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1 Introduction

Few words have been used with more di�erent meanings than the word \duality".

Even within the restricted framework of string theories, duality originally meant a

symmetry between the s and the t-channels in strong interactions (coming from the

demands in the S-matrix approach of the sixties of Regge behavior without �xed

poles and analiticity, which were shown to imply the existence of an in�nite number

of resonances) [1]. Somewhat related ideas, also termed \duality", appear in the

context of Conformal Field Theory (CFT) as simple consequences of locality and

associativity of the operator product expansion (OPE) [2].

Duality symmetry plays an important rôle in Statistical Mechanics (for a review

and references to the literature see for instance [3]), in particular in the analysis of
the phase diagram of spin systems. It can also be understood as a way to show the
equivalence between two apparently di�erent theories. On a lattice system described
by a Hamiltonian H(gi) with coupling constants gi the duality transformation pro-
duces a new Hamiltonian H�(g�i ) with coupling constants g�i on the dual lattice. In

this way one can often relate the strong coupling regime of H(g) with the weak
coupling regime of H�(g�). An important application was the determination of the
exact temperature at which the phase transition of the two-dimensional Ising model
takes place [4].

More recently, the word \duality" (\space-time duality") has been introduced

in yet another sense. T-duality is a symmetry which relates physical properties
corresponding to big spacetime radius with quantities corresponding to small radius.
This will be our main theme in this review and from now on we will refer to it
as just duality (a general reference is [5]). S-duality is a (conjectural) symmetry
relating the strong coupling regime with the weak coupling one, a bold generalization

of the original conjecture by Montonen and Olive [6]. Still more interesting (and
speculative), there is a \duality of dualities": S-duality for strings corresponds to T-
duality for �vebranes and conversely (see [7] for a general review). Another formally
very similar property is �-duality, a property of the free energy of strings at �nite

temperature [8] which relates the high and the low temperature phases. For example,

for the 10-dimensional heterotic string

F (�) =
�2

�2
F (�2=�): (1.0. 1)

The physical interpretation of this symmetry is, however, somewhat uncertain due
to the presence of the Hagedorn temperature.

In String Theory and Two-Dimensional Conformal Field Theory duality is an

important tool to show the equivalence of di�erent geometries and/or topologies
and in determining some of the genuinely stringy implications on the structure of

the low energy Quantum Field Theory limit. Duality symmetry was �rst described
on the context of toroidal compacti�cations [9]. For the simplest case of a single

compacti�ed dimension of radius R, the entire physics of the interacting theory is

left unchanged under the replacement R ! �
0

=R provided one also transforms the
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dilaton �eld �! �� log (R=
p
�
0) [10]. This simple case can be generalized to arbi-

trary toroidal compacti�cations described by constant metric gij and antisymmetric

tensor bij [12]. The generalization of duality to this case becomes (g+b)! (g+b)�1

and �! �� 1
2
log det(g + b). In fact this transformation is an element of an in�nite

order discrete symmetry group O(d; d;Z) for d-dimensional toroidal compacti�ca-

tions [13, 14]. The symmetry was later extended to the case of non-at conformal

backgrounds in [16]. In Buscher's construction one starts with a manifold M with

metric gij ; i; j = 0; : : : d � 1, antisymmetric tensor bij and dilaton �eld �(xi). One

requires the metric to admit at least one continuous abelian isometry leaving invari-

ant the �-model action constructed out of (g; b; �). Choosing an adapted coordinate

system (x0; x�) = (�; x�); � = 1; : : : d� 1 where the isometry acts by translations of

�, the change of g; b; � is given by

~g00 = 1=g00; ~g0� = b0�=g00;

~g�� = g�� � (g0�g0� � b0�b0�)=g00
~b0� = g0�=g00;

~b�� = b�� � (g0�b0� � g0�b0�)=g00;

~� = �� 1

2
log g00: (1.0. 2)

The �nal outcome is that for any continuous isometry of the metric which is a
symmetry of the action one obtains the equivalence of two apparently very di�erent

non-linear �-models. The transformation (1.0. 2) is referred to in the literature as
abelian duality due to the abelian character of the isometry of the original �-model.
If n is the maximal number of commuting isometries, one gets a duality group of
the form O(n; n;Z) [18]. Duality symmetries are useful in determining important
properties of the low-energy e�ective action, in particular in questions related to

supersymmetry breaking and to the lifting of at directions from the potential [15].

