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Abstract

The construction and testing of a 2 meter straw chamber prototype

is described. We achieved straw alignment of better than 30�m and

wire alignment of order 7�m while keeping the amount of material to

about one half the amount normally needed for a similar all-wire drift

chamber.
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Straws are uniquely versatile particle detectors. Their cheapness, rugged-

ness, lightness and ease of assembly make them suitable for muon detectors,

central and vertex trackers, and transition radiation detectors.

In the following we report on the construction and performance of a 63-

straws, 2-meters long prototype. We were particularly interested in a possible

replacement of the ALEPH Inner Tracking Chamber with something having

the best possible protection against broken wires (which stay in the straw,

as opposed to the potential danger of massive short circuits in an open cell

geometry), good alignment and twice the granularity for the same mass. The

latter would improve the vertexing capabilities of ALEPH.

The prototype discussed below was designed with these ideas in mind. We

found a novel way to align both straws and wires to very high precision over

two meters. In Section 1 we discuss the design constraints, the mechanical
problems related to detector construction and some alternative solutions. In
Section 2 the chosen assembly system is described and in Section 3 the results
of the cosmic ray tests are presented and discussed.

1 Design considerations and assembly meth-

ods

If the aim is to build a chamber that is very long and very well aligned

throughout, some problems are common to shorter chambers and others are
due to the length of the straws. Both straws and wires need to be aligned.
Straws, as extended, 
exible objects, can not be aligned as precisely as wires.
Sources of error on the wire positioning are:

� misalignment at the end plate

� overall misalignment w.r.t. the straw, inducing an electrostatic de
ec-

tion on the wire. This source of error is strongly dependent on the

straw length.

� if the electrostatic de
ection is too strong, a wire support must be intro-

duced, coupling mechanically wire and straw. The inferior alignment

of the straw will then be passed onto the wire.

For this test we used straws from Ref. [1] with a wall thickness of 54�m.
The average thickness seen by a particle travelling perpendicular to the tube
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axis is 0:06%X0 if the straw diameter is 10mm. Straws, as they are produced

today, are remarkably uniform in circumference (to a tolerance of 15�m or

better) but are neither straight nor round. After manufacturing, leftover

tensions in the plastic material make an unsupported 2-meter straw deviate

by a few centimeters from a straight cylinder.

An evaluation of the electrostatic de
ection of a wire displaced from the

axis of a straw determines the requirements for wire-straw alignment. If �

is the displacement from the center line without any applied voltage, L the

length of the straw, R the straw internal radius, r the wire radius, V the

voltage applied, and T the wire tension, the maximum de
ection of the wire

due to the applied voltage will be[2]
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For typical values of the chamber parameters,

D � �; if L = 2m

and
D � 0:01�; if L = 67cm:

Hence, at a length of 2 meters the wire will be aligned as well as the straw is,
because either the electrostatic or the mechanical coupling via a wire support
will de
ect it by a quantity of order �. For shorter lengths wire and straw

are essentially decoupled.
We �rst discuss methods to align the straws. Earlier solutions to make

straws perfectly cylindrical were to pull and in
ate them [3]. This would, in
turn, involve having thick outer shells, increasing the material unacceptably

by today's standards. Our tests of the straws described below indicated that

absolute pressures of order 2 atmospheres and tensions of order 1kg were
needed to make 2 meter long straws straight and round to 20�m.

A more re�ned approach is the one proposed in Ref.[4]. Each straw is
�tted round a precision steel rod, and the rods are held vertically in a closely-

packed matrix by positioning plates at the two ends of the rods. A low-mass
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gluing method is used during assembly, and after the rods are pulled out the

straw lattice forms a composite material which is strong, self-supporting, and

able to withstand the axial pressure due to the wire tension. Contrary to

popular belief, this arrangement has less material than an open cell, all wire,

geometry can typically achieve. The axial pressure is reduced by typically

one order of magnitude, because of the lack of �eld wires, and the material

put into the straws is saved on the support shell. This method can place the

straws with about 30�m accuracy, and the wires with about 20�m accuracy

at the end plate.

