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Or là, où il n’y a point de parties, il n’y a ni étendue, ni figure, ni divisibilité possible.

Et ces Monades sont les véritables Atomes de la Nature et en un mot les Elements des

Choses.

G.W. Leibnitz (La Monadologie-3)
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1 N = 2 Algebra and Topological Field Theory

1.1 N = 2 Algebra and BRST-cohomology

Given the N = 2 supersymetric algebra

(Q±)2 = 0 (1)

{Q+, Q−} = H

a topological field theory (TFT) can be defined by declaring one of the two SUSY gener-

ators, let us say Q+, to be a BRST-charge. The physical Hilbert space H of the TFT is

defined as the BRST cohomology and the physical observables φi are constrained by the

symmetry requirement

[Q+, φi] = 0 (2)

We can provide the Hilbert space H with an inner product 〈 , 〉 such that the ad-

joint of Q+ is Q−. This allow us to associate with each cohomology class a ”Hodge-

representative”1 satisfying

Q+|i〉 = Q−|i〉 = 0 (3)

From (1.b) we observe that this basis is one to one related to the vacuum states

H|i〉 = 0 (4)

In these lectures we will mostly reduce our study to two dimensional topological field

theories [1], [2]. Physically, topological invariance means that the only space-time depen-

dence of correlation functions will be on its topology, which in two dimensions is simply

given by the genus. Topological invariance is certainly a much larger symmetry that the

more familiar conformal invariance, this however does not mean that all topological field

theories are massless or, equivalently, with a traceless energy-momentum tensor. As we

will see it is possible to write down lagrangians which are manifestly independent of the

metric, and in this sense topological, possessing dimensionful coupling constants. The

1Hodge’s theorem for compact manifolds without boundary stablish that any p-form can be uniquely

decomposed as a sum of exact, co-exact and a harmonic form. The harmonic form (3) is the Hodge-

representative.
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renormalization group can be directly applied to these topological theories. The critical

points of the renormalization group flow will define topological conformal field theories,

which will be characterized by two chiral, Q± and Q̄±, N=2 algebras.

1.2 Two Dimensional TFT’s: Operator Formalism

In two dimensions, a TFT can be nicely described using the operator formalism [3]. Let

H be the physical Hilbert space and let us choose as a basis the Hodge-representatives

defined by equation (3). Given now a generic Riemann surface Σg of genus g with n punc-

tures p1, ..., pn, the operator formalism definition of the corresponding TFT will consist

in associating with these geometrical data a quantum state |Σg; p1, ..., pn〉 satisfying

Q+|Σg; p1, ..., pn〉 = 0 (5)

δ|Σg; p1, ..., pn〉 = Q+|η〉

where by δ we mean any change of the metric and the positions of the punctures. Condi-

tion (5.1) implies that |Σg; p1, ..., pn〉 ∈ ⊗nH, and condition (5.2) reflects the topological

nature of the theory, namely, any geometrical change is represented by Q+-exact forms

and therefore all the geometrical dependence of the state |Σg; p1, ..., pn〉 can be mapped

into the same BRST-cohomology class. Hence we can associate with any genus g and any

number of punctures n a Hodge-representative state |g, n〉 as follows

|g, n〉 =
∑

i1,...,in

Ci1...in
g |i1〉 ⊗ ...⊗ |in〉 (6)

where we sum over the basis (3) of the physical Hilbert space H, and with the constants

Ci1...in
g depending only on the topological data, namely the genus and the number of

punctures. To define the theory reduces now to fix these constants. In order to do it we

will imposse, as usual, consistency with sewing.

A topological sewing can be defined by two operations ∗ and ∗̂ such that

|g, n〉 = |g1, n1〉 ∗ |g2, n2〉, n1 + n2 = n+ 2

|g, n〉 = ∗̂|g−1, n+2〉 (7)
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Using (6), we can define the ∗-operation as follows

|g, n〉 =
∑

i

(
∑

j

Cg1

i1...in1−1

jCg2

j in1+2...in1+n2 )|i1〉 ⊗ ...⊗ |in1+n2〉 (8)

with

Cg
i1...in

j ≡ Cg
i1...in lηlj (9)

where we have introduced a ”sewing metric” ηij . The ∗-operation can be analogously

defined as follows

|g, n〉 =
∑

i

∑

j

Cg−1
i1...in j

j |i1〉 ⊗ ...⊗ |in〉 (10)

Using (8) and (10), we get the following type of sewing equations

Cg
i1...in = Cg1

i1...ik
jCg2

j ik+1...in =
∑

j

Cg−1
i1...inj

j (11)

An inmediate consequence of sewing is that all constants Cg
i1...in can be written as

products of the elementary three point functions Cijk
0 . The sewing equations (11) will

be automatically fulfilled if the elementary three point constants satisfy the associativity

condition
∑

m

C0
ij

mC0
mkl =

∑

m

C0
ik

mC0
mjl (12)

The net result of the sewing construction is that a TFT is completely determined by

a set of constants C0
ijk and the sewing metric ηij . In the previous discussion, we have

not considered the dependence of C0
ijk on the coupling constants of the theory. Before

entering into that problem, we will like to use the previous formalism for the explicit

construction of correlation functions.

1.3 Observables and Hodge-representatives

Let us consider a physical observable φi satisfying condition (2). As it is in general the case

for local quantum field theory, we would like to associate with this observable a physical

state, i.e. a BRST cohomology class and more in particular a Hodge-representative in this

class. This can be done as follows. Let as take a hemisphere with the field φi inserted on

it at the point p. In this way we obtain at the boundary a physical state |i〉p satisfying
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Q+|i〉p = 0. When we change the position of the insertion, the state we will obtain will

differ from the former one by Q+-exact forms. A simple way to project on the Hodge-

representative, will be by gluing the hemisphere to an infinitely long cylinder with fixed

perimeter β. Using now relation (1.b), we can project on the harmonic representative by

taking the limit

|i〉 = lim
T→∞

e−TH |i〉p (13)

The state |i〉 satisfy

Q+|i〉 = Q−|i〉 = 0 (14)

By the construction we have used [4], the state |i〉 associated with the observable φi will

in principle depend on the perimeter of the cylinder β. This statement can sound a priori a

bit strange. In fact if for different values of β we obtain different harmonic representatives

we will be in contradiction with the topological invariance as introduced in equation (5),

namely the difference of two harmonic forms is not a Q+-exact form and, on the other

hand, a change of the perimeter seems to be an innocent geometrical variation. What is

the solution to this puzzle? To get the solution we need to understand the perimeter β

used to map physical observables into Hodge-representatives as a renormalization group

point or scale. In this sense, changes of β will produce in general variations in the

coupling constants2. Now the cohomology class is defined relative to Q+ which will

depend explicitely on these couplings. Therefore changing β we will get, in general,

different harmonic forms in different cohomology classes. After this comment we can

try to connect the operator formalism construction presented in section 1.2, with the

definition of correlation functions for physical observables.

By means of the sewing procedure we have reduced the problem of defining the states

|g, n〉 to that of defining a topological metric ηij and the set of elementary three point

functions Cijk
0 . Our task will be now to get these building blocks of the TFT directly from

the algebra of observables. Let us consider two physical observables φi, φj inserted on the

hemisphere, and let us project on a Hodge-representative by gluing an infinite cylinder

of fixed perimeter β. The state |i, j〉β obtained by this procedure is by construction a

physical state and can be projected on a basis of H

|i, j〉β =
∑

Ck
ij(β)|k〉β (15)

2A more detailed characterization of the RG in topological field theories will be presented in section

1.6
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The constants Ck
ij(β) define the cohomology ring structure for a particular set of Hodge-

representatives, namely the ones defined at the renormalization point β.

Now we can use these cohomology ring constants, and sewing, to define any correlator

of physical observables

〈φiφjφkφl〉0 =
∑

nm

Cn
ijηnmC

m
kl =

∑

n

Cn
ijCnkl (16)

From (16) we get in particular

ηij = 〈φiφj〉0 (17)

It should be stressed that the sewing metric or topological metric, ηij defined by two

point correlators on the sphere, does not coincide with the inner product of H relative

to which the adjoint of Q+ is Q−. The dependence on the renormalization group point

β of these correlators should be constrained to satisfy, as usual in quantum field theory,

renormalization group equations

d

dβ
(Ci1...in

g ) = 0 (18)

It will be important for the rest of our study to have control on the β-dependence of

the Hodge-representative states. To do that, it is convenient to pass from the abstract

discussion we are developping until now to some concrete cases of TFT.

1.4 Twisting N=2 Super Conformal Field Theories

In the previous section we have presented the general structure of a TFT. To materialize

this structure in one concrete case, we will define TFT’s associated with N = 2 super

conformal field theories (SCFT).

The chiral algebra of a N = 2 SCFT [5] is generated by the identity, the energy

momentun tensor T (z), two supersymmetric currents G± and a U(1) current J(z). In

terms of the corresponding Laurent expansions

T (z) =
∑

n

Lnz
−n−2, J(z) =

∑
Jnz

−n−1, G±(z) =
∑

n

G±
n z

−n−3/2 (19)
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The N = 2 algebra is given by

{G−
r , G

+
s } = 2Lr+s − (r − s)Jr+s + (c/3)(r2 − 1/4)δr+s,0

[Lm, Ln] = (m− n)Lm+n + (c/12)m(m2 − 1)δm+n,0

[Ln, G
±
r ] = (n/2 − r)G±

n+r , [Ln, Jm] = −mJm+n (20)

[Jm, Jn] = (c/3)mδm+n,0 , [Jn, G
±
r ] = ±G±

n+r

where r and s are intergers or half intergers depending if the representation is in the NS

or R sectors. The same holds for the antiholomorphic components Ḡ±
n , J̄n and L̄n.

In order to build a TFT we want, first, to use one of the two SUSY currents to define

a BRST charge. This is not possible inmediately because the SUSY currents have spin

3/2 instead of 1, as should be the case for defining a BRST-charge. Second, we need

an energy-momentum tensor that can be written as an exact form in order to implement

topological invariance. The two things can be achieved by twisting [2, 6] the theory, which

consists in changing the energy-momentum tensor T (z) to T t(z), defined by

T t(z) = T (z) +
1

2
∂J(z) (21)

This change in the energy-momentum tensor corresponds to couple the U(1) current to a

background gauge field equal to half the spin connection. The net result of this background

field is to change the spin s of any field of charge q to s− q/2. This is the effective change

of the spin coming from the holonomy contribution for a charge q coupled to a U(1) gauge

field equal to one half the spin connection.

After twisting, the SUSY current G+ of positive charge q = 1 and spin 3/2, becomes

a one form and can be used to define a BRST charge

Q+ =
∮
G+(z)dz (22)

Moreover, from the algebra relations (20) we get

T t(z) =
∮
G+(w)G−(z)dw (23)

which makes the twisted energy-momentum tensor (21) a Q+-exact form.

Therefore, by twisting the N = 2 SCFT we have obtained a topological conformal

field theory with two BRST charges

Q+ =
∫
G+(z)dz, Q̄+ =

∫
Ḡ+(z)dz (24)
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and a traceless energy-momentum tensor T t(z), T̄ t(z̄) which are, relative to Q+ and Q̄+,

exact forms.

Before leaving this section, let us note that we could have done the twist coupling

the U(1) charge to minus one half of the spin connection. In this case, the G− current

becomes the BRST charge. This can be done independently in the left and right sectors.

Physical Hilbert Space and Observables: Chiral Ring [8]

The Hilbert space of the original N = 2 SCFT is, as usual in CFT’s, a direct sum of

irreps of the chiral algebra. Each irrep is associated with a primary field which represents

the observables of the theory and is characterized by a weight ∆ and a U(1) charge q.

As an example we can mention the case of Ak+1 minimal models. The central extension

in this case is given by

c =
3k

k + 2
(25)

with k an interger number, called level. The irreps fulfilling the Hilbert space are

parametrized by

weights : ∆l,m =
l(l + 2) −m2

4(k + 2)
l = 0, ..., k ;m = −l,−l+2, ..., l−2, l

U(1)charges : qm =
m

k + 2
(26)

Each of these irreps is associated with a primary field φl,m(z). Denoting |l,m〉 the weight

vector, the map between observables and states is given by

|l,m〉 = φl,m(0)|0〉 (27)

When we twist the theory, the Hilbert space of the N = 2 SCFT collapses into Q+-

cohomology classes. The best way to understand this truncation is by using a Coulomb

gas representation where the BRST charge of the N = 2 SCFT is defined in terms of

the screening currents [7]. By the twist we modify the theory in such a way that the

energy-momentum tensor becomes, relative to this BRST charge, an exact form.