Although the transformation (1.0. 2) was originally obtained using a method ap-
parently not compatible with general covariance, it is not di�cult to modify the
construction to eliminate this drawback [19]. A particularly useful interpretation

of (1.0. 2) is in terms of the gauging of the isometry symmetry [17]. The duality

transformation proceeds in two steps: i) First one gauges the isometry group, thus
introducing some auxiliary gauge �eld variables A. The gauge �eld is required to

be at and this is implemented by adding a Lagrange multiplier term of the form
�dA. It is naively clear that if we �rst perform the integral ovel �, this provides a

�-function dA on the measure, implying that A = dX is a pure gauge (we consider a
spherical world sheet for simplicity). Fixing X = 0 the original model is recovered.

ii) The second step consists of integrating �rst the gauge �eld A. Since there is no

gauge kinetic term, the integration is gaussian, yielding a Lagrangian depending on
the original variables and the auxiliary variable �. After �xing the gauge the dual

action follows. In [17] it was further shown that if one starts with a conformal �eld

theory (CFT), conformal invariance is preserved by abelian duality. The proof was

based on an analogy between the duality transformation and the GKO construction
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[32].

Of more recent history is the notion of non-abelian duality [22, 23, 24, 25], which

has no analogue in Statistical Mechanics. The basic idea of [22], inspired in the

treatment of abelian duality presented in [17], is to consider a conformal �eld theory

with a non-abelian symmetry group G. In this case the gauge �eld variables A

and the Lagrange multipliers live in the Lie algebra associated to G. The duality

transformation proceeds in the two steps described above.

In the abelian case it is also possible to work out the mapping between some

operators in the original and dual theories, as well as the global topology of the

dual manifold [19]. Thus for G abelian we have a rather thorough understanding of

the detailed local and global properties of duality. In the non-abelian case global

information can only be extracted for �-models with chiral currents [25]. For these
models it is possible to perform a non-local change of variables in the Lagrange
multiplier term such that the Lagrangian keeps its local expression and from it the
global properties of the dual model can be worked out. The same construction does
not work for general �-models without chiral isometries.

Some interesting reviews on duality can be found in [5] and [20].

The organization of the lectures is as follows:

1. In section two we review the approaches of Buscher [16] and Ro�cek and Verlinde
[17] to abelian duality. We also exhibit the kind of information one can obtain
with these formalisms. The approach of De la Ossa and Quevedo [22] to non-
abelian duality is explained. Some comments are made concerning the global
properties of the dual manifold [25].

2. In section three we show that for non-semisimple isometry groups a mixed
gravitational-gauge anomaly may emerge in constructing the non-abelian dual.

This explains in particular why the example considered in [24] violates confor-
mal invariance to �rst order in �

0

.

3. In section four we study with some detail the transformation of the dilaton

needed to preserve conformal invariance (to �rst order in �
0

) under duality.

4. In section �ve the problem of the behavior of the cosmological constant under
duality is addressed. This study is motivated by the work in [36] where an
explicit example in which the cosmological constant changes under a duality

transformation is considered.

5. In section six we study the implications that duality has in the de�nition of
a proper distance within String Theory. We consider particular families of

correlators, manifestly duality invariant, and discuss the properties a distance

based on them would have.

6. In section seven the canonical transformation approach to duality is studied.

We shall be following [45]. In the abelian case the explicit generating functional
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producing Buscher's formulae is constructed. It is shown that all the infor-

mation which can be obtained in the formulations above can be derived more

easily this way. The general formulation of non-abelian duality as a canonical

transformation is so far unknown. We review an example [47] where a non-

abelian transformation in the SU(2) principal chiral model is constructed as

a canonical transformation of type I, the same type as for abelian duality.

7. Section eight contains a partial list of open problems.

2 Abelian and Non-Abelian Dualities

2.1 Abelian Duality

We start with a summary of Buscher's formulation [16]. Consider a non-linear �-
model de�ned on a d-dimensional manifoldM :

S =
1

4��0

Z
d2�[

p
hh��gij@�x

i@�x
j + i���bij@�x

i@�x
j + �

0

p
hR(2)�(x)]; (2.1. 1)

where gij is the target space metric, bij the torsion and � the dilaton �eld, coupled to
the two dimensional scalar curvature in the world sheet R(2). h�� is the world sheet
metric and �

0

the inverse of the string tension. Let us assume that the �-model
has an abelian isometry represented by a translation in a coordinate � in the target
space. In the coordinates f�; x�g; � = 1; : : : ; d � 1, adapted to the isometry, the
metric, torsion and dilaton �elds are �-independent. Then the original theory can

be obtained from the following d+ 1-dimensional �-model:

Sd+1 =
1

4��0

Z
d2�[

p
hh��(g00V�V� + 2g0�V�@�x

� + g��@�x
�@�x

�)

+i���(2b0�V�@�x
� + b��@�x

�@�x
�) + 2i��� ~�@�V� + �

0

p
hR(2)�(x)];(2.1. 2)

where V is a 1-form de�ned onM and ~� is an additional variable acting as a Lagrange

multiplier. The equation of motion for ~� implies ���@�V� = 0, which in topologically

trivial world sheets forces V� = @��, leading to the original theory. If instead we
integrate over the V�-�elds:

V� = � 1

g00
(g0�@�x

� + i
��

�

p
h
(b0�@�x

� + @� ~�)); (2.1. 3)

we obtain the dual action:

