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1 Introduction

Target space duality keeps attracting the attention of string theorists (see e.g.

[1, 2, 3, 4]) mainly because it deepens our understanding of the geometry

of spacetime from the string point of view and it is an important tool for

disentangling the full symmetry structure of the string theory.

Duality is usually derived in the �-model context in appropriate coordi-

nates, respecting the isometry of the action. The symmetry is gauged and the

gauge �elds are constrained to be trivial by introducing a Lagrange multiplier.

The latter is understood as a new (dual) coordinate and the gauge �elds are

integrated out to end up with the dual �-model. The dual metric ~G and the

skew-symmetric tensor ~B are then given by Buscher's formula.

This approach is not very transparent from the geometrical point of view,

however. An important conceptual simpli�cation was undertaken in [5] where
the duality was described in a global geometric setting and, following the sug-
gestion in [6], it was interpreted as just a canonical transformation of the phase
space of the theory [7]. Attempting to further clarify the concept, we give a
very simple global geometric description of duality for a large class of systems

including the �-models. We show that the dual target, its cotangent bundle,
and the elements of the original and the dual phase spaces can be naturally
embedded into the cotangent bundle of the original target. The relation be-
tween the original and the dual quantities is now simply given by di�erent
projections of invariant objects living in the cotangent bundle. Buscher's for-

mula follows extremely straightforwardly and it is literally projective. As an
application of the developed formalism we present a simple proof that duality
acts as a symplectomorphism of the original and the dual phase spaces, under-
stood as appropriate submanifolds of the cotangent bundles of the loop spaces
of the targets. The whole picture seems quite natural. We may even guess
that the cotangent bundle will play an important role in developing a natural

framework for the description of string symmetries.

The plan of the paper is as follows. In section 2 we identify the cotangent
bundles of the original and the dual manifolds and compare their canonical
symplectic structures. In the next part we lift the dynamical characteristics

of strings into the cotangent bundle and by di�erent projections we obtain

Buscher's formula. In section 4 we prove that the duality is a symplectomor-
phism and in section 5 we consider �-models only, recovering the standard

results in a very compact way.
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2 Dual symplectic structures on

the cotangent bundle

Consider a manifoldM with a global vector �eld v and a global closed 1-form !

such that !(v) = 1.2 Let T �M be the cotangent bundle ofM . The �elds v and

! are naturally extended to the whole T �M . On T �M there is the canonical

symplectic form 
. We de�ne the dual �elds ~v and ~! on T �M in this way:

~! = 
(:; v) and ! = 
(~v; :) (1)

(so that d~! = 0 and ~!(~v) = 1).

There exists another symplectic form ~
 on T �M such that

~
 + ~! ^ ! = 
+ ! ^ ~!: (2)

Then obviously
! = ~
(:; ~v) and ~! = ~
(v; :) (3)

These relations are manifestly dual to (1). This suggests that T �M can be
interpreted as the cotangent bundle of some dual manifold ~M whose canonical
symplectic form is ~
. We obtain ~M by the action of the vector �eld ~v on

a hypersurface M0�M such that !jM0
= 0. Then clearly M0 = M \ ~M and

~!jM0
= 0. The dual projection ~� maps (P 2M;� 2 T �

PM) 2 T �M into (P0 2

M0; �(v)!) 2 ~M , where P0 lies on the same integral curve of v as P does.
Every point (P;�)2 T �M can be understood as a 1-form on ~M at the point
~�(P;�) = (P0; �(v)!). It associates , to any vector t0 annihilated by ~!, the

number �(t0), and to ~v the number
R P
P0
!. If the integral curves of v are closed

then the function f(P ) =
R P
P0
! is multivalued. In this case we have to identify

T �M with T � ~M factorized by an appropriate discrete group.

There remains to show that Eq. (2) holds. Because ~
 = d~� (and 
 = d�)

where � and ~� are canonically de�ned, it is su�cient to compare ~� and �.
Every vector t2 TX(T

�M ) can be uniquely written as t = t0 + !(t)v + ~!(t)~v

where !(t0) = ~!(t0) = 0. Then by de�nition �(t0) = ~�(t0), �(~v) = 0, ~�(v) = 0,

�(v) =
RX ~! and ~�(~v) =

RX!. Hence
~�(t) = �(t)� !(t)

Z X

~! + ~!(t)
Z X

!

and Eq. (2) follows. As the formulae suggest, starting with the dual �bration

and repeating the procedure will bring us back to the original one.

We shall argue that the framework described above is very well suited for
the description of the (Abelian) target space duality in string theory.

2The form ! is locally the di�erential of a coordinate along v.
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3 Strings embedded into T
�
M and Buscher's

formula

SupposeM is a spacetime in which string propagation is governed by an action

S, invariant with respect to the vector �eld v. There is no need to assume that

S is a �-model action; we only suppose that S is local, reparametrization-

invariant and depending on the �rst derivatives of the embedding of the string

worldsheet into M .