Our task now will be to associate a Hodge-representative to each cohomology class

and to define the corresponding physical observables. As usual, we can take as Hodge-

representative the harmonic or vacuum forms of the twisted theory

Q+|i〉 = Q−|i〉 = 0 (28)
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These Hodge-representatives are precisely the Ramond vacua of the original N = 2

SCFT3. In other words, each cohomology class of the twisted theory has as Hodge-

representative a Ramond vacua of the untwisted theory. It is well known that the NS

and R realizations of a N = 2 superconformal algebra are connected by the spectral flow

transformation U1/2

U1/2 L0 U−1
1/2 = L0 −

J0

2
+

c

24

U1/2 J0 U−1
1/2 = J0 −

c

6
(29)

U1/2 G
±
∓1/2 U−1

1/2 = G±
0

The Ramond vacuum states are defined by

L0|i〉R =
c

24
|i〉R

G+
0 |i〉R = 0 (30)

It is easy to see, using (29), that NS w.v. satisfying ∆ = q/2 are one to one related to

Ramond vacua (30). These NS w.v. are associated in the N = 2 SCFT with local primary

field φi that verify

[G+
−1/2, φi] = 0 (31)

Fields satisfying (31) are called chiral fields. Summarizing, each cohomology class of

the twisted theory is associated with a chiral primary field. Indeed, equation (31) corre-

sponds to the BRST-invariance condition in the twisted theory, and it can be proved that

any general chiral field can be decomposed into the sum of a chiral primary field and a

Q+-exact one. The consistency of the twisting procedure requires that the operator prod-

uct expansion for chiral primary fields is, up to Q+-exact forms, another chiral primary

field. This is in fact the case. In the twisted theory and due to the fact that the energy-

momentum tensor is Q+-exact we can, up to Q+-exact forms, reduce our study of the

operator product φi(z)φj(w) between two chiral primary field to the ”topological limit”

z → w. In this limit and by U(1) charge conservation, the only possibility is another

chiral primary field φk such that

φiφj = Ck
ijφk , qk = qi + qj (32)

We reobtain in this way the ring structure we have already discussed in section 1.3. This

ring of observables is known as the chiral ring [8]. Analogously, there exist an antichiral

3For the minimal models (25)-(27), solutions to (28) correspond to l = m.
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ring of observables when we choose G− to define a BRST charge, and an spectral flow

transformation U−1/2 connecting antichiral fields with Ramond vacua.

It is nice to see that the topological theory defined by the twisting mechanism im-

plements in a natural way the spectral flow transformation. In fact if we define the

Hodge-representative |i〉 by inserting on the hemisphere the chiral field φi and projecting

on the zero energy sector by gluing an infinitely long cylinder, the state we get at the

boundary will have charge qi−c/6, where c/6 comes from the contribution of the twist to

the functional integral representation of the state |i〉. Now from (29) we see that this is

precisely the charge of the state U1/2φi|0〉 obtained from the NS sector by spectral flow.

The anomaly of the U(1) current generated by the twist imposses the following selec-

tion rule for non vanishing correlators 〈φi1...φin〉g
∑

i

qi = ĉ(1 − g) , ĉ = c/3 (33)

In particular the topological metric ηij = 〈j|i〉 defined for Hodge-representatives, i.e.

Ramond vacua, will be non vanishing only if

qi + qj = ĉ (34)

or in other words, when the sum of the Ramond charges is equal to zero.

1.5 Deformations Preserving Topological Invariance: Coupling

Constants and the tt̄-equations

Physical observables of an N = 2 SCFT are associated with chiral superfields, of compo-

nents

Φi = (φ
(0)
i (z, z̄), φ

(1)
i (z, z̄), φ̄

(1)
i (z, z̄), φ

(2)
i (z, z̄)) (35)

where

φ
(2)
i = {Q−, [Q̄−, φ

(0)
i ]} (36)

and therefore

[Q+,
∫

Σ
φ

(2)
i ] = 0 (37)
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Similarly, for antichiral fields φ̄ī we can define, relative to the SUSY charge Q+

φ̄
(2)
ī = {Q+, [Q̄+, φ̄

(0)
ī ]} (38)

which trivialy implies

[Q+,
∫

Σ
φ̄

(2)
ī ] = 0 (39)

Moreover, for Q+ being the BRST charge, φ̄
(2)
ī becomes a pure BRST field.

Using (36) and (38) we define a deformed theory parametrized by the coupling con-

stants (ti, t̄̄i) as follows

L(ti, t̄i) = LN=2
0 +

∑

i

ti

∫

Σ
φ

(2)
i +

∑

ī

t̄̄i

∫

Σ
φ̄

(2)
ī (40)

This deformed theory can be transformed into a TFT again by the twisting mechanism.

Let us fix a set of values (t0, t̄0) for the coupling constants. If some of the non vanishing

coupling constants correspond to relevant deformations, then the theory defined by (40)

will represent a massive deformation of the N = 2 SCFT, LN=2
0 . For these massive

deformations, the only conserved U(1) current correspond to the fermion number current

(the difference between the left and right charges at the conformal point). The TFT at

this point in the space of couplings is obtained by twisting with respect to the conserved

fermion number current

LT = L(ti, t̄i) +
1

2

∫
j A (41)

for A the U(1) spin connection and j the fermion number current. The antitopological

twist is defined by

LT ∗

= L(ti, t̄i) −
1

2

∫
j A (42)

Physical observables of (41) are associated with the chiral fields φi and the ones of (42)

with the antichiral fields φ̄ī.

If the deformed theory (40) is massive, the N = 2 algebra generated by Q±, Q̄± will

contain non vanishing central terms of the type

{Q+, Q̄+} = ∆ , {Q−, Q̄−} = ∆̄ (43)

The N = 2 algebra (1) is then defined by

Q± =
1√
2
(Q± + Q̄±) (44)
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After the twisting (41) ((42)), Q+ (Q−) becomes the corresponding BRST charges.

For each point (t, t̄) in the coupling space, we have defined a BRST charge Q+ and

therefore we can fiber the coupling space by the cohomology ring. The study of this

bundle will be the main task for the rest of this section.

Let |i, t, t̄; β〉 to be the state defined by inserting on the hemisphere the field φi and

projecting on a zero energy state by gluing the hemisphere to an infinitely long cylinder of

perimeter β. This correspond to use for the hemisphere a metric g=eφdzdz̄ with β=eφ.

Let us now introduce a set of ”connections” Ai, Aī
4 as follows

∂ti |j, t, t̄; β〉 = Ak
ij |k, t, t̄; β〉 + Q+−exact

∂t̄i |j, t, t̄; β〉 = Ak
īj |k, t, t̄; β〉 + Q+−exact (45)

Therefore the covariant derivatives are given by

Di = ∂i − Ai , D̄ī = ∂ī −Aī (46)

Using the functional integral representation of |i, t, t̄〉 and interpreting the partial deriva-

tive ∂i as the insertion and integration over the hemisphere of the operator φ
(2)
i , we can

conclude, by contour deformation techniques and equation (37), that ∂i|j, t, t̄; β〉 is also a

physical state. With the same techniques, it is easy to see that

Ak
īj = 0 (47)

Defining now

Aijk = 〈k|∂i|j〉 = Al
ij ηlk (48)

for ηlk the topological metric, we can derive, by standard functional integral arguments,

curvature equations for the connections Ai. From (47) we get

∂l̄Aijk = ∂l̄Aijk − ∂iAl̄jk (49)

4Properly speaking these connections are defined by

〈k̄|∂i − Ai|j〉 = 0

with |k̄〉 the antiholomorphic basis. The connection (45) is then defined by

Ak
ij = Aijk̄gk̄k

with gk̄k the inverse of the hermitian metric gij̄ =〈j̄|i〉.
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which admits the functional integral representation

〈φk (
∫

ΣL

Q+Q̄+φ̄l̄) |(
∫

ΣR

Q−Q̄−φi) φj〉 − 〈φk (
∫

ΣL

Q−Q̄−φi) |(
∫

ΣR

Q+Q̄+φ̄l̄) φj〉 (50)

where ΣL and ΣR represent the two hemispheres glued respectively to infinitely long

cylinders of perimeter β. To compute the first component of (50), we contract the SUSY

currents. The result is

〈φk (
∫

ΣL

φ̄l̄) |(
∫

ΣR

∂∂̄φi) φj〉 (51)

which can be written as

− 〈φk (
∫

ΣL

φ̄l̄) |(
∮

C
∂nφi) φj〉 (52)

for C the boundary of ΣR and ∂n the normal derivative along the cylinder. At the

boundary the state defined by inserting φj is projected on a zero energy state |j〉, therefore,

and taking into account that ∂nφi =[H, φi], we can rewrite (52) as

− 〈φk

∫

ΣL

φ̄l̄ | H
∮

C
φi |j〉 = −

∫
dτ 〈k|

∮

Cτ

φ̄l̄ H
∮

C
φi |j〉 (53)

We have used that the state obtained by inserting φk and φ̄l̄ on the left hemisphere, after

gluing the cylinder, is anhilated by H. The integral over τ in (53) is over the length of the

left cylinder, T . Moving H to the left in (53), we obtain
∫
dτ〈k| (∂τ

∮

Cτ

φ̄l̄)
∮

C
φi |j〉 (54)

The integration in τ is now performed easily, getting contributions from the boundaries

at τ = 0, T . The contribution at τ = T cancels with an identical one coming from the

second term in (50). Then, we are left with

−
∫
〈k|

∮

Cτ

φ̄l̄ exp(−TH)
∮

C
φi |j〉 (55)

where the propagation of φ̄j̄ along the infinitely long left cylinder, explicited by the factor

exp(−TH), has the usual effect of projecting into the ground states. Therefore (55) can

be written in terms of the structure constants of the chiral ring

− (C̄l̄Ci)kj (56)

Using the same arguments for the second term in (50), we finally obtain

∂l̄A
k
ij = β2[ Ci, C̄l̄ ]kj (57)
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with β the perimeter of the cylinder5. Equation (57), first derived by Cecotti and Vafa

[4], togheter with

[Di, Dj] = [D̄ī, D̄j̄] = [Di, C̄j̄] = [D̄ī, Cj] = 0 (58)

[Di, Ci] = [Dj , Ci] , [D̄ī, C̄j̄] = [D̄j̄ , C̄ī]

which can be deduced by similiar techniques as (57), are known as the tt̄-equations. To

contract the indices of the topological and antitopological structure constants in (57) we

use the metric gij̄ of the physical Hilbert space H, namely

C̄k
l̄j = gjn̄C̄

n̄
l̄m̄g

m̄k (59)

where

gij̄ = 〈j̄|i〉 (60)

with 〈j̄| the adjoint of the state |j〉. Recall that for the inner product of H introduced in

section 1.1, the adjoint of Q+ is Q−. The functional integral representation of the state

|j̄〉 is obtained, using the twisted lagrangian (42), by inserting on the hemisphere the anti-

topological field φ̄j̄ and projecting in the standard way on the zero energy representative.

Using this functional integral representation we can interpret the metric tensor gij̄ as a

topological-antitopological correlator on the sphere, where we glue the two hemispheres

through an infinitely long cylinder with fixed perimeter β and where we twist the theory

with +1
2
w on the right hemisphere and −1

2
w on the left, for w the spin connection. No-

tice that the correlator defined in this way is not a topological correlator. Its geometrical

meaning can be derived as follows. From the definition of the connection Ai we derive

Digjk̄ = 0 (61)

Diηij = 0

From (61) and (47), we get

∂igjk̄ = Al
ijglk̄ (62)

5The previous derivation of the tt̄-equation (57) admits a more geometrical interpretation in the

following terms. For ΣR one can consider fixed φi at the point 1 and reduce the integral over φi to

integrate the moduli τR ∈ [0,∞], φR ∈ [0, 2π] (see section 2.4). The same for the part ΣL where one will

fix φ̄j̄ at 1 and represent the integration over the insertion of φ̄j̄ by the one of τL ∈ [0,∞], φL ∈ [0, 2π].

These computations define two contact terms (see section 2.4). The conmutator after interchanging φi

and φ̄j̄ gives equation (57). Notice the difference in this construction with the definition of the 4-point

amplitude on the Riemann sphere where we only count with one moduli parameter.
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which means that A is the connection of the metric g

Al
ij = −gjk̄(∂ig

−1)k̄l (63)

Using (63) we can rewrite the tt̄-equation (57) as equations for the metric g

∂l̄(g∂ig
−1)k

j = β2[Ci, gC̄l̄g
−1]kj (64)

As we will see in section 1.8, the geometrical picture emerging from these equations is

closely connected with the special geometry for special Kähler manifolds.

1.6 Landau-Ginzburg Description

Let us consider Landau-GinzburgN=2 quantum field theories. They are characterized

by a superpotential W , the F-term, which is a holomorphic function of n chiral superfields

XA, and a D-term defined by a Kähler potentialK(XA, X̄A). Using the canonical potential

K(XA, X̄A) =
n∑

A=1

XAX̄A (65)

the lagrangian reads

L =
∫
d2zd4

n∑

A=1

θXAX̄A +
∫
d2zd2θ+W (X) +

∫
d2zd2θ−W̄ (X̄) (66)

Defining the superfields

XA = (xA, ψA, ψ̄A, FA) (67)

X̄A = (x̄A, ρA, ρ̄A, F̄A)

and after eliminating the F fields, using for that the equations of motion

FA =
∂W̄

∂X̄A
, F̄A =

∂W

∂XA
(68)

we get in components6

L =
∫
d2z(−|∂xA|2 + ψ∂̄ρA + ψ̄A∂ρ̄A − |∂AW |2 + ∂A∂BWψAψ̄B + ∂̄A∂̄BW̄ρAρ̄B) (69)

6Here we assume that W̄ is the complex conjugate of W .
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The F-term of lagrangian (66) is given by

LF = ∂A∂BWψAψ̄B (70)

and the F̄-term by

LF̄ = ∂̄A∂̄BW̄ρAρ̄B − |∂AW |2 (71)

with the rest defining the D-term.