~S =
1

4��0

Z
d2�[

p
hh��(~g00@�~�@� ~� + 2~g0�@�~�@�x

� + ~g��@�x
�@�x

�)

+i���(2~b0�@�~�@�x
� +~b��@�x

�@�x
�) + �

0

p
hR(2)�(x)]; (2.1. 4)
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where:

~g00 =
1

g00

~g0� =
b0�

g00
; ~b0� =

g0�

g00

~g�� = g�� �
g0�g0� � b0�b0�

g00

~b�� = b�� �
g0�b0� � g0�b0�

g00
: (2.1. 5)

(2.1. 5) show that duality relates very di�erent geometries. We will see that it may

also lead to di�erent topologies. The integration on V� produces a factor in the
measure detg00 which conveniently regularized yields the shift of the dilaton:

~� = �� 1

2
log g00: (2.1. 6)

The regularization prescription in order to �nd (2.1. 6) is �xed by requiring con-

formal invariance of the dual theory. In [16] the following de�nition was shown to
yield the correct dilaton shift satisfying conformal invariance to �rst order in �

0

:

detA � det�A

det�
; (2.1. 7)

where �A = � 1p
h
@�(

p
hh��A@�), � = � 1p

h
@�(

p
hh��@�). We will further justify

this de�nition for the determinant in section four.
The �-model de�ned by (~g;~b; ~�) is independent of the ~� variable, hence the orig-

inal model can be recovered by performing the duality transformation with respect
to ~� shifts.

This formalism has apparently some limitations:

1. It seems that general covariance is broken due to the choice of adapted coor-

dinates needed to perform the duality transformation. This also obscures the
issue of the global topology of the dual manifold, which is harder to describe

if one works in local coordinates.

2. If the original theory has some isometries not commuting with the one used

for duality they generically disappear as local symmetries in the dual model.

3. The original model is recovered from (2.1. 2) only in spherical world sheets.
The monodromy of the V variable must be �xed by imposing the absence of

modular anomalies. For that we need to know which are the orbits of the

Killing vector.

4. When the Killing vector has �xed points, V� in (2.1. 3) is singular. In this

case it could be much wiser to work with the d + 1-dimensional action (2.1.

2).
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5. What happens to the operator mapping from the above construction?.

6. What are the general properties of the non-abelian generalization?.

All these questions can be addressed with a di�erent way of constructing the

dual model. We will follow the work of Ro�cek and Verlinde [17]. The formulation of

Ro�cek and Verlinde starts with the same �-model (2.1. 1) with the abelian isometry

represented by � ! � + �. The key point is to gauge the isometry by introducing

some gauge �elds A� transforming as �A� = �@��. With a Lagrange multiplier term

the gauge �eld strength is required to vanish, forcing the constraint that the gauge

�eld is pure gauge. After gauge �xing the original model is then recovered.

Gauging the isometry in (2.1. 1) and adding the Lagrange multipliers term leads
to:

Sd+1 =
1

4��0

Z
d2�[

p
hh��(g00(@�� +A�)(@�� +A�) + 2g0�(@�� +A�)@�x

�

+g��@�x
�@�x

�) + i���(2b0�(@�� +A�)@�x
� + b��@�x

�@�x
�) + 2i��� ~�@�A�

+�
0

p
hR(2)�(x)]: (2.1. 8)

The dual theory is obtained integrating the A �elds:

A� = � 1

g00
(g0�@�x

� + i
��

�

p
h
(b0�@�x

� + @� ~�)); (2.1. 9)

and �xing � = 0.
In [17] it is shown that the original and dual theories can be considered as the

vectorial and axial cosets of a given higher dimensional theory with chiral currents in
which the abelian symmetry group is gauged. This shows that conformal invariance
is preserved by abelian duality to all orders in �

0

since one can think of the initial
and dual theories as two di�erent functional integral representations of the same
conformal �eld theory.

Within this approach the open questions enumerated above can be solved.
The procedure of gauging the isometry can be implemented in arbitrary coor-

dinates [19]. If the original �-model has a torsion term then Noether's procedure
must be followed, as made explicit in [26]. Let us consider the following �-model:

S =
1

8�

Z
gij@�x

i@�xj +
i

8�

Z
bijdx

i ^ dxj

=
1

2�

Z
d2�(gij + bij)@x

i@xj; (2.1. 10)

where �
0

= 2. Let ki be a Killing vector for the metric g:

Lkgij = rikj +rjki = 0: (2.1. 11)

Invariance of S requires also

Lkb = d!; ! = ikb� v; (2.1. 12)
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where (ikb)j � kibij and v is a one-form such that ikH = �dv (H = db locally). The

associated conservation law is:

@ �Jk + �@Jk = 0 (2.1. 13)

Jk = (k � ikb+ !)i@x
i = (k � v)i@x

i � (k � v) � @x
�Jk = (k + ikb� !)i �@x

i = (k + v)i �@x
i � (k + v) � �@x: (2.1. 14)

If we wish to gauge the isometry we introduce gauge �elds A; �A, with ��A =

�@� ; �� �A = ��@�, and �xi = �ki(x) now with � a function on the world sheet.