When extrapolated to a 2-meter long detector, this method becomes

rather clumsy, with tons of precision rods involved, and rods of this length

tend to scratch the inside of a straw much more easily.

We tested �rst a variant of this method, described in Fig.1. For these
tests we used Mylar-Aluminum straws, R = 4:000mm, and precision rods
with measured diameters between 7.990 and 7.997mm. A massive aluminum
mold provided the shape for a triangular, 21-straw array. Rods were inserted

into the straws and placed into the mold which lay on a precision horizontal
surface. A thin layer of viscous glue was applied at the straw-straw contact
points.

After drying, the cast was removed, the rods pulled out, and the trian-
gular array measured for alignment against a precision marble plane. The
results for one such array are shown in Fig. 2. Distortions of 200-300 microns

are visible in each of the measured straws. Possibly the outer straws are not
supported well enough by the other straws in the lattice, or the whole module
has some distortions of its own.

Subsequently, two of these arrays were fully equipped as detectors, and
took data in the cosmic beam setup described in Section 3. The results

showed that the wires were of order 200 microns misaligned with respect to
their nominal position, which is consistent with the electrostatic de
ection.
Next we tried an aligning matrix made of graphite[5], as shown in Fig. 3.

The holes were precision-drilled, so that about 90% of the plate material was
removed, the diameter of the holes into which the straws were to be inserted

being 8.10mm. The minimum distance between two neighbouring holes (and
hence two neighboring straws) was 0.45 mm and the plate thickness was

6.3mm.
A metrological measurement of the alignment of these holes, see Ref.[5],

gave an RMS of 45�m, which is acceptable. Graphite is a totally amorphous
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material with low heat conduction, which explains why the distortions are

so low when similar drilling conditions would have macroscopically warped

or destroyed a metal or carbon �ber plate.

Measurements, however, showed that such plates were needed every 20

cm to maintain the straws straight and hence that an unacceptable amount

of support material must be incorporated.

2 The new assembly method.

The considerations and tests described above made it clear that several prob-

lems need be addressed.

� the straws and wires need to be aligned on the same precision plate, to
minimize misalignments.

� the straws need to be constrained continuously.

� to minimize straw-wire electrostatic pull, the wire should be supported

over lengths shorter than 2 meters.

We introduced several novel solutions to achieve this. To build this new
prototype, we used R = 5:000mm Kapton-copper straws from [1]. They
had mechanical properties similar to Mylar-aluminum straws of the same

dimensions.
The prototype is schematically shown in Fig. 4. Its total length was

193cm, and two carbon �ber membranes were placed at 64.3cm from the end
plates. The straws were also 64.3cm long, but the wires were 193cm long and
were fed through the membranes.

The membranes and end plates were drilled as shown in Fig. 5. The larger
holes, with a radius of 2.5000mm, housed the wire feed-throughs described
later. The smaller holes, with a radius of (2=

p
3� 1) times the straw radius

(Fig. 6), were used as feed-throughs for precision-made disposable Te
on
strings which were tangent to the straws along the whole length and provided

the alignment constraints for the straws at the time of assembly.
The feed-through for the wires, the electric contact and the straw collars

that interfaced the straws and the membranes or end plates are shown in
Fig. 7. The electric contact was made with a small strip of copper, which

�tted into small slots in the collar, and was glued to the inside of the straw
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by means of conductive Epoxy. The copper strip was fed across the end

plate or membrane through small notches in the wire feed-through (Fig. 8).

The collar made the straw round, 
at and hard at the point of mechanical

junction with the end plates or membranes, to which it was glued by a single

drop of glue. Its funnel-like shape helped considerably while stringing the

wires.

The feed-through is a simple hard-plastic, molded cylinder, with a preci-

sion V which positions the wire (Fig. 8). The V only provides a constraint in

one direction, and if electrostatic forces on the wire have a component point-

ing away from the V, the wire will be e�ectively unconstrained. To overcome

this problem, the two membranes were positioned 2mm higher than the end

plates, with the V pointing down (Fig. 9). The wire tension then had a pos-

itive component pushing the wire into the V. A simple calculation showed
that a straw-wire misalignment of 50�m (the estimated tolerance) would
have caused the wire to lift o� the V at a voltage of 30kV.

