i) Can the Higgs mass measurement disentangle between the SM
and the MSSM? ii) Can eventually a Higgs mass measurement at LEP-200 help in
putting upper bounds on the scale of new physics?

As for question i), a quick glance at Fig. 4 shows that for Mt = 173± 4 GeV, i.e.
the crossing area of the SM and MSSM curves, the Higgs mass eventually measured
will be compatible either with the pure SM or with the MSSM, but not with both
at the same time. Accordingly, the experimental Higgs mass either will discard the
MSSM or will be a clear signal of new physics beyond the SM compatible with the
MSSM. For Mt < 169 GeV, the situation is analogous, but there is a wider range
of Higgs masses (area within the two curves) compatible with both SM and MSSM.
For Mt > 177 GeV, there is no region of Higgs masses simultaneously compatible
with the SM and MSSM. On the contrary there is a range of MH (within the two
curves) that would discard both. This means that for Mt > M c

t = 177 GeV a Higgs
mass measurement could always discriminate between the SM and the MSSM. This
statement has two caveats: one is that it is based upon assuming that the SM holds
up to the Planck scale. Had we considered the validity of the SM up to a lower
scale, we should have obtained a value M c

t > 177 GeV, with a larger overlapping



region where the Higgs mass measurement cannot discriminate between the SM and
MSSM. The second caveat is that we are requiring absolute stability for the effective
potential: instead, the requirement of metastability of the electroweak minimum will
decrease the lower bound and go along the same direction as the previous effect. A
detailed calculation along these lines is at present being performed.

Figure 5: SM lower bound on MH as a function of Mt for αs(MZ) = 0.124 and
different values of Λ in the range 103 GeV ≤ Λ ≤ 1019 GeV. Thick lines correspond
to Λ = 103, 104, 105 and 1019 GeV. Thin lines correspond to Λ ≡1.5, 2, 3, 4, 6 and
8 TeV.

As for question ii), we can see from Fig. 5 that an upper bound on the scale
of new physics can be deduced from the Higgs mass measurement. For instance, if
MH < MZ , and fixing Mt ∼ 175 GeV, we obtain from Fig. 5 that Λ <

∼ 10 TeV. This
bound crucially depends on the value of the top mass and will be softened by the
second (metastability bound) effect just mentioned.
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