After twisting the lagrangian L, the fields ψA, ψ̄A will become one forms and ρA, ρ̄A

zero forms. This is, as usual, the net effect of the coupling to a U(1) gauge field defined

as 1/2 of the spin connection. Moreover, in the twisted theory the F̄ and D-terms become

BRST-exact forms and, therefore, we can define the topological field theory by the F-term

lagrangian (70). The BRST-cohomology is given by [9, 10]

RW =
C[XA]

[W ′(XA)]
(72)

i.e. the set of polynomials in the chiral superfields XA modulo the ideal generated by

W ′(XA).

What is known as the Landau-Ginzburg representation of a TFT is to find a super-

potential W such that (72) coincides with the chiral ring. Given a superpotential W and

a basis {φi(XA)} of RW , the ring structure constants are defined by

φi(X) φj(X) = Ck
ij φk(X) modW ′ (73)

It is important at this point to realize the different behaviour under scale transforma-

tions of the world sheet metric

g → λ2g (74)

of the F and F̄ lagrangians (70) and (71). While (70) is invariant under transformation

(74), the F̄-term will transform7

LF̄ → λ2LF̄ (75)

Due to the invariance of (70), the scale transformations will act as automorphisms of

the chiral ring (72). This is consistent with the non-renormalization theorems for N =2

quantum field theories. These theorems, which are mainly based on the holomorphicity

7The transformation law (75) in the twisted theory comes from the fact that ρA, ρ̄A are, after twisting,

zero forms.
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of the superpotential, imply that F-terms are not corrected perturbatively and even non-

perturbatively. Hence the renormalization group transformation will preserve the chiral

ring structure (72) which only depends on F-terms.

Let us denote |i, t, t̄; β〉 the state associated with the observable φi(XA). The functional

integral representation of this state can be formally written like

|i, t, t̄; β〉 =
∫ n∏

A=1

dXAdX̄Aφi(X)exp(−
∫

H
LF )exp(−

∫

H
LF̄ ) (76)

where the integration in the exponents is on the hemisphere H used to define the state.

The parameter β, as usual, represents the perimeter of the hemisphere. The transforma-

tion g → λ2g is now interpreted in two complementary ways. First, it changes the non

conformal part of the lagrangian in the way described above. Secondly and based on the

non renormalization of the superpotential W , the change z→λz, θ→λ−1/2θ amounts to

a change
∫
dz2dθ2W→λ

∫
dz2dθ2W which can be compensated by changing the couplings

ti. This change of couplings in terms of the scale λ would define the renormalization

group β-functions for the different couplings. Using these two facts and the equations of

motion for (69), we obtain [4]

β2 ∂

∂β2
|i, t, t̄; β〉 = −(

∮
J5

0 +
n

2
)|i, t, t̄; β〉 +Q+−exacts (77)

with β2∼λλ̄, λ in general complex. The factor n
2

comes from the contribution of the zero

modes8.

At this point we can compose the previous computation with the one we will perform

for the twisted lagrangian (41). In that case the β dependence will come directly from

the twist term, which under dilatations transforms as

∫
j ∧ dφ→

∫
j ∧ d(φ+ ǫ) (78)

with dφ the spin connection for the metric gzz̄ =eφdzdz̄ [12].

From equation (77) we can easily obtain the dependence on β of the tt̄-metric at the

conformal point9

gīi ∼ (β2)−qi−
n
2 (79)

8The reader should be aware here that the only non conformal piece of the lagrangian (69) is the

F̄ -part.
9Recall that for Landau-Ginzurg models ĉ=

∑n

i=1
(1−2qi), with qi the charge of the chiral field XA and

n the number of chiral fields. This representation of ĉ can be derived using singularuty theory (see[11]).
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with qi the Ramond charge of the state |i〉.
We can now read equation (77) as defining a connection Aj

βi. The tt̄-equation for this

connection is

∂l̄A
j
βi = β2[CW , C̄l̄]

j
i (80)

where CW means multiplication by W in RW . At the conformal point we get ∂l̄A
j
βi = 0

since the quasi homogeneity of the superpotential implies CW =0.

1.6.1 Landau-Ginzburg Representation

In this subsection we will consider the problem of defining a Landau-Ginzburg represen-

tation for the TFT defined by the lagrangian

L = LN=2
0 +

∑

i

ti

∫
φ

(2)
i (81)

with LN=2 representing a twisted N=2 SCFT. We will consider all t̄i-deformations equal

to zero.

For a minimal N=2 SCFT at level k (25)-(27), the chiral ring is defined by

φiφj = φi+j i+ j ≤ k

= 0 i+ j > k (82)

This is isomorphic to the ring RW for

W =
Xk+2

k + 2
(83)

with only one chiral superfield X. The isomorphism is defined by

φi → X i (84)

We consider now the deformed lagrangian (81) and look for a superpotential W (X, t)

such that the corresponding Landau-Ginzburg lagrangian is equivalent to it. This in

particular will mean that

〈φi1(X, t)...φis(X, t)〉W (X,t) = 〈φi1(X)...φis(X)〉L (85)

for

φi(X, t) = −∂W
∂ti

(86)
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and where the l.h.s. of (85) is computed with the Landau-Ginzburg F-term lagrangian10

and the r.h.s. with the lagrangian (81).

Next we will follow the discussion in ref.[13] for determining W (X, t). Let us assume

φ1 = X (87)

and define the perturbed ring structure as

Xφi = φi+1 +
∑

j

aijtj−i+n+1φj (88)

where we assign U(1) charge 1 − qi to the couplings ti. The constants aij are given by

aij = 〈φ1φiφj

∫
φ

(2)
2k+1−i−j〉0 (89)

We can determine the value of aij by the following argument. For the perturbed theory

defined by tj =0 ∀j 6= 1, t1 ≡ t, we get

φiφj = φi+j i+ j ≤ k

= taijφi+j−k−1 i+ j > k (90)

Impossing associativity to (90), with aij again given by (89), we obtain

aij = 0 i+ j ≤ k

= µ i+ j > k (91)

for µ some undetermined constant. Introducing this solution into (88), we obtain polyno-

mials in X and t for representing the chiral fields φi. The only thing that remains now,

is to get the superpotential with respect to which (88) is the ring multiplication. A nice

way to interpret (88) is as diagonalizing the matrix (C1)
j
i defined by the multiplication

rule, namely

φ1φ = C1
j
iφj = Xφi (92)

and therefore we can define W by the characteristic equation determining the eigenvalues

of (C1)
j
i

W ′(X, t) = det(Xδj
i − C1

j
i (t)) (93)

This conclude the derivation of the superpotential associated with the deformed la-

grangian (81). The result however will depends on the renormalization constant µ. A

10See subsection 1.6.2 on residue formulae.
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change in the scale µ can be represented by a change ti → µti in the couplings (see equa-

tion (88)). For a generic correlator the dependence on µ will be µs with s the number of

integrated fields entering into the correlator. If we also scale the fields φi as φi → µ−qiφi,

we get an overall factor µ(−
∑

qi)+s. By U(1)-charge conservation, this factor is equal

to µĉ/2(2−2g) and therefore can be cancelled by introducing the string coupling constant

coefficient λ2g−2 for λ=µ−ĉ/2.

1.6.2 Residue Formulae

Here we summarize the way to compute correlators in Landau-Ginzburg theory. We will

assume for the rest of this section that W̄ is the complex conjugate of W . We consider

the lagrangian

L = LD + LF + λ̃LF̄ (94)

where LD, LF and LF̄ were defined in section 1.6. In the infrared limit λ̃→ ∞ the main

contribution to the Landau-Ginzburg action comes from critical configurations [14]

∂W

∂XA
= 0 (95)

and the only contribution to the expectation values will come from zero modes. For the

bosonic part of LF̄ , we get ∫ ∏
dXA exp(−λ̃|∂iW |2) (96)

which by gaussian integration around the critical points (95), gives us

λ̃−n(HH̄)−1 (97)

with H=det(∂A∂BW ), the hessian of W . The fermionic contribution contains two pieces,

one from the constant zero mode ρ
(0)
A and the other from the g holomorphic one forms

ψ
(0)
A , if we are computing the correlator in a genus g Riemann surface. Hence the fermion

zero mode contribution is

λ̃nHgH̄ (98)

and therefore we get for the correlator

〈φi1...φis〉gW =
∑

crit.points

φi1(X)...φis(X)Hg−1 (99)
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where φij and H are evaluated at the critical points. Notice that the final result is λ̃-

independent and therefore we can use (99) as the general definition of Landau-Ginzburg

correlators. At genus g=0 and for a ”target space” of dimension one, we obtain

〈φi1...φis〉g=0
W = res(

φi1...φis

∂W
) ≡ 1

2πi

∮

γ
dX

φi1(X)...φis(X)

∂W
(100)

with the contour Γ going around the critical points of W [14], [13]. Notice that at genus

zero, in order to get (100), we have already integrated over the ρ-zero modes. The result

(100) is not invariant under the scaling W → λW .

1.7 Frobenius Manifolds

The concept of Frobenius manifolds [15] is an useful mathematical tool for formalizing

the structure of TFT’s. Given a conmutative and associative algebra A, with unity and

non-degenerate invariant inner product

〈a, bc〉 = 〈ab, c〉 (101)

we will say that it is Frobenius if for a basis ei (i=1, ..., n) of A, the tensors ηij and Cijk

defined by

〈ei, ej〉 = ηij (102)

eiej = Ck
ijek

satisfy the following conditions

ηij = ηji

Cs
ijC

l
sk = C l

isC
s
jk (103)

Cijk = C l
ijηlk

and for e=(ei), the unit of A

esCi
sj = δj

i (104)

Notice that (103) are the generic conditions that we have impossed on the topological

metric ηij and the ring structure constants Cijk of a TFT.
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A Frobenius manifoldM is a manifold which locally is a Frobenius algebra. This means

that at each point x ∈ M , there exits tensors ηij(x), C
k
ij(x) and unity ei(x) satisfying

conditions (103) and (104). We define the invariant metric on M

ds2 = ηijdx
idxj (105)

relative to which the unit vector is covariantly constant.

For the metric (105), we can define local coordinates ti on M such that [15]

ηij = cte (106)

We will call these coordinates coupling constants. The tensor Cijk(t) in these coordinates

satisfy the integrability condition (see equation (58))

∂iCjkl = ∂jCikl (107)

which means that it can be represented

Cijk = ∂i∂j∂kF (t) (108)

with F (t) being determined by the following set of equations

∂3F (t)

∂ti∂tj∂tk
ηkl ∂3F (t)

∂tl∂tm∂tn
=

∂3F (t)

∂ti∂tm∂tk
ηkl ∂3F (t)

∂tl∂tj∂tm

∂3F (t)

∂ti∂tj∂tk
= Cijk (109)

For ηij the topological metric and Cijk the genus zero three point function of a TFT it

is easy to derive, by means of standard Ward identities, equations (106)-(107) [13], using

for such purppose the lagrangian

L = L(0) +
∑

i

ti

∫
φ

(2)
i (110)

Thus the coordinates ti can be identified with the coupling constants in (110).

As an example we will consider the Frobenius manifold associated with the Landau-

Ginzburg superpotential for minimal models (see section 1.6.1). Let M be defined by the

following set of polynomials

M = {W (X, gi) = Xk+2 − (k + 2)
k∑

i=0

giX
i} (111)
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The invariant inner product will be given by the residue formula derived in the previous

section

〈f, g〉 = res(
fg

W ′
) (112)

We can find the flat coordinates ti using the condition ηij =cte and the inner product

(112). The result is

ti = − 1

k + 1 − i
res(W

k+1−i
k+2 ) (113)

which defines the change from the Landau-Ginzburg coordinates gi into the coupling

constants ti. We will come back to equation (113) in a future section.

tt̄-equations and Topological-Antitopological Fusion

It is known [15] that the tt̄-equations can be interpreted as the zero curvature condition

for the system of linear differential equations

∇iΨ = ∇̄īΨ = 0 (114)

for

∇i = ∂i + (g∂ig
−1) − λCi (115)

∇̄ī = ∂ī − λ−1C̄ī

with λ a spectral parameter.