It can be shown [19] that the action:

Sd+1 =
1

2�

Z
d2�[(gij + bij)@x

i �@xj + (Jk � @�) �A+ ( �Jk + �@�)A+ k2A �A]; (2.1. 15)

is invariant under:

��x
i = �ki(x) ��� = ��k � v

��A = �@� �� �A = ��@�: (2.1. 16)

The Lagrange multiplier term forces the gauge �eld to be at and at the same time

cancels the anomalous variation of the Lagrangian. For a genus g world-sheet �g

and compact isometry orbits we may have large gauge transformations. We consider
multivalued gauge functions:I


d� = 2�n() n() 2 Z; (2.1. 17)

where  is a non-trivial homology cycle in �g. Since we are dealing with abelian
isometries it su�ces to consider only the toroidal case g = 1. The variation of Sd+1

is:

�Sd+1 =
1

2�

Z �
@��@�� @��@�

�
=

i

4�

Z
T
d� ^ d�

=
i

4�

�I
a
d�

I
b
d��

I
a
d�

I
b
d�

�
(2.1. 18)

where a and b are the two generators of the homology group of the torus T. Since �

is multivalued by 2�Z, we learn from (2.1. 18) that � is multivalued by 4�Z:I

d� = 4�m() m() 2 Z: (2.1. 19)

For a non-compact isometry �Sd+1 = 0 and d� may in general have real periods.

The original theory is recovered integrating the Lagrange multiplier, which appears
in the action in the form of a closed one form. In non trivial world sheets these one

forms have exact and harmonic components. The �-dependence in (2.1. 15) is:

S� = � 1

2�

Z
(d�0 + �h) ^ A: (2.1. 20)
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Integrating by parts in the exact part and using Riemann's bilinear identity we

obtain:

S� =
1

2�

Z
�0 ^ dA�

1

2�
(
I
a
�h

I
b
A�

I
a
A

I
b
�h): (2.1. 21)

Integration on �0 yields the constraint dA = 0 and integration on the harmonic

components leads to: I
a
A =

I
b
A = 0: (2.1. 22)

Both constraints imply that A must be an exact one form. Fixing the gauge the

original theory is recovered. By construction Sd+1 is general covariant, and therefore

we have a clear idea of the d-dimensional geometrical interpretation of the model.

Locally the dual manifold is equivalent to (M=S1) � S1 (for compact isometries),
where the quotient means that the gauge is �xed by dividing by the orbits of the
isometry group. Generically we expect topology change as a consequence of duality.
However the more delicate issue is whether the dual manifold ~M is indeed a product
or a twisted product (non-trivial bundle). It is also useful to notice that in the

previous arguments the structure of �1(M) played no rôle. This rises some questions
concerning the way the operators in both theories are mapped under duality [19].
The nature of the product relating the gauged original manifold and the Lagrange
multipliers space turns out to be dictated by the gauge �xing procedure, in particular
by Gribov problems. We use an example to labor this point. This is the SU(2)

principal chiral model, which represents a �-model in S3. The dual with respect to
a �xed point free abelian isometry is locally S2�S1. One knows that this also holds
globally when performing the gauge �xing. This reveals that the dual manifold is
S2 � S1 and not a squeezed S3 (for details see [19]).

The interest of working with the d + 1-dimensional theory is that the possible

singularities in the dual theory due to the existence of �xed points do not emerge.
However if we are interested in the explicit form of the dual �-model we have to
eliminate the gauge �eld A. Integrating on A in (2.1. 15), the dual model (~g;~b; ~�)
reads:

~g00 =
1

k2

~g0� =
v�

k2
; ~b0� =

k�

k2

~g�� = g�� �
k�k� � v�v�

k2

~b�� = b�� �
k�v� � k�v�

k2

~� = �� 1

2
log k2: (2.1. 23)

Going to adapted coordinates and �xing the gauge we recover Buscher's formulae

since k2 = g00, v� = b0�, k� = g0�. However this choice of coordinate system unables
us to obtain global information about the dual manifold.
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The explicit operator mapping can be constructed [19]. The duals to vertex oper-

ators Vp = exp ip�, which are momenta operators in the direction of the isometry, are

non-local operators which can be interpreted as winding operators only for at com-

pact isometries. Thus, the description of duality in toroidal compati�cations as the

symmetry exchanging momenta and windings is modi�ed. In particular the struc-

ture of �1(M) turns out not to be important. The winding operators are associated

to compact isometry orbits in the target space manifold and not to homologically

non-trivial cycles as is usually interpreted for toroidal compacti�cations.

The extension to non-abelian isometry groups is easily done in this formalism.

The details are worked out in the next section.