Because v is a symmetry, by Noether theorem there is a closed 1-form �

(the density of the v-component of the momentumof the string) on any surface

extremizing S. Due to this fact, any on-shell string can be naturally lifted to

T �M along ~v so that the form ~! restricted to the lifted surface gives precisely

�.3

Then we project the lifted surface to ~M . We shall show that there exists
a ~v-invariant action ~S whose extremal surfaces are just the projections to ~M
of the lifted surfaces. The action ~S will obey the duality property, namely the
lift of the dual extremal surface along v, such that the dual Noether form ~� is
restricted !, coincides with the original lift.

All that picture should be re�ned, however, in the case of closed strings.
Then the form � need not be exact and the lift of the non-contractible loop on
the worldsheet may give an open curve in T �M . Therefore, we have to identify
the points of T �M along ~v in such a way that

n

I
orbit of ~v

~! =
I

loop
� = p;

where p is the v-component of the total momentum of the string and n is an
integer. As a consequence, the momentum of the string is an integer multiple

of some minimal momentum and the dual string winds n times around the
orbit of ~v. The picture holds in the dual version, of course.

In order to �nd the dual action, we have to identify a geometric object on
M which encodes the original action, can be naturally lifted to T �M , and then

projected to the dual manifold ~M . Because the action is reparametrization-

invariant and depends at most on the �rst derivatives, the Lagrangian L is a
function of decomposable bivectors b at any point P of M such that

L(�b) = �L(b); � > 0: (4)

This object is not convenient for lifting to T �M . Instead, we de�ne a bilinear

mapping p

pb(t; u) �
d

d�
L(b+ �t ^ u)j�=0; (5)

3This lift is de�ned uniquely up to a uniform shift by ~v. We shall discuss the ambiguity
in the next section.
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where t; u 2 TPM and t^ b = 0 (the last condition means that the vector

t lies in the plane of b and in fact ensures that the argument of L in (5) is

decomposable). Note that p�b(t; u) = pb(t; u) or in other words the mapping

p depends only on the plane in which b lies. Physically speaking, pb(t; u) is

the density of the u-component of the momentum.4

We see that the mapping pb(t; u) contains the essence of dynamical prop-

erties of string. Obviously, pb(b) = L(b) and pb(t; v) = �(t) where � is the

mentioned Noether 1-form.

A bivector b = v1^v2 at a point P 2M can be naturally lifted to a decom-

posable bivector b�2�2TP (T
�M )'�2(TPM + T �

PM ):

b� = (v1 + pb(v1; :))^(v2 + pb(v2; :)): (6)

We observe the simple formula

2L(b) = 
(b�): (7)

The dual Lagrangian ~L is de�ned in such a way that lifting ~b = ~�(b�) by ~L
gives b�. Then obviously5

2~L(~b) = ~
(b�): (8)

From (2), (7) and (8) Buscher's duality transformation follows:

~L(~b) = L(b)� (~! ^ !)(b�) = L(b)� (� ^ !)(b): (9)

By construction, the dual Lagrangian is ~v-invariant. In a way, it may be in-
terpreted as the Routh function, because ! is the di�erential of the coordinate
along the symmetry �eld and � is the corresponding momentum. Later we
shall write the formula in the familiar �-model context. The formula can be

derived also relaxing the condition of reparametrization invariance. However,

its derivation is slightly less straightforward.
We should demonstrate that we obtain, by minimizing the dual action,

the surfaces in ~M projected from the lifted extremal surfaces of the original

action. First notice that for lifting a surface F �M we only need d� = 0. Upon
gauging the symmetry v the variation of the action S(F + �v)�S(F ) is equal

to
R
F d� ^ �. It means that d� = 0 i� F is extremal with respect to arbitrary

(non-uniform) variations in the direction of v. By construction, the same thing

4We may say that pb(t; u) de�nes for any embedding of string into M a 1-form on the
worldsheet with values in 1-form on the target. In arbitrary coordinates �� on the worldsheet
and X� on the target it can be written as p�� = @(L���)=@(@�X

�), where S =
R
Ld�0d�1.

5Speaking more exactly, the value of 
 is the same for any bivector on T �M obtained by
acting by the vector �elds v; ~v on b�, because the symplectic form 
 is v; ~v-invariant. This
means that we can transport b� into a point of the dual manifold ~M embedded in T �M and
write the formula (8) there.

4



is valid for dual objects, i.e. the liftable surfaces are exactly those extremizing

S and ~S with respect to the v- and ~v-direction respectively. Therefore we shall

restrict our attention to these surfaces only. Now from (9) one easily observes

~S( ~F ) = S(F )�
Z

F �
~! ^ !; (10)

where F � is the common lift of F�M and ~F� ~M . The di�erence between the

actions is an integral of a closed form so it does not feel any variation.