The mathematical meaning of (114) and (115) as a way to fuse a topological and

antitopological theory was pointed out by Krichever in [16]. Given two topological theories

characterized by Ci and C̄ī respectively as ring structure constants, we define

(∂i − λCi)Φ = 0 (116)

(∂ī − λ−1C̄ī)Φ̄ = 0

with Φ(t, λ) and Φ̄(t, λ−1). The essential singularities in (116) are in λ=0 and λ=∞. The

tt̄ fusion corresponds to the Riemann-Hilbert problem of defining a functional Ψ(λ, t, t̄)

such that at λ= 0 behaves like Φ and at λ=∞ like Φ̄. The solution to this problem is

determined by equations (114) and (115). The tt̄-equations admit now the interpretation

of the isomonodromy equations for (114) and (115).
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1.8 tt̄-equations and Special Geometry

It is clear that the tt̄-equations provide an extra geometrical structure on the space of

topological field theories. In general the space of couplings constants is a complex manifold

with coordinates (ti, t̄i)
11 and we can define in addition to the topological metric ηij the

hermitian metric

ds2 = gij̄dt
idt̄j̄ (117)

In section (1.5) we introduced a connection Ai such that both gij̄ and ηij are covariantly

constant. This connection can be written in terms of gij̄ as in (62). Moreover, Ai defines

a connection for the bundle obtained by fibering the space of couplings with the BRST

cohomology. The tt̄-equations satisfied by the connection Ai are, structuratly, very similar

to the ones defining special Kähler geometry [17]. Before entering into a more detailed

technical discussion , let us try to undertand intuitively the physical origin of this Kähler

structure. The pieces we need for this discussion have been already introduced in the

previous sections and are intimately connected with the meaning of renormalization group.

First of all, and reducing the discussion to Landau-Ginzburg theories, we observe two

interconnected phenomena

i) A reparametrization W → λW in the superpotential induces a flow of the coupling

constants.

ii) A world sheet reparametrization g → λg modifies the F̄-part of the Landau-

Ginzburg lagrangian. Recall that the F̄-term is the non conformal part of the twisted

LG lagrangian.

From i) and ii) follows that a rescaling g → λg of the world sheet metric induces both a

change in t and t̄ couplings. A point of view to understand the physical meaning of the

tt̄-equation is as the lifting of this renormalization group flow on the tt̄ plane to the fiber

defined by the set of harmonic or zero energy states. If now we think the ”vacuum”, the

state of Ramond charge −ĉ/2, as defining a line subbundle, i.e. we assume conservation

of charge, it is natural to translate the (tt̄) geometry into the characterization of the first

Chern class of the vacuum subbundle. Mathematically this picture will become clear if

the ”(tt̄)-plane” defines a Kähler Hodge manifold.

To check this intuitive picture requires to be able to define the vacuum as a line bundle

11Notice the difference between the Frobenius manifold defined in the previous subsection, which con-

tains only the couplings (ti), and the full space of coupling constants (ti, t̄i).
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on the space of theories. This can be done in a very particular case, namely when we are

working on the moduli space of a N =2 SCFT. In this case and due to the independent

left and right conservation of U(1) current we can decomposse the bundle defined by the

BRST cohomology into different charge sectors. Moreover we get the constraint on the

tt̄-metric

gij̄ = 0 if qi + qj̄ 6= 0 (118)

Introducing the unit of the ring by

Cj
i0 = Cj

0i = δj
i (119)

we get from the tt̄-equations, reduced to marginal fields

[∂j̄(g∂ig
−1)]00 = Ck

i0gkl̄C̄
l̄
j̄0̄g

0̄0 =
gij̄

g00̄

(120)

Taking into account that

g00̄ = 〈0̄|0〉 (121)

we can use (120) to define a Kähler potential and a Zamolodchikov metric [18] as

Gij̄ ≡ gij̄

g00̄

(122)

K = −log〈0̄|0〉

in such a way that

Gij̄ = ∂j̄∂iK (123)

i.e. the standard definition of Kähler metric. Using (122) we obtain the decompossition

of the connection Ai = (∂ig)g
−1 into two pieces. The first is the Kähler connection on the

moduli space, defined as usual by

Γk
ij = (∂iGjk̄)G

k̄k (124)

and a second piece corresponding to the U(1) connection of the line bundle generated by

the vacuum

− ∂iK (125)

which as usual for the Hodge-Kähler manifolds, is defined in terms of the Kähler potential

K. Comparing (79) (section 1.6) with (121) we observe that K is determined by the

contribution of fermionic zero modes.
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The ĉ=3 case and special geometry

We will introduce first some generalities on special Kähler manifolds. On a Hodge-

Kähler manifold we introduce fields φpp̄ of Kähler weight (p, p̄) by the following transfor-

mation rule

φpp̄ → φpp̄e
−

p
2
fe−

p̄
2
f̄ (126)

with the U(1) gauge connection transforming like

∂iK → ∂iK + ∂if (127)

for f , f̄ respectively holomorphic and antiholomorphic functions. The covariant deriva-

tives of these fields are defined by

Diφpp̄ = (∂i +
p

2
∂iK − Γi)φpp̄ (128)

D̄īφpp̄ = (∂ī +
p̄

2
∂īK)φpp̄

If φpp̄ is covariantly holomorphic

D̄īφpp̄ = 0 (129)

Then we can define the holomorphic field φ̃pp̄ as

φ̃pp̄ = e
p̄

2
Kφpp̄ (130)

which is a (p− p̄, 0) field. A Hodge-Kähler manifold is special if there exits a symmetric

tensor Wijk of Kähler weight (2,−2), such that [17]

D̄l̄Wijk = 0 (131)

DiWjkl = DjWikl

Rij̄
l

k
= Gkj̄δ

l
i +Gij̄δ

l
k −WiknW̄j̄n̄m̄G

n̄nGm̄l

Using (130), we can define a holomorphic tensor Cijk as

Cijk = e−KWijk (132)

which has weight (4, 0). From the integrability condition (131.b), we can find a ”covariant”

prepotential Ŝ verifying

Wijk = DiDjDkŜ (133)
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with Ŝ again of Kähler weight (2,−2). Analogously we have

W̄īj̄k̄ = D̄īD̄j̄D̄k̄Š (134)

with Š of weight (−2, 2). Defining the holomorphic tensor C̄īj̄k̄ of weight (0, 4) as

C̄īj̄k̄ ≡ e−KW̄īj̄k̄ (135)

and using eKD̄īŠ=∂īe
K Š, we get

C̄īj̄k̄ = e2KD̄īD̄j̄∂k̄S (136)

for

S ≡ eK Š (137)

The covariant prepotential S allow us to integrate the special geometry relation (131.c).

Let us define

C̄ lk
ī ≡ e2KC̄īl̄k̄G

l̄lGk̄k (138)

with the property

C̄ lk
ī = ∂īS

lk (139)

where

Slk = Gl̄l∂l̄(G
k̄k∂k̄S) (140)

Using this and the holomorphicity of Cijk, we can write (131.c) as

∂j̄Γ
l
ik = Gkj̄δ

l
i +Gij̄δ

l
k − CiknC̄

nl
j̄ = (141)

= ∂j̄(∂kKδ
l
i + ∂iKδ

l
k − SlnCikn)

Integrating (141) we obtain

Γl
ik = ∂iKδ

l
k + ∂kKδ

l
i − SlnCikn + f l

ik (142)

with f l
ik a holomorphic tensor.

After this brief description of the special geometry, our next task will be to identify the

Kähler metric Gij̄ with the Zamolodchikov metric and the tensor Cijk with the three point

function. It is only in the particular case ĉ=3, where we have non vanishing three point

functions on the sphere for marginal fields, that all the indices in (141) can be marginal.

After identiying the line bundle of the Hodge-Kähler manifold with the one generated by
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the vacuum, we can define the state |0〉 by a holomorphic section of weight (2, 0). In this

case the first Chern class can be defined in terms of the norm of |0〉 as

∂i∂j̄(log‖|0〉‖2)dzi ∧ dz̄j (143)

and we get

〈0̄|0〉 = e−K (144)

in agreement with equation (122). Summarizing, in order to map the tt̄-geometry of the

moduli space of ĉ=3 N=2 SCFT’s into the special Kähler geometry we need to identify

the vacuum state with the trivializing holomorphic section of the Hodge line bundle.

For Landau-Ginzburg theories we can write (144) as

〈0̄|0〉 =
∫ n∏

A=1

dXAdX̄A exp(W − W̄ ) (145)

which makes explicit the t, t̄ dependence.

2 Topological Strings

2.1 Topological Gravity and Gravitational Descendents

Topological gravity is the topological theory associated with the moduli space of Riemann

surfaces Mg,n. There are many good reviews on this subject so we will concentrate the

discussion on some technical points that will be relevant for our future analysis.

The aim of topological gravity is to get a topological field theory representation of

Mumford-Morita cohomology classes [19]. Given a Riemann surface Σg,n with genus g

and n marked points, we can consider its cotangent line bundle at one of the points,

namely pi. When we move the moduli parameters of the surface, this defines a line

bundle over Mg,n. Let’s denote by αi the first Chern class of this bundle. The physical

observables of topological gravity σn(pi), called gravitational descendents, are one to one

related with the n-power of the two form αi in such a way that

〈σn1(p1)...σns
(p1)〉g =

∫

Mg,s

αn1
1 ∧ ... ∧ αns

n (146)
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From (146) we see that these amplitudes will be non vanishing only when it is fulfilled

the following selection rule
s∑

i=1

ni = 3g − 3 + n (147)

The simplest, from a physical point of view, way to realize this topological field theory

is to use the topological gauge theory for the group ISO(2) [20]. After fixing the gauge,

the corresponding action is given by

S =
∫
π∂∂̄φ+ χ∂∂̄ψ + b∂̄c+ b̄∂c̄ + β∂̄γ + β̄∂γ̄ (148)

where φ is the Liouville field, ψ its superpartner, π and χ are Lagrange multipliers conju-

gate to φ and ψ, and (b, c) and (β, γ) are respectively the ghost and superghost fields. The

ghost number assignations are the following: zero for φ, 1 for ψ, 1 for c and 2 for γ. The

main ingredient to build a topological field theory is the existence of a supersymmetric

charge QS which behaves, BRST-improved, as an exterior derivative of the moduli space

under study. It is under QS that all the fields are arranged into supermultiplets.

For the action (148) the BRST charge is defined by

Q = QS +Qg (149)

being QS =
∮
(∂πψ + bγ) and Qg =

∮
c((TL + 1

2
Tgh) + γ(GL + 1

2
Ggh) respectively the N=2

and the the gauge BRST charge. TL and Tgh are the energy momentum tensors of the

Liouville and the ghost sectors, and GL, Ggh the corresponding super stress tensors. The

topological nature of the action (148) is clear from the following relations

TL = {QS, GL} (150)

Tgh = {QS, Ggh}

Physical observables are defined by the BRST cohomology of (149). In topological

gravity this cohomology turns out to be very simple. In fact all physical observables are

given by interger powers of a field γ0

γ0 = {Q,ψ − ψ̄} =
1

2
{Q, {QS − Q̄S, φ}} (151)

where Q is the total BRST charge, i.e. left plus right. Therefore we can define

σn = γn
0 (152)
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From (151) it looks that all observables of topological gravity are BRST-trivial. The

reason this is not the case is because we are interested in equivariant cohomology where

we define the BRST cohomology on gauge invariant objects. This doesn’t include γ0,

since (ψ−ψ̄) is not a gauge invariant quantity. We will come back to the discussion on

equivariant cohomology later.

The observables σn given by (152) are zero forms on the Riemann surface. We can

define 1 and 2 forms by the following recursive relations

dσn = δBRSTσ
(1)
n , dσ(1)

n = δBRSTσ
(2)
n (153)

The new operators σ(1)
n and σ(2)

n can be integrated respectively over a one dimensional

submanifold or the whole surface Σ, giving also BRST invariant objects.

We want now to find a functional integral representation for correlators 〈σn1 ...σns
〉g.

Instead of presenting the complete derivation we will, qualitatively, motivate the final

result.

The first thing will be to write the action (148) in a covariant way. The formulation

of the (π, φ) system in (148) presents problems because the Liouville field φ behaves in-

homogeneously under coordinate transformations. In order to solve this, we can interpret

φ as the conformal factor for the metric g=eφĝ. It can be shown that the physical quan-

tities are independent of the metric ĝ chosen. Under these conditions the conjugate field

π gets coupled to the scalar curvature R(ĝ). Using
∫ √

ĝR̂=2g−2, we must cancell this

background curvature by inserting operators

∏

k

eαkπ(zk) (154)

in a set of points {zk} and in such a way that the constants αk satisfy

∑

k

αk = 2g − 2 (155)

Since the action (148) is supersymmetric, in order to define a measure on Mg,n, we need

to integrate first the superpartners m̂i of the moduli parameters mi. The integration of

the supermoduli can be easily done because in this rigid supersymmetry the supermoduli

is split. The integration of the (3g−3) odd moduli parameters m̂i produces the insertion

of super stress tensors folded to Beltrami differentials χa, χ̄ā

3g−3∏

a,ā=1

G(χa)Ḡ(χ̄ā) (156)
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where G = GL +Ggh. In a similiar way, the integration over the superpartners of the

puncture moduli will produce insertions of the supertranslation generator

s∏

i,̄i=1

∮

Ci

(b+G)
∮

Ci

(b̄+ Ḡ) (157)

with the contour Ci defined around each puncture.

For the external states we must use

|σn〉 = σnP |0〉 (158)

where P =cc̄δ(γ)δ(γ̄) is the puncture operator that reduces the number of diffeomorphisms

to those which leaves the puncture fixed. Let’s recall that the measure over Mg,n includes

the necessary factors to project out the zero modes of the ghosts bb̄ and δ(β)δ(β̄). Due

to this, when we integrate the moduli of a puncture the operator P is reduced to 1.