2.2 Non-Abelian Duality

The same procedure �a la Ro�cek and Verlinde was generalized in [22] to construct
the dual with respect to a given no-abelian isometry group G. The gauge �elds
take values in the Lie algebra associated to the isometry group and they transform
under gauge transformations xm ! gm nx

n, m;n = 1; : : : ; N , where g 2 G, as

A! g(A+ @)g�1. The isometry is gauged by introducing covariant derivatives2:

@xm ! Dxm = @xm +A�(T�)
m

nx
n; (2.2. 1)

where T� is a N -dimensional representation for the � generator of the Lie algebra
of G. The atness of the gauge �elds is imposed by the term:

Z
Tr(�F ); (2.2. 2)

with F = @ �A��@A+[A; �A]. The �-�elds take values in the Lie algebra associated toG
and transform in the adjoint representation to preserve gauge invariance. Integration

on � �xes F = 0 in semisimple groups, then A is pure gauge (in spherical world

sheets) and after gauge �xing we recover the original model. As before the dual

model is obtained integrating on A and then �xing the gauge. For non-semisimple
groups the Lagrange multipliers term must be introduced in a di�erent way since

the Cartan-Killing metric is degenerate and the integration on � does not imply
that all the F -components are zero. In this case the �-�elds must be taken in the

basis dual to T� and they transform in the coadjoint representation.
We can write the gauged �-model action as:

Sgauge =
1

2�

Z
d2z[QmnDx

m �Dxn +Qm�Dx
m �@x� +Q�n@x

� �Dxn +Q��@x
��@x�

+Tr(�F ) +
1

2
R(2)�]; (2.2. 3)

2Note that this way of gauging a continuous global isometry is only valid for certain �-models

and isometry groups [26].
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where Q = g + b, latin indices are associated to coordinates adapted to the non-

abelian isometry and greek indices to inert coordinates. We can write (2.2. 3) as:

Sgauge = S[x] +
1

2�

Z
d2z[ �A�f��A

� + �h�A
� + h� �A

� +
1

2
R(2)�]; (2.2. 4)

with:

h� = (Qmn@x
m +Q�n@x

�)(T�)
n
qx

q � @��TR���
�h� = (Qn�

�@x� +Qnm
�@xm)(T�)

n
qx

q + �@��TR���

f�� = Qmn(T�)
m

r(T�)
n
px

rxp + C��
�TR�; (2.2. 5)

where [T�; T�] = C��
T and Tr(T�T�) = TR��� (Tr(T

0

�T�) = TR��� if the group is
not semisimple).

Integrating A; �A:

~S = S[x] +
1

2�

Z
d2z[�h�(f

��)�1h� +
1

2
R(2) ~�]; (2.2. 6)

where ~� is given by:

~� = �� 1

2
log (detf); (2.2. 7)

after regularizing the factor detf coming from the measure as in previous section. In
all the examples considered the dual model with this dilaton sati�es the conformal
invariance conditions to �rst order in �

0

, but a general proof analogous to that of
Buscher in the abelian case is lacking.

The construction above seems to be a straightforward extension of abelian du-

ality. However this is not so. Non-abelian duality is quite di�erent from abelian
duality, as it is clearly manifested in the context of Statistical Mechanics. In this
context duality transformations are applied to models de�ned on a lattice L with

physical variables taking values on some abelian group G. The duality transforma-
tion takes us from the triplet (L;G; S[g]), where S[g] is the action depending on

some coupling constants labelled collectively by g to a model (L�; G�; S�[g�]) on the
dual lattice L� with variables taking values on the dual group G� and with some

well-de�ned action S�[g�]. For abelian groups, G� is the representation ring, itself

a group, and when we apply the duality transformation once again we obtain the
original model. As soon as the group is non-abelian the previous construction breaks
down because the representation ring of G is not a group [3]. In particular the non-

abelian duality transformation cannot be performed again to obtain the model we

started with. In the context of String Theory the major problems in stating non-
abelian duality as an exact symmetry come when trying to extend it to non-trivial

world sheets and when performing the operator mapping (a detailed explanation

on this can be found in [19]). With the usual Lagrange multipliers variables is not

possible to extract global information. In �-models with chiral currents a non-local

change of variables in the Lagrange multipliers term can be done such that the dual
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Lagrangian is local. In these variables the dual theory can be shown to be the prod-

uct of the coset of the original manifold by the isometry group M=G and the WZW

model of group G [25]. This applies in particular to the case of abelian groups, in

agreement with the results on abelian duality. The dual variables introduced in [25]

are the base of the non-abelian bosonization studied in [27]. As in the abelian case

the more delicate issue is to know what kind of a product it is. This can be worked

out in the case of WZW models [49]. The partition function at genus one of a WZW

model with group G is not a product of any modular invariant partition function for

the G=H coset theory and one of the H WZW-model (now H is the gauged isome-

try group). The Kac-Moody characters of the Gk WZW-model have a well-de�ned

decomposition in terms of products of G=H and Hk characters. This implies that

the product is a twisted product. In fact in this case the explicit integration on the
A-�elds can be made and the result is that the model is self-dual.