4 Duality as a symplectomorphism of

string phase space

By the phase space of a closed string theory we understand the space of all
classical solutions having the topology of a cylinder. On this space there is

a natural symplectic form 
Ph coming from the action. However, we had to
quantize the momentum for the duality to make sense. If we �x the momentum
then we obtain a hypersurface in the phase space. This is not a symplectic
space because 
Ph is not invertible on it. To obtain a symplectic structure
one has to factorize this hypersurface: one identi�es each string F with all the
strings obtained by tranlating F by the vector �eld v. This is (the simplest

case of) the Marsden-Weinstein reduction [8]: if there is a function p on a
symplectic space generating a vector �eld w then one sets p = const: to obtain
a hypersurface and then factorizes by w; the result is a symplectic space. This
factorisation is perfectly suited for the duality because the dual string ~F is
only de�ned up to a shift by ~v and does not depend on shifting F by v. So,

duality is a one-to-one mapping of the reductions. There is a pretty physical
reason for the factorization: if a string has an exact value of the momentum

then its state does not change if we shift it by v.

Now we prove the following proposition: the duality is a symplectomor-
phism of the (reduced) phase spaces.

Proof: Let LM be the loop space of the target M . As usual, we obtain the
phase space from the cotangent bundle T �LM , on which there is the canonical

symplectic form 
Ph = d�Ph. Namely, we identify some submanifold in T �LM

and then factorize it appropriately.6 The construction goes as follows: if we
have a string worldsheet F and a loop l on it, then we de�ne a corresponding

element lF 2 T �

l LM . To describe how lF acts on a vector u 2 TlLM , �rst
realize that u can be thought of as a family of vectors u(X) 2 TXM where X

6We proceed conceptually as in the case of a relativistic particle in a background; in the
�-model case the submanifold is de�ned by the Virasoro constraints.
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runs along l. Then

lF (u) �
I
l
pb(:; u(X)): (11)

If we take all lF 's for all possible F 's we obtain the mentioned submanifold of

T �LM . Now we identify all lF 's coming from the same extremal F and obtain

the phase space.

In this framework we can easily prove the proposition. Let H be a surface

in the original phase space, i.e. a 2-parametric family of on-shell strings, and

let on each F 2 H be a loop l(F ). Then by (11)
Z
H

Ph =

I
@H

�Ph =
I

S
F2@H

l(F )

pb(F )(:; :)

The last integral is over a closed surface in M. We will prove that if ~H is a
corresponding family in ~M (de�ned up to an independent shift of each ~F by

~v) then I
S
F2@H

l(F )

p =
I

S
~F2@ ~H

l( ~F )

~p:

We will compare the two expressions using the common lifted family H�. One

immediately checks that if t� and u� are vectors at a point of a lifted surface
F �, t� tangent to F

� and u� arbitrary, then

~p(~t; ~u)� p(t; u) = (! ^ ~!)(t� ^ u�)

so that I
S

~F2@ ~H
l( ~F )

~p�
I

S
F2@H

l(F )

p =
I

S
F�2@H�

l(F �)

! ^ ~! = 0

because ! ^ ~! is closed and the closed surface over which we integrate is a
boundary.

5 �-model and projective transformations

In what follows we shall study the duality in the familiar context of the non-

linear �-model. In this case there is a metricG and a 2-formB on the manifold.

The action S is minus the area of the surface plus the integral of B over the
surface. We assume the surface to be time-like everywhere, i.e. there are two
real light-like tangent vectors k; l at any point of the surface; we always choose

both of them lying on the same light cone (future or past). Then the area of

k ^ l is simply �k � l, i.e.

L(k ^ l) = G(k; l) +B(k; l) � E(k; l): (12)
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It means that

pk^l(k; :) = E(k; :) and pk^l(l; :) = �E(:; l): (13)

The duality transformation follows directly from Buscher's formula (9), but

there is a simpler geometric way of deriving it in the �-model context. Using

Eq. (13) and the decomposition TP (T
�M) ' TPM + T �

PM ' TP ~M + T �

P
~M we

interpret k� = k + pk^l(k; :) = k + E(k; :) as ~k + ~E(~k; :), and accordingly for

l�, thus obtaining the dual bilinear form ~E = ~G + ~B. That is, we interpret

the graph of E, E = ft+E(t; :)jt 2 TPMg, from the dual point of view as the

graph of ~E.

The projective formula for ~E is self-evident now. One simply exchanges

TPM and TP ~M by the linear transformationR of TP (T
�M), v$ ~v and w 7! w,

if !(w) = ~!(w) = 0. Then ~t+ ~E(~t; :) = R(t+ E(t; :)).
Our formalism can be easily extended to the case of d commuting symme-

tries. Then R is an element of a group O(d; d;Z) preserving the natural metric
on TP (T

�M), (t+ �)2 = �(t).
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