Acting now with (157) on (158), we get as net result for the external insertions σn in the

amplitudes
s∏

i=1

∫

Σ
σ(2)

ni
(159)

where σ(2)
ni

is given by (153) and has ghost number ni−1.

Combining now (154), (156) and (159) we obtain for the amplitudes the following

integral representation

〈σn1 ...σns
〉g =

∫

Mg,s

∫
e−S

∏

k

eαkπ(zk)
3g−3∏

a,ā=1

G(χa)Ḡ(χ̄ā)
s∏

i=1

∫

Σ
σ(2)

ni
(160)

By ghost number counting this will be non vanishing only if

s∑

i=1

(ni − 1) = 3g − 3 (161)

in agreement with equation (147).

Let us next consider the coupling of topological matter to topological gravity [19].

The gravitational descendants σn(φi) associated with the chiral primary fields are simply

defined by

σn,i = φiσn , n ≥ 0 (162)

Generic amplitudes 〈σn1(φi1)...σns
(φis)〉g are again defined by equation (160). The only

additional information we need to take into account is the extra U(1) background charge,
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modifying the selection rule (161) to

s∑

i=1

(qi + ni − 1) = 3g − 3 + ĉ(1 − g) (163)

Therefore, we obtain

〈σn1,i1 ...σns,is〉g =
∫

Mg,s

∫
e−S

∏

k

eαkπ̃(zk)
3g−3∏

a,ā=1

G(χa)Ḡ(χ̄ā)
s∏

j=1

∫

Σ
σ

(2)
nj ,ij (164)

where π̃ is matter-modified conjugate of the Liouville field.

The action S in (164) is the unperturbed lagrangian LN=2
0 +Lgr, with Lgr given by

equation (148). Our next task will be to generalize (164) for a perturbed lagrangian.

The approach will consist in generalizing the Landau-Ginzburg description to topological

matter coupled to topological gravity.

2.2 Gravity and Landau-Ginzburg

In this section we will consider a TFT which posseses a Landau-Ginzburg description in

terms of a superpotential W , coupled to topological gravity. This study will help in a

better understanding of some results derived in section 1.6.

To start with, we will first present a crucial theorem due to Dijkgraaf-Witten. Let us

consider the lagrangian general perturbed lagrangian

L = LN=2
0 + Lgr +

k∑

i=0

ti

∫
φ

(2)
i +

∞∑

n=1

k∑

i=0

ti,nσn(φi)
(2) (165)

where ti ≡ ti,0 and the small phase space is defined by ti,n = 0, n ≥ 0. The identity

operator, after coupling to gravity becomes the puncture operator P .

Let us define the expectation values

ui ≡ 〈Pφi〉 , i = 0, ..., k (166)

On the small phase space, we get

ui = ηijtj (167)
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Taking into account that ηij is invertible we can interpret ui as a new set of coordinates on

the small phase space. Moreover, for any correlator computed on the small phase space

we obtain

〈AB〉 = RAB(u0, ..., uk) (168)

for some functional RAB. The theorem proved in [21] assures that the correlator 〈AB〉
defined on the full phase space, i.e. for the lagrangian (165) with ti,n 6= 0, is given by

the same functional RAB where now the coordinates ui (166) are computed taking into

account the couplings ti,n. The proof of this theorem is based on the topological recursion

relations. What we need to show is that

∂

∂i,n
RAB =

∂ul

∂ti,n

∂RAB

∂ul
= 〈σn(φi)AB〉 (169)

Using the recursion relations for topological strings [19]

〈σn(φi)AB〉 = n〈σn−1(φi)φl〉〈φlAB〉 (170)

we obtain

n〈σn−1(φi)φl〉〈φlAB〉 = n〈σn−1(φi)φl〉
∂RAB

∂tl,0
=

= n〈σn−1(φi)φl〉〈φlPφk〉
∂RAB

∂uk
= 〈σnPφk〉

∂RAB

∂uk
= (171)

=
∂uk

∂ti,n

∂RAB

∂uk

which concludes the proof of (168). The practical relevance of this theorem is that allow

us to get the form of the correlators on the full phase space by doing a much simpler

computation on the small phase space.

As an illustrative example let us compute the string anomalous dimension for the

critical points of one matrix models. We start with pure topological gravity, i.e. only one

primary field, the puncture P . The small phase space is the complex line parametrizing

the value of the cosmological constant t0. In the small phase space we get

u = 〈PP 〉 = t0 (172)

and for a generic correlator

〈σiσj〉 =
1

(i+ j + 1)!
〈σiσjP

i+j+1〉ti+j+1
0 (173)
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Using the puncture equation [21]

〈σiσjP 〉 = i〈σi−1σj〉 + j〈σiσj−1〉 (174)

we can rewrite (173) as

〈σiσj〉 =
1

i+ j + 1
ui+j+1 (175)

The previous theorem tell us that, on the full phase space, (175) is the correct value for

〈σiσj〉 if we replace u by the value of 〈PP 〉 on the full phase space.

Taking into account all couplings we obtain

u = t0 +
∞∑

i=1

ti〈PPσi〉 (176)

and from (175)

u = t0 +
∞∑

i=1

tiui (177)

The k-th critical point [22] is defined by t1 =1, tk =−1, and from (177) we get

u = t
1/k
0 (178)

The string anomalous dimension γ is defined by

〈1〉 = t2−γ
0 (179)

Therefore, using (178) we have Kazakov’s result

γ = −1

k
(180)

Defining the string coupling constant λ by

〈1〉 = λ−2 (181)

we obtain

λ−2 = t
2+1/k
0 (182)

Dijkgraaf-Witten theorem underlines the equivalence of matrix models and minimal

topological strings. In fact, in the matrix model approach [23] we start with the KdV

operator

L = Dk+2 + (k + 2)
k∑

i=0

viD
i (183)
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with D= d
dX

for a formal parameter X. The KdV flows are defined by

∂L

∂t̃p
= [(L

p
k+2 )+, L] (184)

with L+ the positive powers of L. Identifying

vk = 〈PP 〉 (185)

t̃p = ti,nci,n , p = (k + 2)n+ i+ 1

ci,n = ((i+ 1)(i+ 1 + k + 2)...(i+ 1 + n(k + 2)))−1

we obtain from (184)
∂vk

∂ti,n
= ci,nres(L

(k+2)n+i+1
k+2 ) (186)

Denoting L̂≡L 1
k+2 and integrating X, we get

〈Pσn(φi)〉 = ci,nres(L̂
(k+2)n+i+1) (187)

and similar relations for other correlators. From (187) we observe how the correlator on

the full phase space is defined by a functional of the (k + 1) ”coordinates” vk appearing

in (183).

It is already clear the strong similarity of the matrix model formula (187) and the

residue formula we have derived in the previous chapter for Landau-Ginzburg minimal

models. Following references [13, 24, 25], we define the map from matrix models into

Landau-Ginzburg theories as follows

L̂k+2 = W

φi = [L̂i∂XL̂]+ (188)

σn(φi) = [L̂n(k+2)+i∂XL̂]+cn−1,i

P = 1

which allows to represent the whole gravitational spectrum inside the matter theory12.

Using this map we will now compare the matrix model expression for correlators with the

one we will obtain, from residue formulae, in the Landau-Ginzburg framework.

For correlator 〈φiPσn(φj)〉, we have in the matrix model formalism

〈φiPσn(φj)〉 =
∂

∂ti
〈Pσn(φj)〉 = cj,n

∂

∂ti
res(L̂(k+2)n+j+1) (189)

12For the extension of this map to W -gravity see [26].
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On the other hand, using (188) and the residue formulae, we get in the Landau-Ginzburg

formalism

〈φiPσn(φj)〉 = cj,n−1

∫
(
L̂n(k+2)+j∂XL̂)φi

W ′
dX = (190)

= cj,n−1

∫
L̂j+1+(n−1)(k+2) φi dX

It is worth recalling that working in the Landau-Ginzburg formalism, we are always at

genus zero. If we confine ourselves to the small phase space, we can use the relation

φi =
∂L̂k+2

∂ti
(191)

From this we get

〈φiPσn(φj)〉 = cj,n−1

∫
dXL̂j+n(k+2)∂iL̂ = (192)

= cj,n
∂

∂ti
res(L̂(k+2)n+j+1)

in agreement with (189). Notice that in principle (189) is a well defined expression on the

full phase space and the same for (190) if we replace φi by [L̂i∂XL̂]+, however, only on

the small phase space we can use equation (191). We will come back to this point in the

next section.

2.3 Contact Terms and Gravitational Descendents

Let us consider the correlator 〈φiφjφk

∫
φ

(2)
l 〉 in Landau-Ginzburg theories. From the

residue formulae we obtain

〈φiφjφk

∫
φ

(2)
l 〉 =

∂

∂tl

∫
φiφjφk

W ′
dX = (193)

= −
∫
φiφjφkφ

′2
l

W ′2
dX +

∫
1

W ′
[(
∂φi

∂tl
)φjφk + ...]

(194)

Using (188) and (191) we get

∂φi

∂tj
=

∂

∂tj
[L̂i∂XL̂]+ = [

φiφj

W ′
]
′

+ ≡ C(φi, φj) (195)
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which are known as contact terms. From the matter representation (188) of gravitational

descendents we can compute the contact term of a gravitational descendent with a primary

field, so we get in particular

C(σn(φi), P ) = [
W ′

∫ Xσn−1(φi)

W ′
]
′

+ = σn−1(φi) (196)

which is Saito’s recursion relation [27]. To derive (196) we have used the following de-

composition of σn(φi)

σn(φi) = W ′
∫ X

σn−1(φi) +
k∑

l=0

alφl = ci,n−1[L̂
(k+2)n+i∂XL̂]+ (197)

The part of σn(φi) projecting on chiral primary fields can be easily obtained by noticing

that W ′
∫ Xσn−1(φi) is a pure BRST object, namely

resW (F +GW ′) = resW (F ) (198)

for any functions F and G. In fact, from (198) we get

〈σn(φi)φjP 〉 =
k∑

i=0

al〈φlφjP 〉 (199)

and from (189)
k∑

l=0

alφl =
k∑

l=0

cn,i
∂

∂tl
res(L̂(k+2)n+i+1) φk−l (200)

thus
k∑

l=0

alφl =
k∑

l=0

∂

∂tl
〈Pσn(φi)〉 φk−l (201)

The contribution to correlators from the piece of σn(φi) projecting on chiral fields

originates recursion relations. Let’s take the three point function

〈σn(φi)φjφk〉 =
k∑

l=0

∂

∂tl
〈Pσn(φi)〉〈φk−lφjφk〉 =

=
k∑

l=0

〈Pσn(φi)φl〉〈φlφjφk〉 (202)

while using (196) we obtain the recursion relation

〈σn(φi)φjφk〉 =
k∑

l=0

〈σn−1(φi)φl〉〈φlφjφk〉 (203)
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From the definition (195) it is clear that contact terms are symmetric

C(φi, φj) = C(φj , φi) (204)

Moreover, we can write

C(Pi, φj) ≡ Ak
ijPk (205)

for Pi either chiral primary or gravitational descendent. Using again (195) we get

C(φk, C(Pi, φj)) =
∂Al

ij

∂tk
Pl + Al

ijC(φk, Pl) (206)

as the rule for compossing contact terms.

The reader should notice that the Landau-Ginzburg description of contact terms can

not be trivially extended to the computation of contact terms for two gravitational de-

scendents C(σn(φi), σm(φj)). The reason is again that we are assuming relation (191)

only on the small phase space.

2.4 Integral Representation of the Contact Terms

From the Landau-Ginzburg definition (195) of contact terms, it is clear that the contri-

bution to C(φi, φj) is the part in the product φiφj which goes as W ′F for some functional

F . This is a priori a bit paradoxical taking into account that for the matter theory, W ′F

is a pure BRST-object which decouples from any correlator. As it was first pointed out

by [24, 25], the reason for the contribution of cohomologically trivial objects of the pure

matter theory to the contact terms is that they are non-trivial in the equivariant coho-

mology which rules the spectrum after coupling to gravity. To see this more clearly, let

us introduce the following integral representation of the contact terms

|C(φi, φj)〉 =
∫

D
φ

(2)
i |φj〉 (207)

where D is an infinitesimal neigborhood of the point where the operator φj is inserted.

A ”sewing”13 or cancel propagator argument representation of the contact term can

be defined working with φi and φj inserted on two fixed points of the hemisphere and

13We will refer to ”sewing”-representation when the integration of a field over the Riemann surface is

transformed into integration over sewing parameters with all punctures fixed.
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integrating over the moduli (φ, τ) with φ ∈ [0, 2π] and τ ∈ [0,∞] as follows

|C(φi, φj)〉 =
∫ ∞

0
dτ

∫ 2π

0
dφeτT+eφT−G0,−G0,+φi(1)|φj〉 (208)

where we have inserted φi at the point 1. The notation ± refers to light-cone type

components and G in (208) is the superpartner of the energy-momentum tensor. Formally

we can interpret (208) (compare with equation (164)) as a computation in the topological

matter theory coupled to topological gravity.