For non-abelian isometry groups certain anomalies can arise when performing the
non-abelian dual construction [25, 28]. When one analyzes carefully the measure of
integration over the gauge �elds and its dependence on the world sheet metric, one
encounters a mixed gauge and gravitational anomaly [29] when any generator of the

isometry group in the adjoint representation has a non-vanishing trace. This can
only happen for non-semisimple groups. This mixed anomaly generates a contribu-
tion to the trace anomaly which cannot be absorbed in a dilaton shift and imposes a
mild anomaly cancellation condition for the consistency of non-abelian duality. We
treat this point in the next section.

3 Mixed Anomalies and E�ective Actions

Since we are interested in conformal invariance, we introduce an arbitrary metric

h�� on the world sheet and compute the contribution to the trace anomaly of the
auxiliary gauge �elds Aa

�. If for simplicity we work on genus zero surfaces, the most

straightforward way to compute the dependence of the e�ective action on the world

sheet metric is to �rst parametrize A� as:

A+ = L�1@+L; A� = R�1@�R; (3.0. 1)

for L;R group elements. We can think of x� as light-cone variables or as complex

coordinates, and they depend on the metric being used. In changing variables from

A� to (L;R) we encounter jacobians:

DA+DA� = DLDR det(D+(A+)D�(A�)) (3.0. 2)

with A� given by (3.0. 1) (we take A� as antihermitian matrices). We can write the

determinants in (3.0. 2) in terms of a pair of (b,c)-systems (b+a; c
a), (b�a; ~c

a). c; ~c

are 0-forms transforming in the adjoint representation of the group. For arbitrary

groups b� transform in the coadjoint representation. The determinants in (3.0. 2)

12



can be exponentiated in terms of the (b,c)- systems with an action:

S[b�; c; ~c] =
i

�

Z
(b+D�(A)c+ b�D+(A)~c); (3.0. 3)

which is formally conformal invariant. The variation of S with respect to the metric

is given by the energy-momentum tensor T��. We can ignore momentarily that A�
are given by (3.0. 1) and work with arbitrary gauge �elds. We can compute the

dependence of the e�ective action for (3.0. 3) on the metric h�� and the gauge �eld

using Feynman graphs. Expanding about the at metric, and using the methods in

[29], the �rst diagrams contributing to the e�ective action are

h
��

h++A
� A+

h��(h++) couples to T++(T��), and A�(A+) to the ghost currents j+(j�) given
by:

T++ = @+c
ab+a; T�� = @�~c

ab�a (3.0. 4)

ji+ = b+a(T
i)abc

b; ji� = b�a(T
i)ab~c

b (3.0. 5)

If one keeps track of the i� prescriptions in the propagators appearing in the graphs,
the loop integrals are �nite, and we can write their contributions to the e�ective
action as:

W (2) =
1

4�
TrT a

Z
d2p(h��(p)

p2+
p�
Aa
�(�p) + h++(p)

p2�
p+
Aa

+(�p)): (3.0. 6)

The coe�cient of (3.0. 6) and W (2) may also be computed using the OPE:

T (z)ja(w) �
TrTa

(z � w)3
+

1

(z �w)2
ja(w) +

1

(z � w)
@ja(w): (3.0. 7)

As it stands, W (2) has a gravitational anomaly, i.e. the energy-momentum tensor is
not conserved. However we can still add local counterterms to (3.0. 6) to recover

general coordinate invariance. Since to �rst order in h the two-dimensional scalar
curvature has as Fourier transform:

R(p) = 2(2p+p�h+�(p)� p2+h�� � p2�h++); (3.0. 8)

if we add the counterterms:

Wc:t: =
1

4�
TrTa

Z
Aa
�(�p)(h++(p)p� � 2p+h+�)

+
1

4�
TrTa

Z
Aa

+(�p)(h��(p)p+ � 2p�h+�); (3.0. 9)
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we obtain an e�ective action

W (2) =
1

16�
TrTa

Z
R(p)

p+A
a
�(�p) + p�A

a
+(�p)

p+p�
; (3.0. 10)

leading to a conserved energy-momentumtensor, although it contains a trace anomaly

which is not proportional to R(p) and therefore it cannot be absorbed in a modi�-

cation of the dilaton transformation. Varying (3.0. 10) with respect to h+� leads

to:

hT+�i =
�W (2)

�h+�
=

1

4�
TrTa(p+A

a
�(�p) + p�A

a
+(�p)) (3.0. 11)

which in covariant form becomes � TrTar�Aa
�.