The carbon �ber end plates and membranes have shown exceptional prop-

erties, which some of us reported separately one year ago [5]. Since then,
"isotropic carbon �ber" plates have become the end plates of choice at all
low-energy particle physics factories [6, 7]. Brie
y, carbon �ber with the
�ber planes laid in a simple isotropic pattern is about one order of magni-
tude more precise than metal plates, (we measured 2�3�m accuracy for our
membranes, 5 � 7�m for our plates, and 23�m for the control metal plates)

and one order of magnitude lighter. The accuracy error is dominated by
short range imperfections and not by overall distortions of the plate or mem-
brane [5]. The 2-dimensional position of each V in the plate or membrane
was measured with an accuracy of approximately 2 microns.

We used 6.5mm thick plates and 0.5mm thick membranes. The material

around the membrane region is composed mostly of plastics, and contributes
no more than 1:0%X0 for a particle crossing the membrane at 45o from the
detector axis.

As shown in Fig. 4, the prototype was mounted on a machined I-beam,
which allowed support and ease of handling. The assembly was performed

vertically. Two extra plates, made of 5mm thick aluminum, were drilled with
the hole pattern of Fig. 5. and then bolted at the extremities of the I-beam.

Their role was to take the tension of the strung Te
on wires during assembly.
A �rst layer of Te
on wires made by [1] was strung, with a tension of

1kg, and crimped at the two metal plates. The �rst layer of straws was
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then added, electrically connected to the continuing straws, glued to the end

plates and membranes1, and glued to the adjacent straws. For straw-straw

gluing, a single drop of glue was applied every 7cm. The glue then would

propagate along the crack between two straws, covering all of the intervening

space.

The surface tension of the glue was signi�cantly stronger than the force

needed to restore straightness in a straw (which was of order 0.2 grams).

The strings under tension were 6 times stronger than straws with respect to

lateral forces. With glue, straight strings, and other uniform straws on every

side, each straw was subject to relatively large constraints in each direction.

The glue surface tension e�ectively exerted the same lattice-ordering strength

everywhere, contributing to the uniformity of the lattice. The surface tension

did not depend on the quantity of glue, as small excesses would run down the
straw. The tolerance between straw and string diameters, and the spacing
of the lattice, was 30 microns.

The assembly proceeded with alternate layers of strings and straws until

completion. The body of the prototype, comprising a total of 63 straws, took
24 hours for two people to complete. The glue drying time was 36 hours.

After drying, the no-stick Te
on strings were removed. Both ends were
pulled at the same time, and as the Te
on string stretched, it became thinner,
so that when one crimp had been cut the whole string could be recovered
at the other side. The body of the detector was then extremely well aligned

with no extraneous material other than in the membrane region.
To estimate the straw alignment, we built some modules of one layer only

using spare end plates, and then measured the linearity of the straw-straw
gap (visible because of the glue transparency), in a vertical position, with
respect to a 100�m steel wire under 1kg tension. The straw-straw gap could

have been as large as 1mm before gluing but the straws would be pulled
together by the glue, which was e�ectively acting like a zipper. All gaps then
were the same to roughly 15�m, and all were roughly 30�m wide (Fig. 10a)).

The linearity of the straw-straw gap is shown in Fig. 10b), with an average
deviation of less than 30�m. Finally, the pro�le of a straw in the direction

perpendicular to the straw plane is shown in Fig. 10c), and is one order of
magnitude worse than in the straw plane direction, giving a rough estimate

of how much alignment is gained from immediately adjacent strings and how

1Throughout the construction we used the glue of Ref.[8] for all gluing operation.
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much from the whole lattice. We conclude that the straws in our prototype

were aligned and cylindrical to better than 30�m along their length.