Let us now assume that in the product φiφj there is some piece of the type W ′F .

Using the SUSY transformations of the Landau-Ginzburg lagrangian, we can write

W ′F = Q(ρ−F ) (209)

with ρ the fermionic zero-form and Q the BRST charge. Now we realize from the Landau-

Ginzburg representation of G0,− [24, 25] that

G0,−(ρ−F ) 6= 0 (210)

moreover, using the conmutation relations between Q and G0,− we get from (208)

|C(φiφj)〉 =
∫ ∞

0
dτe−τT+T+G0,−|ψ〉 (211)

where Q(ρ−F )≡Qψ. After a finite energy regularization we finally obtain

|C(φiφj)〉 = G0,−|ψ〉 (212)

as the result from the ”sewing”-representation of (208).

The reader should notice that the key step in the derivation is equation (210), i.e. we

have in the product φiφj a BRST exact state Q|ψ〉 such that G0,−|ψ〉 6=0. Using this fact

we can define a notion of equivariant cohomology by the conditions

Q|φ〉 = 0 (213)

G0,−|φ〉 = 0

and to describe the previous computation by simply saying that the contribution to

C(φiφj) is determined by non trivial elements in the equivariant cohomology (213).

At this point we can make contact with the equivariant cohomology of the topological

matter theory coupled to topological gravity. Following [25], we will present a simple
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example. Let us consider, for all couplings ti =0, the first Landau-Ginzburg gravitational

descendant

σ1(P ) = W ′x = Q(ρ−x) (214)

This is non trivial in the equivariant cohomology (213). We want now to compare σ1(P )

in representation (214) with the dilaton of the theory coupled to topological gravity (151)

γ0 =
1

2
Q̂(∂c + c∂φ− ∂̄c− c∂̄φ) (215)

with Q̂ the N = 2 BRST generator of the coupled theory. The equivariant cohomology

condition for the coupled theory is defined by the condition

(b0 +G0)−|ψ〉 = 0 (216)

with G0 the total super energy momentum tensor. It is now easy to check that

(b0 +G0)−(ρ−x+ ∂c + c∂φ− ∂̄c− c∂̄φ) = 0 (217)

In summary, there exists a map between the ”matter” equivariant cohomology defined by

(213) and the equivariant cohomology of the topological string obtained after coupling

topological matter to topological gravity.

Comment on the physical meaning of equivariant cohomology in string

theory

The physical motivation for the requirement of equivariant cohomology, comes from

the operator formalism definition of string amplitudes. As it is well known [3], string

amplitudes are defined by associating with a Riemann surface Σg,s equiped with a set

{ξs} of local coordinates around the punctures, a state |Σg,s{ξs}〉 ∈ ⊗sH with H the

Hilbert space of the matter and ghost system. On H it is defined a nilpotent BRST

operator Q. Physical amplitudes for a set of s-external states |χi〉 are defined by

∫

Mg,s

〈χ1|...〈χs|
3g−3∏

i,̄i=1

b(χi)b̄(χ̄ī)
s∏

j,j̄=1

∮
b(Vj)b̄(V̄j̄)|Σg,s{ξs}〉 (218)

where Vj, V̄j̄ are vector fields over the Riemann surface. To (218) we should imposse two

requirements

i) reparametrization invariance

ii) BRST-invariance
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The condition i) implies that (218) should be invariant under any change of local

coordinates. This means in particular invariance under change Vi → Vi + δVi with δVi

a vector field that extends holomorphically inside the disc around the puncture and it is

zero at the puncture, i.e. a ”vertical” vector field refered to the bundle M̂g,s →Mg,s with

M̂g,s the augmented moduli space. The requirements i) and ii) are satisfied if we imposse

the equivariant cohomology condition on external states [28]

Q|χ〉 = 0 (219)

b0,−|χ〉 = 0

In abstract terms, the ingredients to define the string amplitudes are a couple (Q, b)

such that

Q2 = 0 (220)

{Q, b} = T

for T the total energy-momentum tensor and the physical spectrum being defined by the

equivariant cohomology (219).

In standard string theory (Q, b) are respectively identified with the BRST charge and

the b-ghost. However it is in principle possible to define formally generalizations of string

theory where (Q, b) are more general solutions to (219). One particular case that we will

discuss later is to use the N=2 SUSY pair (1) (Q+, Q−).

2.5 Gravity and the t-part of the tt̄-equations

A natural way to think about the geometry of the space of TFT’s is as an indirect

description of the topological matter coupled to topological gravity (see for instance [24]).

The logic for this point of view is that any connection in the space of theories should be

determined by integrating fields, which already implies to construct forms on the moduli

space of the Riemann surface. This is certainly a fruitful approach at least when we work

at genus zero. In this spirit we can easily derive the t-part of the tt̄-equations from two

very natural string postulates

p.1) 〈φi1φi2 ...
∫
φ

(2)
is 〉 = 〈

∫
φ

(2)
i1 φi2...φis〉 (221)

p.2) 〈φi1φi2...
∫
φ

(2)
is−1

∫
φ

(2)
is 〉 = 〈φi1φi2 ...

∫
φ

(2)
is

∫
φ

(2)
is−1

〉
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Defining

〈φiφjφk

∫
φ

(2)
l 〉 ≡ ∂l〈φiφjφkexp(L0+

∑

a

ta

∫
φ(2)

a )〉 (222)

we will get from (221)

[∂i, Cj] = 0 (223)

[∂i, ∂j] = 0

which are the t-part of the tt̄-equations (see equation 58). Now we can try to use p.1) and

p.2) as constrains on the Landau-Ginzburg description of the TFT L=L0+
∑

i ti
∫
φ

(2)
i .

In fact assuming the existence of a superpotential W (X, t) and some polynomial repre-

sentation φi(X, t) of the chiral fields φi, and using the residue formulae representation

〈φiφjφk

∫
φ

(2)
l 〉 =

∂

∂tl

∫
φiφjφk

W ′
dX (224)

we can ask ourselves how much information we get from the string postulates (221), and

moreover if the Landau-Ginzburg representation (224) satisfies them in a natural way. In

fact, this is the case for

φi =
∂W

∂ti
(225)

∂φi

∂tj
= C(φi, φj)

with C(φi, φj) =C(φj, φi), the symmetric contact terms defined in the previous section.

The natural questions now will be

a) To get a string, i.e. gravitational, interpretation of the tt̄-part of the tt̄-equations.

b) To use the tt̄-equations as a way to find, at least partially, the Landau-Ginzburg

description of more general lagrangians with t̄i-couplings different from zero.

2.6 Verlinde-Verlinde Contact Term Algebra [20]: Pure Topo-

logical Gravity

Saito’s recursion relation (196) can be derived, using again cancel propagator arguments,

in the context of pure topological gravity. From (208) we get

|C(P, σn)〉 =
∫ ∞

0
dτ

∫ 2π

0
dφeτT+eφT−G0,−G0,+P (1)|σn〉 (226)
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Using the insertions of b0, b̄0 and δ(β0), δ(β̄0) associated to the moduli of each puncture,

we can set P =1 ∫ ∞

0
dτ

∫ 2π

0
dφeτT+eφT−G0,−G0,+|σn〉 (227)

From the representation

|σn〉 = γ0|σn−1〉 (228)

equation (215), and the operator product expansion

T (z)φ(w) =
1

(z − w)2
+

∂φ

(z − w)
(229)

we reobtain Saito’s recursion relatio (196)

|C(P, σn)〉 = |σn−1〉 (230)

Using now

σn = σ(0)
n P (231)

we can define14

|C(σn, σm)〉 = σ(0)
n

∫

D
P (2)|σm〉 = |σn+m−1〉 (232)

for the rest of the contact terms. Notice that the structure of the contact terms (232) is

consistent with ghost number conservation

gh(
∫
σ(2)

n |σm〉) = (n− 1) +m = gh(|σn+m−1〉) (233)

In the derivation of (230) and (232) we have not included the curvature factor (154).

In order to include these contributions, we can use the following trick. Let us consider

the correlator 〈σn1 ...σns
〉g for all ti =015 and satisfying

s∑

i=1

(ni − 1) = 3g − 3 (234)

In terms of the string coupling constant λ we know that 〈σn1 ...σns
〉g goes like λ2g−2+n with

(2g−2+n) the number of 3-vertex necessary for the sewing construction of Σg,s. From

recursion relations and the puncture equation (177) we have [21], for all ti =0, that

λ
∂

∂λ
=

∂

∂t1
→ σ1 (235)

14We fix σn at the point zero and only integrate the puncture operator.
15Here the ti are the couplings in pure topological gravity
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and the dilaton equation

〈σ1σn1 ...σns
〉g = (2g − 2 + n)〈σn1...σns

〉g (236)

Defining

σ̂n = e
2
3
(n−1)πσn (237)

where the π is the conjugate of the Liouville field, we localize the curvature at the insertion

points. Therefore we expect to derive (236) exclusively from the contribution of contact

terms

〈σ̂1σ̂n1 ...σ̂ns
〉g =

s∑

i=1

C(σ̂1, σ̂ni
)〈σ̂n1 ...σ̂ns

〉g = (2g − 2 + n)〈σ̂n1 ...σ̂ns
〉g (238)

From (234) we obtain

|C(σ̂1, σ̂n)〉 =
1

3
(2n+ 1)|σ̂n〉 (239)

In general the contact term algebra will be given by
∫

D
σ̂(2)

n |σ̂m〉 = Am
n |σ̂n+m−1〉 (240)

for certain coefficients Am
n . From now on we will omit the superindex (2) in the expression

of contact terms (see (240)), in order to simplify notation. Assuming representation (232),

we obtain that Am
n will depend only on m

Am
n ≡ Am (241)

with Am defined by ∫

D
P̂ |σ̂m〉 = Am|σ̂m−1〉 (242)

From (239) we can conclude that

Am =
1

3
(2m+ 1) (243)

To check the previous argument, we should imposse the consistency conditions of type

(221.b) ∫

D
σ̂n1

∫

D
σ̂n2 |σ̂n3〉 =

∫

D
σ̂n2

∫

D
σ̂n1 |σ̂n3〉 (244)

which implies

An3+n2−1
n1

An3
n2

− An3+n1−1
n2

An3
n1

= Cn2n1A
n3
n2+n1−1 (245)

with

Cn2n1 = An2
n1

− An1
n2

(246)
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The coefficients Am
n given by (241) and (243) are clearly a solution with

Cn2n1 =
2

3
(n2 − n1) (247)

Notice that Saito’s recirsion relation (196) becomes now

|C(P̂ , σ̂n)〉 =
1

3
(2n+ 1)|σ̂n−1〉 (248)

An interesting exercise will be to derive relation (248) directly from the Landau-Ginzburg

description.

The consistency of the asymmetric contact term algebra with the string requirement

〈σ̂nσ̂m

s∏

i=1

σ̂ni
〉g = 〈σ̂mσ̂n

s∏

i=1

σ̂ni
〉g (249)

imposse severe constrains on the correlators. From (240), (243) and (249), we conclude

2

3
(m− n)〈σ̂n+m−1

s∏

i=1

σ̂ni
〉g =

s∑

i=1

RDi
+ R∆ (250)

with RDi
the conmutator of the contact terms of σ̂n and σ̂m with the σ̂ni

, and R∆ the

conmutator for the node contribution. Equation (250) clearly shows one of the most

important results of pure topological gravity, namely that correlators are saturated by

the contribution of the boundary of moduli space. The contributions from the nodes

R∆ are of two types. One corresponds to the pinching of a handle, which results in a

correlator at genus g−1. The other corresponds to factorizations of the original surface

in two of genus g−r and r respectively. Therefore, equation (250) originates recursion

relations relating correlators at genus g and g′<g. These recursion relations are crucial

to show the equivalence between matrix models and topological strings [20, 19, 21].

2.7 The Gravitational Meaning of the tt̄-equations

In section 2.5 we have pointed out the equivalence between moving in the space of theories

and coupling to topological gravity. Using this approach, we formally associate the t-part

of the tt̄-equations with the string postulates p.1) and p.2). We can now try to extend our
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analysis to the whole ”tt̄-plane” of topological matter theories, i.e. considering a generic

family of TFT described by

L = L0 +
∑

i

ti

∫
φ

(2)
i +

∑

ī

t̄̄i

∫
φ̄

(2)

ī (251)

and moving not only in t, but also in the t̄ direction. We will start performing this analysis

at genus zero. Intuitively we should expect to get from this study some extra information

concerning the contribution to topological amplitudes from the boundary of the moduli

space. The logic for this comes from the standard version of the BRST anomaly in string

theory. Notice that a variation in t̄’s naively implies coupling to a pure BRST state.

When we change the couplings ti, we are forced to compute correlators of the type

〈φi1...φis

∫
φ

(2)
i 〉 and we can always interpret the integration over the position of φ

(2)
i in a

gravitational way, associated with the definition of a Mumford-Morita form on the moduli

space of the Riemann sphere with punctures. When we try to do the same for a variation

in t̄i without changing the way in which we have twisted the lagrangian L0, we inmediatly

find some conceptual problems. The simplest one is the moduli interpretation of the

integration over the position of φ̄
(2)
ī . The reason for this is that φ̄

(2)
ī , as defined by (38),

involves Q+ and, on the other hand, the integration over the moduli or sewing parameters

in the way described in section 2.4 involves the SUSY charge Q−, i.e.G0,−.