Similarly we can vary the e�ective action to this order with respect to gauge
transformations to evaluate the corresponding gauge anomaly:

(D�
�W (2)

�Aa
�

+D+

�W (2)

�Aa
+

) � p�
�W (2)

�Aa
�(p)

+ p+
�W (2)

�Aa
+(p)

= p�hja+(p)i + p+hja�(p)i = � 1

8�
TrTaR(�p): (3.0. 12)

This is a di�erent way of writing the third order pole in the OPE (3.0. 7). From (3.0.
11) we see that at this order (W (2)) the trace anomaly is not proportional to R, and
it therefore cannot be absorbed in a contribution to the dilaton or the e�ective value

of c (the central charge of the Virasoro algebra). The contribution in (3.0. 11) spoils
the conformal invariance of the dual theory, and further �elds should be required to
cancel it. However in that case the resulting theory would not agree with the one
obtained through a naive duality transformation. Another way to obtain the same
conclusion as in (3.0. 11) is to use heat kernel methods. Both methods agree and

we conclude that the condition for the duality transformation to respect conformal
invariance is that the generators of the duality group in the adjoint representation
should have a vanishing trace. The opposite may only happen for non-semisimple
groups, as in the example discussed in [24].

4 The Transformation of the Dilaton

It is well known [16] that the transformation (2.1. 5) is not the whole story. Indeed,

the dual model is not even conformally invariant in general, unless an appropriate
transformation of the dilaton is included, namely

~� = �� 1

2
log k2: (4.0. 1)

Perhaps the simplest way to realize that something has to change in the dilaton
coupling is to insist on the demand that the BRS charge be nilpotent. It is well-

known [33, 34] that the BRS charge can be written as:

Q =
I

dz

2�i
c(z)(T (x) +

1

2
Tgh); (4.0. 2)
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where

T (x) � �1

2
g��@x

�@x� +
1

2
@2�

Tgh � �2b@c� @bc (4.0. 3)

and Q2 = 0 (in the OPE sense) is equivalent to the consistency conditions of the

�-model �-functions equal to zero [35].

Using the fact that after performing a duality transformation

~T (x) = T (x) +
1

2k2
[(k:@x)2� ((v �w):@x)2] +

1

2
@2(~�� �) (4.0. 4)

the condition ~Q2 = 0 necessarily leads to (4.0. 1).

We can trace the need for a transformation of the dilaton to the behavior of
the measure under conformal transformations. Under a Weyl rescaling of the 2-d
world-sheet metric, g ! e�g, the integration measure over the embeddings behaves
(to �rst order in �) as:

D(e�g)x = Dgx e
d

48�
SL(�)+6�

0

R
(�r2�+(r�)2� 1

4
R+ 1

48
H2)�; (4.0. 5)

where SL(�) is the Liouville action. This means that although they are formally
the same, both measures Dx and D~x behave in a very di�erent way under Weyl

transformations unless, of course, a compensating transformation of the dilaton is
introduced to this purpose.

In the path integral approach the way to obtain the correct dilaton shift yielding
to a conformally invariant dual theory can be seen as follows. Let us work with the
approach of Ro�cek and Verlinde. In complex coordinates and on spherical world

sheets we can parametrize A = @�, �A = �@� (as we previously did in (3.0. 1)), for
some 0-forms �; � in the manifold M . The change of variables from A; �A to �; �

produces a factor in the measure:

DAD �A = D�D�(det@)(det�@) = D�D�(det�): (4.0. 6)

Substituting A; �A as functions of �; � in (2.1. 8) and integrating on �; �, the fol-
lowing determinant emerges:

(det(@g00�@))
�1: (4.0. 7)

In particular, the integration on � produces a delta-function

�(�@(g00@�+ (g0� � b0�)@x
� � @~�)); (4.0. 8)

which integrated on � yields the factor in the measure (4.0. 7).

What we �nally get in the measure is then

det�

det�g00

(4.0. 9)
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where �g00 is given as in (2.1. 7) in complex notation. This formula provides a

justi�cation for Buscher's prescription (see also [30]) for the computation of the

determinant arising from the naive gaussian integration. As we have just seen some

care is needed in order to correctly de�ne the measure of integration over the gauge

�elds. From (4.0. 9) the dilaton shift (2.1. 6) is obtained in the following way.

Writing g00 as g00 = 1 + � � e� we have:

�g00 = (1 + �)�� h��@��@�: (4.0. 10)

Substituting in the in�nitesimal variation of Schwinger's formula:

� log det� = Tr

Z 1

�
dt��e�t� (4.0. 11)

we obtain

� log det�g00 = �
Z
d2�

p
h
h�je��(�+���h�� @��@�)j�i; (4.0. 12)

where ��g00 = �
�g00 with �h�� = 
���. We can now use the heat kernel expansion

[31]:

h�je��Dj�i = 1

4��
+

1

4�
(
1

6
R(2) � V ); (4.0. 13)

where

D � �� 2ih��A�@� + (� ip
h
@�(

p
hh��A�) + h��A�A�) + V: (4.0. 14)

For D = �+ ��� h��@��@� and after dropping the divergent term 1=4�� and the
quadratic terms in � we obtain:

� log det�g00 = � 1

8�

Z
d2�

p
hR(2) log g00: (4.0. 15)

Substituting in (2.1. 7):

detg00 = exp (� 1

8�

Z
d2�

p
hR(2) log g00); (4.0. 16)

which implies ~� = �� 1
2
log g00.