Wire stringing was also done vertically. 20 micron thick gold-plated tung-

sten wire was dropped through the straw with a needle as lead, and strung

with a tension of 53 grams. The crimps were slightly o�-center so that the

wire would be positively pulled into the end plates feed-through V. Stringing

took 24 more man-hours.

Before transportation to the data-taking site, the whole prototype was �t-

ted with end cans with wire and gas feed-throughs, and a plexyglass encasing

to contain the gas and to protect against damage.

3 Data taking and results.

Cosmic ray data were taken using the set-up of Fig. 11. The trigger and t0
were given respectively by the coincidence and OR of the two scintillators,

and the two multiwire chambers provided a 2�D track coordinate measure-
ment. About 1:4 � 105 cosmic triggers were taken with this set-up, over 20
runs of one day each. All runs were taken with a gas mixture of 89% Argon,
10% carbon dioxide, and 1% methane (HRS gas).

17 of the 20 runs were taken at a HV of 1425V, 12cm from a membrane
and 52cm from an end plate. One run was taken at a HV of 1325V and one

run at a HV of 1375V. One run was taken at 1425V in mid-span between
the membrane and end plate. The latter three runs were taken for cross
checks, showed little change of the resolution or e�ciency with high voltage
and showed that the wires were in the expected position in mid-span. They
were not used for the following analysis.

Only 32 ampli�er channels were available, later reduced to 30, and they
were connected according to Fig. 12. The electronics and readout system,
including the software, were as used by the ITC in ALEPH and are described
in Ref. [9]. Brie
y, the hardware consists of a preampli�er (�3 in voltage),

connected to a postamp-discriminator (�36 in voltage), sitting in a large

format(9U) Euro crate. The discriminator outputs are connected to a Lecroy
4290 TDC system, with 0.5 nsec timing resolution, which provides for a

hardware timing calibration which was run approximately weekly.
The analysis used the metrology information on the position2 of the V's

2For a discussion of the metrology measurements on membranes and end plates, see
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and the position of the wire was assumed to be a weighted average between

the end plate wire position and the membrane wire position (this correction

was typically only a few microns).

A typical event is shown in Fig. 13. Data were analyzed in three steps.

A �rst step would select usable tracks, �t them for all possible left-right

combinations, and select the best, assuming the nominal wire positions. A �t

for the linear time-to-distance coe�cient giving the best possible resolution

was then performed. A second �t allowed for small, quadratic deviations

from linearity, and hits with a residuals larger than 0.8mm were discarded.

The e�ciency was measured as follows. Given four straws that �t to a

good track, other intermediate straws were looked at to see whether they had

�red. The e�ciency was found to be 96.0%. If a cut was applied such that

the �tted track was at least 1mm inside the straw under study, the e�ciency
was found to be 98.7%, which suggests that most of the ine�ciency is purely
geometrical.

To measure the resolution we considered again the same �ve-hit tracks,

and measured the residual of each straw with respect to the �t using the
other four. Simple algebra shows that the width of this distribution is the

spatial resolution multiplied by a factor
q
3=2 if the straw is the �rst or last of

the �ve, and a factor
q
5=4 if the straw is the middle one. The resolution was

measured to be 180�m(Fig. 14), with all measured wires within 7% of this
value, which is consistent with the well-known resolution of HRS gas, and
was found to depend very little on the voltage in use. Unfortunately, safety

considerations prevented the use of more precise gases, such as dymethilether,
which would have constrained the alignment even better.

All hits with a measured distance from the wire larger than 1mm, on
tracks with at least �ve hits, were then used to measure the position of the
wire, assuming straight cosmic tracks. The �tted gaussian peak was used,

rather than the average of the hits, to produce the results, as some asymmetry
was present in the tails. The di�erence between the metrology-measured x�
coordinates and the track-measured x-coordinates are shown, for each wire,

in Fig. 15. The errors 
uctuate because of acceptance, being largest for
straws on the outside in the middle planes, and smallest on the inside in the
upper or lower planes.