The approach we want to present here will consist in interpreting the variation in

the t̄-direction in a standard gravitational way, in equal footing with the way we have

interpreted the variation in t-direction, but at the price of modifying the field φ̄ī. Namely

we introduce a new field φ̂ī by16

∫

D
φ̄

(2)
ī |φj〉 ≡

∫ ∞

0
dτ

∫ 2π

0
dφeτT+eφT−G−

0,−G
−
0,+φ̂ī(1)|φj〉 (252)

In other words, we use G−
0 to define the integration over the insertion φ̄ī and we change

the field φ̄ī to φ̂ī in order to take into account that, in the l.h.s. of (252), φ̄ī was defined

by equation (38) in terms of Q+. In a more compact notation we can write (252) as

∫

D
φ̄

(2)
ī |φi〉 ≡ |C(φ̂ī, φj)〉 (253)

16The reader should notice an important difference between the contact term (252) and the one de-

scribed in (208) for Landau-Ginzburg models. In the case (208), the couple (Q, G) we use is not Hodge,

i.e. G has trivial cohomology, while in (252) we use for (Q, G) the N =2 SUSY Hodge system, i.e. G has

non trivial cohomology. See more on this phenomena in section 2.10.

46



In order to characterize the operator φ̂ī, we will use the following constructive path

[29]

i) We define a tt̄ contact term algebra including contact terms between topological

and antitopological fields.

ii) We will imposse on this contact term algebra consistency conditions of the type

(244)

iii) From both contact terms in the t and the t̄ direction, we will try to compute the

curvature of the tt̄-”plane”, i.e. to derive the tt̄-equations.

We have only developped the previous program in the particular case of ĉ=3 theories

reducing the t and t̄ deformations to marginal directions, i.e. to the moduli space of the

ĉ=3 N=2. However we believe that this program can be extended to more general cases.

2.8 tt̄-Contact Term Algebra for ĉ=3 SCFT’s

Let us consider the algebra of operators generated by: φi, φ̂ī and the dilaton field σ1 with

i = 1, .., n for n the number of marginal deformations. We define the following contact

term algebra [29]

∫

D
φi |φj〉 = Γk

ij |φk〉 ,
∫

D
φ̂ī|φ̂j̄〉 = Γ̃k̄

īj̄ |φ̂k̄〉
∫

D
φ̂ī|φj〉 = Gjī|σ1〉 ,

∫

D
φi|φ̂j̄〉 = G̃ij̄ |σ1〉

∫

D
σ1 |φi〉 = a |φi〉 ,

∫

D
φi|σ1〉 = b|φi〉 (254)

∫

D
σ1|φ̂ī〉 = c|φ̂ī〉 ,

∫

D
φ̂ī|σ1〉 = d|φ̂ī〉

∫

D
σ1|σ1〉 = e|σ1〉

In order to take into account the contribution of the curvature and the twist we introduce

the operator

e
1
2
ϕ̃(z) (255)

for ϕ̃=ϕ+2π, where ϕ is the operator the bosonizes the U(1) current of the N=2 SCFT

and π the conjugate of the Liouville field. The contact term algebra for this operator is
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defined as follows
∫

D
φi|e

1
2
ϕ̃(z)〉 = Ai|e

1
2
ϕ̃(z)〉 ,

∫

D
φ̂ī|e

1
2
ϕ̃(z)〉 = 0 (256)

∫

D
σ1|e

1
2
ϕ̃(z)〉 = a|e 1

2
ϕ̃(z)〉

The undetermined constants appearing in (254) and (256) will be now fixed by imposing

consistency conditions (244).

Before entering into a detailed description of the consistency conditions for the algebra

(254) (256), we would like to make some comments. The most interesting aspect of (254)

is the specific tt̄-contact term

|C(φ̂ī, φj)〉 = Gjī|σ1〉 (257)

where the topological-antitopological fusion really takes place. We can argue on (257) in

the following way. From the definition (252) of the field φ̂ī we can formally write

φ̂ī → Q+
(+)”

1

Q−
(−)

”φ̄ī (258)

and taking into account the ghost charges of Q+ and Q− to interpret φ̂ī, at least at the

level of ghost charges, as having implicitely an n=2 gravitational descendent index. This

interpretation as gravitational descendent should be considered only as an heuristic way

to motivate (257). Even when (258) is purely formal, we notice that can give a hint on

the appearance of the dilaton in (257), because ” 1
Q−” could be interpreted as a would-be

c-ghost field17.

After this general comment we proceed to solve the consistency conditions. For this,

we will assume

i) That Gi,j̄ is invertible.

ii) The value of a equals -1. This condition is based on the way the dilaton field

measures the curvature.

iii) The following derivation rules

φiΓ
γ
αβ(t, t̄) = ∂iΓ

γ
αβ(t, t̄) (259)

φ̂īΓ
γ
αβ(t, t̄) = (−1)F (Γγ

αβ
) ∂īΓ

γ
αβ(t, t̄) , F (Γγ

αβ)=qγ−qα−qβ
17As a marginal comment we notice that for type B-models in the case ĉ=3, we can identify b−0 with

∂ and the BRST charge with ∂̄. Now we can use the fact that ∂, ∂̄ define a Hodge structure defined by

the (Q+, Q−) N =2 algebra. Using Hodge ∂∂̄-lemma we define 1

Q
−

(−)

as ∂
∆

[30]. This is the basic lemma

needed to define the kinetic part of the Kodaira-Spencer lagrangian.
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where Γγ
αβ stands for a generic contact term tensor, qα for the U(1) charge associated to

the corresponding field, and which defines the way the operators act on the coefficients

appearing in the contact term algebra. Notice that in general these coefficients will depend

on the moduli parameters (t, t̄). The logic for this rule is the equivalence between the

insertion of a marginal field and the derivation with respect to the corresponding moduli

parameter. For this reason we will not associate any derivative with the dilaton field.

The derivation rule (259.b) is forced by the topological interpretation of the t̄ insertions

we are using. Once we decide to work with the operators φ̂ī and to define the measure

using only G− insertions, we must accommodate to this picture the coupling of the spin

connection to the U(1) current. Since the derivation ∂ī corresponds to the insertion of

an antitopological field, we need to change, in the neighborhood of the insertion, the sign

of the coupling of the U(1) current to the background gauge field defined by the spin

connection. This fact gives raise to the factor (−1)F (Γ) in (259.b).

Using i), ii) and iii), let us start by analizing the following consistency condition

∫

D
σ1

∫

D
φi|φj〉 =

∫

D
φi

∫

D
σ1|φj〉 (260)

Applying the contact term algebra (254), we get

b Γk
ij |φk〉 − Γk

ij |φk〉 = −2 Γk
ij |φk〉 (261)

which, for a non vanishing Γk
ij, implies that

b = −1 (262)

From the condition ∫

D
σ1

∫

D
φi|σ1〉 =

∫

D
φi

∫

D
σ1|σ1〉 (263)

together with equation (262) and the derivation rules (259), we obtain

∂ie|σ1〉 − e|φi〉 = |φi〉 (264)

being solved by

e = −1 (265)

To continue the study, we take the condition

∫

D
φ̂ī

∫

D
φ̂j̄ |φk〉 =

∫

D
φ̂j̄

∫

D
φ̂ī|φk〉 (266)
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which leads to

( Γ̃l̄
j̄ ī Gkl̄ + ∂īGkj̄ ) |σ1〉 + d Gkj̄ |φ̂ī〉 = ( Γ̃l̄

īj̄ Gkl̄ + ∂j̄Gkī ) |σ1〉 + d Gkī |φ̂j̄〉 (267)

Using that Gij̄ is invertible, and for a general number of marginal deformations, we get

from the above equation

d = 0 (268)

Moreover, the consistency condition
∫

D
σ1

∫

D
φ̂ī|φi〉 =

∫

D
φ̂ī

∫

D
σ1|φi〉 (269)

and equation (268) imply that

c = 0 (270)

From (262), (265), (268) and the consistency condition
∫

D
φi

∫

D
φ̂j̄|σ1〉 =

∫

D
φ̂j̄

∫

D
φi|σ1〉 (271)

we get easily

G̃ij̄ = 0 (272)

The next conditions we will analyze involve the curvature operator e
1
2
ϕ̃(z)

∫

D
φi

∫

D
φ̂j̄|e

1
2
ϕ̃(z)〉 =

∫

D
φ̂j̄

∫

D
φi|e

1
2
ϕ̃(z)〉 (273)

∫

D
φi

∫

D
φj|e

1
2
ϕ̃(z)〉 =

∫

D
φj

∫

D
φi|e

1
2
ϕ̃(z)〉

from which we get, assuming that Γk
ij is symmetric in the lower indices18

Gij̄ = ∂j̄Ai (274)

∂iAj = ∂jAi

Equations (274) imply that the metric Gij̄ is Kähler, for a certain potential K(t, t̄)

Gij̄ = ∂i∂j̄K (275)

With this information, we can return to (267) and deduce that the tensor Γ̃k̄
īj̄ is symmetric

in the lower indices

Γ̃k̄
īj̄ = Γ̃k̄

j̄ ī (276)

18The symmetry of Γk
ij will assure that

∫
D

φi

∫
D

φj |φk〉 =
∫

D
φj

∫
D

φi|φk〉 is satisfied.
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Using now ∫

D
φi

∫

D
φ̂j̄ |φ̂k̄〉 =

∫

D
φ̂j̄

∫

D
φi|φ̂k̄〉 (277)

we obtain that Γ̃l̄
j̄k̄ is only function of the antitopological variables

∂iΓ̃
l̄
j̄k̄ = 0 (278)

Condition (278), together with
∫
D φ̂ī

∫
D φ̂j̄|φ̂k̄〉 =

∫
D φ̂j̄

∫
D φ̂ī|φ̂k̄〉 allow to impose a vanish-

ing contact term for antitopological operators.

To conclude the study of the consistency conditions we will consider now the relation
∫

D
φi

∫

D
φ̂j̄ |φk〉 =

∫

D
φ̂j̄

∫

D
φi|φk〉 (279)

Using equations (262) and (272), we obtain
∫

D
φi

∫

D
φ̂j̄|φk〉 = ∂iGkj̄ |σ1〉 −Gkj̄ |φi〉 −Gij̄ |φk〉 + fact terms (280)

∫

D
φ̂j̄

∫

D
φi|φk〉 = −∂j̄Γ

l
ik |φl〉 + Γl

ikGlj̄ |σ1〉

In order to motive the inclusion of factorization terms in (280), let us notice two

facts. The necessity of including factorization terms at the level of consistency conditions

(244) is already present in the simplest case of contact term algebra, i.e. in pure gravity.

Due to the asymmetry of the factors Am
n (241), it is not possible to satisfy the relations

∫
P̂

∫
σ̂n|P̂ 〉 =

∫
σ̂n

∫
P̂ |P̂ 〉 without taking factorization terms into account. Second, the

heuristic argument (258) seems to indicate a hidden gravitational descendent index in the

operators φ̂ī. Therefore, and due to the non vanishing correlation function Cijk at genus

zero for three marginal fields, we should consider the possible existence of factorization

terms associated to the φ̂j̄ insertions. We can write them generically as follows

fact terms = Bln
j̄ Cikn |φl〉 (281)

From equations (279)-(281), we obtain that the coefficient Γk
ij is the connection for the

metric Gij̄ , which we already know that is Kähler

Γk
ij = (∂iGjl̄)G

l̄k (282)

and a (t, t̄) type equation

∂n̄Γk
ij = Gin̄δ

k
j +Gjn̄δ

k
i − Bmk

n̄ Cijm (283)
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The tensor Bln
j̄ can be derived from the contact term algebra by the following argu-

ment. Let’s consider the consistency condition on a general string amplitude

〈φ̂īφ̂j̄

s∏

l=1

φl〉g = 〈φ̂j̄φ̂ī

s∏

l=1

φl〉g (284)

from (254) we get

( Γ̃k̄
īj̄ − Γ̃k̄

j̄ī )〈 φ̂k̄

s∏

l=1

φl 〉g =
s∑

l=1

RDl
+

∑

nodes

R∆ (285)

where RDl
denotes the commutator of the contact terms of φ̂ī and φ̂j̄ with φl, and R∆ the

commutator of those at the nodes. Using now the symmetry of Γ̃k̄
īj̄ in the lower indices

(276), we can conclude
s∑

l=1

RDl
=

∑

nodes

R∆ = 0 (286)

The contribution at a node associated with the factorization of the surface, will be

defined by the tensor Bαβ
j̄ as follows

〈 φ̂īφ̂j̄

∏

l∈S

φl 〉g,∆ =
g∑

r=0

∑

X∪Y =S

[Bαβ
j̄ Gαī 〈σ1

∏

l∈X

φl〉r 〈φβ

∏

n∈Y

φn〉g−r +

+ ∂īB
αβ
j̄ 〈φα

∏

l∈X

φl 〉r 〈φβ

∏

n∈Y

φn〉g−r ] (287)

where S refers to the set of all punctures, X and Y is a partition of it, and the tensor B

can be chosen symmetric in the upper indices. Using now (286) we get

Bαβ
ī Gαj̄ = Bαβ

j̄ Gαī (288)

∂īB
αβ
j̄ = ∂j̄B

αβ
ī

By an analogous argument, we find from condition (279) and for a general string amplitude

∂iB
αβ
j̄ +Bαγ

j̄ Γβ
iγ +Bγβ

j̄ Γα
iγ − 2∂iKB

αβ
j̄ = 0 (289)

Let’s define Bαβ
j̄ = Bj̄ᾱβ̄e

2KGᾱαGβ̄β. Then, equations (288) and (289) imply that Bīj̄β̄ is

proportional to the three point correlation function for the antitopological fields. Substi-

tuting this information into equation (283), we obtain the (t, t̄)-equation

∂n̄Γk
ij = Gin̄δ

k
j +Gjn̄δ

k
i − C̄mk

n̄ Cijm (290)

Notice that in order to get the special geometry relation (290) from the contact term

algebra, it was necessary to make use of the derivation rule (259.b). From (290) we can
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conclude that the metric Gij̄ is the Zamolodchikov metric for the marginal deformations,

therefore obtaining the special geometry of the moduli space of N = 2, ĉ = 3 SCFT’s

presented in section 1.8.

From the previous result we observe that the combined action on t defined by the

contact terms Γk
ij, and on t̄ characterized by Gij̄ , produces the whole tt̄-connection, con-

cluding for the case ĉ=3 the steps i), ii) and iii) of section 2.7.

2.9 Holomorphic Anomaly: the Genus Zero Case

Let us write the tt̄-equation in the condensed way

[Di, Dj̄ ] = −[Ci, C̄j̄] (291)

If now we interpret Di, Dj̄ as defining the motion in the space of theories

C0
i1...is;j ≡ 〈φi1...φis

∫
φ

(2)
j 〉 ≡ Dj〈φi1...φis〉 (292)

C0
i1...is;j̄

≡ 〈φi1...φis

∫
φ̄

(2)

j̄ 〉 ≡ Dj̄〈φi1...φis〉

we get

Dj̄C
0
i1...is;̄i = [Di, Dj̄]C

0
i1...is +DiC

0
i1...is;j̄ (293)

and even if we start with holomorphic correlators C0
i1...is for a topological field theory,

we will find for the correlators of a neigborhood theory defined by C0
i1...is;i an anomalous

contribution coming from (291). This anomalous contribution, first discovered by [30], is

known as holomorphic anomaly. The physical origin of this anomaly is associated with

the fact that derivatives with respect to the couplings of pure BRST operators are not

any more pure BRST. In principle the anomaly (293), at least at genus zero, is a general

fact independently of the value of ĉ. However it is only for the special case ĉ=3 that we

can interpret this anomaly using the tools we have introduced in the previous section. For

ĉ= 3 and reducing to marginal t and t̄ deformations, the only non-vanishing correlators

at genus zero are of the form

C0
i1i2i3;j1...js

= 〈φi1φi2φi3

∫
φ

(2)
j1 ...

∫
φ

(2)
js
〉0 (294)
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and therefore all of them should define measures on the moduli space of Riemann surfaces

with n+3 punctures. In other words, the study of these correlators is strictly equivalent to

couple the matter theory to topological gravity. Using (292), correlators can be expressed

in terms of the three point functions

C0
i1i2i3;j1...js

= Djs
...Dj1C

0
i1i2i3

(295)

Their anomalous piece can be computed applying succesive times equation (293) togheter

with the tt̄-equation (291). In particular the tt̄-equation can be seen as the simplest case

of the holomorphic anomaly, i.e. for the four point function Ci1i2i3;j.

2.10 Higher Genus and Quantum Geometry

Until now we have reduced our discussion to the case of genus zero. It is in this reduced

framework where we have connected the geometry of the space of theories with the physics

of topological strings. Once we have topological matter coupled to topological gravity,

nothing prevent us a priori for computing higher genus amplitudes. It is on the basis of

these amplitudes that some form of quantum geometry should appear in the future.

One of the more important facts we have observed in the study of pure topological

gravity are the recursion relations, by means of which we can construct genus g amplitudes

in terms of genus (g−1) amplitudes. The origin of these recursion relations is the zero

contribution from the bulk. It would be certainly important to generalize these type of

recursion relations to generic topological strings. A way to begin this project, initiated in

[30], is to generalize the holomorphic anomaly to higher genus amplitudes.

For the case ĉ=3 a generic correlator Cg
i1...is for marginal fields at genus g is defined

by

Cg
i1...is =

∫

Mg,s+1

〈
∮

Cz1

G−Ḡ−φi1...
∮

Czs

G−Ḡ−φis

3g−3∏

j,j̄=1

G−(χj)Ḡ
−(χ̄j̄)〉 (296)

with χj , χ̄j̄ the Beltrami differentials and where
∮
Czi

G−Ḡ−φi =φ
(2)
i (see equation (36)).

The correlator (296) have the same structure as a correlator in the bosonic string provided

we interpret the G−’s as the b, b̄-ghosts. The difference however is that, as we have already

mention in section 2.1, the factor
∏3g−3

j,j̄=1G
−(χj)Ḡ

−(χ̄j̄) is coming from the integration over
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the supermoduli and therefore we are forced a priori to define the string measures using

a pair (Q, b) which in addition to the standard requirement {Q, b} = T defines Hodge

structure, i.e. the cohomology of Q is isomorphic to the cohomology of the field b. We

have already feel this fact in the computations at genus zero in the definition of contact

terms. From a physical point of view the first implication of defining string amplitudes

using a (Q, b) system which at the same time satisfies the N=2 algebra, i.e. it is Hodge,

is that the propagators
b0,+b0,−

L0 + L̄0
(297)

which we are going to associate with the sewing operators in order to define the string

amplitudes, project out all zero energy states. These simple reasoning seems a priori to

prevent any consistent way to define genus g amplitudes for external zero energy states in

terms of amplitudes at genus (g−1) for again external zero energy states. The holomorphic

anomaly can be extended to genus g amplitudes and partially solves this puzzle.

We will derive the anomaly for correlators at any genus g using again the contact term

algebra introduced in section 2.8. Let us remember the expression of the tt̄-amplitudes

with the help of the formal operators φ̂j̄

∂t̄ Cg
i1...is =

=
∫

Mg,s+1

〈
∮

Cz

G−Ḡ−φ̂t̄

s∏

i=1

∮

Czi

G−Ḡ−φi

3g−3∏

a,ā=1

G−(χa)Ḡ
−(χ̄ā) 〉Σg,s+1 =

= 〈 φ̂t̄

∏

i∈S

φi 〉g (298)

where S notes the set of all punctures and we have introduced the last equality to simplify

the notation. The contributions to (298) can be written:

〈 φ̂t̄

∏

i∈S

φi 〉g =
∑

i∈S

RDi
+

∑

nodes

R∆ (299)

where RDi
is the contact term of φ̂t̄ with the φi insertion, and R∆ the contact term

contribution that factorize the surface through a node. Let’s start by analyzing the RDi

boundaries:

∑

i∈S

RDi
=

∑

i∈S

〈 φ̂t̄

∏

j∈S

φj 〉Di
=

∑

i∈S

Git̄ 〈 σ1

∏

j 6=i

φj 〉 =

=
∑

i∈S

Git̄ (2−2g−s+1) 〈
∏

j 6=i

φj 〉 (300)
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The internal nodes ∆ are associated to the two types of boundaries of a Riemann surface

of genus g and s punctures. The first one, we will note it as ∆1, comes from pinching a

handle, leading to a surface of genus g−1:

〈 φ̂t̄

∏

i∈S

φi 〉g, ∆1 =
1

2
B

′αβ
t̄ 〈 φαφβ

∏

i∈S

φi 〉g−1 (301)

where the factor 1
2

should be added to reflect the equivalency between the order in which

the two new insertions φα are integrated. The factorization tensor B′ satisfies the same set

of equations (288) and (289) that the tensor B, thus it is also proportional to the three

point correlation function. With an appropriate choice of normalization of the string

amplitudes, the proportionality constant between both factorization tensors can be set

equal to one [31].

The second ones, noted ∆2, come from the factorization of the surface into two surfaces

of genus r and punctures in the subset X, and genus g−r and punctures in Y respectively:

〈 φ̂t̄

∏

i∈S

φi 〉g, ∆2 =
1

2

g∑

r=0

∑

X∪Y =S

C̄αβ
t̄ 〈φα

∏

j∈X

φj〉r 〈φβ

∏

k∈Y

φk〉g−r (302)

Collecting now equations (300), (301) and (302), we obtain the equation for the t̄-

dependence of any string amplitude:

∂t̄ 〈
∏

i∈S

φi 〉g =
1

2
C̄αβ

t̄ 〈 φαφβ

∏

i∈S

φi 〉g−1 +

+
1

2

g∑

r=0

∑

X∪Y =S

C̄αβ
t̄ 〈 φα

∏

j∈X

φj 〉r 〈 φβ

∏

k∈Y

φk 〉g−r + (303)

+
∑

i∈S

Git̄ (2−2g−s+1) 〈
∏

j 6=i

φj 〉g

Notice that in our derivation of the holomorphic anomaly from the contact term algebra

we have only considered the contact terms of the antitopological operator φ̂t̄ with the rest

of the operators φi but not the contact terms among the operators φi themselves. This

is equivalent to define the correlators 〈∏φi〉 by covariant derivatives of the generating

functional. There are however some aspects of the previous derivation that should be

stressed at this point.

1) The correlators 〈∏φi〉 for topological operators can not be determined by the con-

tact term algebra, by contrast to what happen in topological gravity. In fact from the

contact term algebra we can only get relations of the type:

( Γk
ij − Γk

ji )〈φk

∏

l∈S

φl 〉 =
∑

l∈S

RDl
+

∑

nodes

R∆ (304)
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which does not imply (Γk
ij −Γk

ji = 0) anything on the surface contribution. Moreover they

are compatible with making all contact terms RDl
equal to zero by covariantization.

2) If in the computation of 〈 φ̂t̄
∏

i∈S φi 〉 we take into account all contact terms, i.e

contact terms between the φi operators, we will find, as a consequence of the derivation

rules (259) and the (t, t̄) equations (290), that the holomorphic anomaly is cancelled,

reflecting the commutativity of ordinary derivatives [∂ī, ∂j ] = 0.

3) We should say that from the contact term algebra we can not prove, at least directly,

that the correlators 〈 φ̂t̄
∏

i∈S φi 〉 are saturated by contact terms. The fact we have proved

is that the contact term contribution dictated by the contact term algebra (254) (256) is

precisely the holomorphic anomaly.

4) The curvature of the initial surface is augmented by two units in both processes of

pinching a handle or factorizing the surface. In order to take this into account, the two

insertions φα, φβ generated in these processes should include, in addition, an extra unit of

curvature. Therefore, the total balance of curvature for the new insertions is zero. This

can be seen as the reason for the zero contact term between the dilaton field σ1 and the

antitopological operators φ̂ī (see equations (268) and (270)).

To finish this section, we will notice an important property of the holorphic anomaly

equation (303). Using the covariant prepotential S, Si =Gīi∂īS, Sij =Gīi∂īS
j, introduced

in section 1.8, we can integrate (303) [30]. From this we get in particular a Feynman

diagram description of part of the boundary contributions to Cg
i1...is. Let us stress the

appearance in the Feynman rules of a new field, with the defining properties of the dilaton.

This fact has the origin in the pieces depending linearly on the curvature of the Riemann

surface in the expression of the holomorphic anomaly (303), or from the point of view of

the algebra (254), in the contact term between a topological and a antitopological field

(257).

It would be interesting at this point to reinterpret the Feynman propagator Sij as

a regularization of the Kodaira-Spencer propagator ∂̄†∂
∆

and to connect this regulariza-

tion with an effective and operative way for reproducing, using the cancel propagator

argument, the contact term algebra.
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2.11 Final Comments

In this section we will collect some concrete questions which we believe would be worth

to consider in more detail.

i) A direct derivation, using cancel propagator arguments, of the tt̄-connection.

ii) To find a Landau-Ginzburg description of topological matter theories with t and t̄

couplings different from zero.

iii) A direct derivation of the renormalization group ”β-functions” ti(β), t̄̄i(β) for β

the world-sheet scale.

iv) To extend the holomorphic anomaly for correlators involving gravitational descen-

dents and to massive topological field theories.

v) To find an effective regularization of the ”Kodaira-Spencer” propagator ∂̄†∂
∆

in a

way consistent with the holomorphic anomaly.

vi) Based on the connection between tt̄-equation and the thermodinamic Bethe ansatz

(TBA) [12], namely TBA as integral representation of tt̄-equations for massive models,

to study, from the tt̄-geometry, the integrability of the corresponding solitonic infrared

theory.

vii) To study in a more systematic way properties of strings defined for a pair (Q, b)

which satisfy Hodge relations, i.e. strings with non-trivial b-cohomology.
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