There is an overall o�set, and two degrees of freedom for the time-to-

Ref.[5].
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distance relationship, leaving a total of 27 degrees of freedom. The total �2,

de�ned as the sum of all the di�erences, divided by the �tted �, and squared,

is 67, which shows that there is some residual misalignment. We estimate

the residual misalignment by adding in quadrature a systematic error, and

imposing that the �2=dof be equal to 1. We then estimate the error by a

variation of 1 in the total �2. The result is that the data are consistent with

a misalignment of 7:0�m. The error on this quantity is estimated to be of

order 1 micron.

Possible causes for this relatively large misalignment could be related to

the positioning V. First, the V had an angle of 120o, which might not be

adequately forcing the wire to the apex. Perhaps an angle of 90o would have

been better. Second, the edges of the V's were rough, because of the plastic

that was used. The position of the V was measured by taking three points
on either V leg, and �tting the apex position. Possibly the roughness of the
legs was enough to o�set the 2�m error of the metrological measurement.
Finally, the use of the �tted resolutions instead of the mean squared devia-

tions might have slightly overestimated the misalignment contribution, but
we have estimated this e�ect to be small.

4 Conclusions.

We have built a 2-meter long, 63-straws prototype aligned to within 7�m.
Such accuracy was achieved with amounts of material which are less than, or
of order of, those commonly used in trigger chambers. The relevant method
involved the use of very precise carbon �ber end plates and membranes, for
wire and straw positioning, and a special assembly method to align the straws

throughout.
In retrospect, the straws are so well aligned by this method that probably

detectors of less than 120cm of length could achieve a wire alignment of 30

microns or better without any intermediate support. Thus, trigger chambers
at low energy factories could use this technology for minimal mass, high

precision detectors.
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Figure Captions

1. Schematic representation of the �rst method tried. The straws, con-

taining precision rods, are packed into a massive, precision aluminum

form for gluing. The drawing shows 3 layers and six straws. The real
method involved 6 layers and 21 straws.

2. Measured pro�les of the outer straws, versus position along the straw.
The scale is indicated by a bar in each Figure. a) horizontal pro�le. b)

vertical pro�le.
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3. Schematic representation of a graphite plate. The holes were precision-

drilled with about 90% of the material being removed.

4. Schematic representation of the prototype. The body of straws is di-

vided in three sections, but the wires go through the membranes and

are crimped at the end plates. Visible are the I-beam support, to which

the end plates and membranes are connected by aluminum frames. Not

shown are the heavy aluminum plates at the ends of the I-beam, which

were used to support the tension of the Te
on strings during assembly.

5. Hole pattern of membranes and end plates. The larger holes are the

feed-throughs for the wire and contain a wire positioning precision V.

The smaller holes are for the precision Te
on strings used at the time

of assembly.

6. How the straws and the Te
on strings �t together. Each internal Te
on
wire is surrounded by three straws, and each straw is surrounded by

six strings. The required tolerance was 30�m.

7. Material around the membrane region. Shown are the straw collars,

made of hard plastic and 0.5cm high, the copper electric contact, and
the wire feed-through.

8. The precision feed-through. a) side view. b) front view.

9. Orientation of each segment in the vertical plane. All Vs are pointing
down, and the two membranes had the hole pattern 2mm higher than

the end plates.

10. a) Straw-straw gap pro�le. The gap was uniform to within 15�m (the
sensitivity of our optical measurement). b)straw-straw gap linearity

with respect to a steel wire under tension. Some distortion is visible.
c) Straw pro�le in the direction perpendicular to the straw array. The

distortion is about ten times larger than in the plane of the array (pre-

vious Figure), showing the importance of the straw lattice in aligning
single straws.

11. Cosmic rays setup. Two photomultipliers and two 10�10cm2 chambers
provided the external hodoscope.
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12. Straw tubes connected to the electronics.

13. A cosmic ray event. The circles give the distance from the wire as

measured by the detector.

14. Single-hit resolution, HV=1425V, for one straw in the �rst layer from

bottom.

15. Di�erence between the x�coordinate, as measured optically, and the

x� coordinate as measured with the tracks, for each wire.
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