5 Duality and the Cosmological Constant

A striking feature of duality is the fact that the cosmological constant, de�ned

as the asymptotic value of the scalar curvature, is not in general invariant under

the transformation. This fact was �rst noticed in [36] for the case of a WZW model

with group gSL(2; R) where a discrete subgroup was gauged. This space has negative

cosmological constant and under a given duality transformation it is mapped into an
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asymptotically at space (into a black string). This implies that the usual de�nition

of the cosmological constant from the low-energy e�ective action is not satisfactory.

Even at large distances, if duality is not broken there is a symmetry between local

(momentum) modes and non-local (winding) modes. One is lead to wonder to what

extent the cosmological constant is a string observable3. The contribution to the

cosmological constant of the massless sector might be cancelled by the tower of

massive states always present in String Theory (proposals along these lines using

the Atkin-Lehner symmetry were advanced by G. Moore [39]).

We study now the behavior of the scalar curvature under duality. If the space-

time metric in the �-model takes the form

ds2 = gijdx
idxj i; j = 0; 1; 2; :::; d� 1; (5.0. 1)

where x0 is adapted to the isometry ~k = @=@x0, (5.0. 1) can be written as

ds2 = (e0)2 + (g�� �
k�k�

k2
)dx�dx�

e0 = kdx0 +
k�

k
dx�

k2 = kik
i = g00 k� = g0�: (5.0. 2)

Buscher's transformation leads to a dual metric

d~s2 = (~e0)2 + (g�� �
k�k�

k2
)dx�dx�

~e0 =
1

k
(d~x0 + v�dx

�); (5.0. 3)

~x0 being the Lagrange multiplier and v is de�ned as in section 2 by klHlij =

�@[ivj];H = db. The dual scalar curvature following from (5.0. 3) is

~R = R� 4

k2
g��@�k@�k +

4

k
�d�1

q k +
1

k2
H0��H

0�� � k2

4
F��F

��; (5.0. 4)

where �d�1
q is the (d � 1)-dimensional Laplacian for the metric gq�� = g�� � k�k�

k2
,

and F�� = @�A� � @�A� with A� = k�=k
2. (5.0. 4) can be rewritten as

~R = R + 4� log k +
1

k2
H0��H

0�� � k2

4
F��F

��: (5.0. 5)

From (5.0. 5) we see that:

� The only way to \atten" negative curvature is by having torsion in the initial

space-time. Otherwise the dual of an asymptotically negatively curved space

time is a space of the same type.

3Similar remarks would apply to the concept of spacetime singularity in String Theory [37, 38].
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� Positive curvature seems easier to atten.

� In general the asymptotic behaviors of ~R and R are di�erent, which proves

the statement at the beginning of this section.

� In the particular case of constant toroidal compacti�cations ~R = R, in agree-

ment with the result in [40].

We can also construct the dual torsion

~H0�� = �1

2
F��

~H��� = H��� �
3

k2
H0[��k�] �

3

2
F[��v�]: (5.0. 6)

Since p
g = k2

q
~g; (5.0. 7)

and the modulus of k can be expressed in terms of the dilaton transformation prop-
erties,

~� = �� log k; (5.0. 8)

we obtain
~R+ e2(��

~�) ~H2
0�� +�~� = R + e2(

~���)H2
0�� +��; (5.0. 9)

which could be used to show the duality invariance of the string e�ective action to
leading order in �0.

The change of the cosmological constant under duality is not only peculiar to

three-dimensions [36] but rather generic. This raises the physical question of whether
in the context of String Theory the value of the cosmological constant can be inferred
from the asymptotic (long distance) behavior of the Ricci tensor. If duality is not
broken, the answer seems to be in the negative, and it makes the issue of what is the
correct meaning of the cosmological constant in String Theory yet more misterious.

6 The Physical De�nition of Distance

The existence of duality raises the question of the empirical de�nition of distance.

This is, of course, not a well de�ned question in the absence of a su�ciently de-
veloped String Field Theory, but can nevertheless be asked if we assume that the

outcome of every possible experiment is some correlation function of the correspond-
ing two dimensional CFT.

Thinking on the simplest situation of closed strings propagating in a spacetime
with one coordinate compacti�ed in a circle, it is physically obvious that if we

attempt to measure distances through the asymptotic behavior of correlation func-

tions at large separations4 [41], we would get a completely di�erent answer if we use

4At large spatial distances the propagator behaves as G(~r; ~r
0

;M ) � e�Mj~r�~r
0

j so that a suitable

de�nition of distance is given by d(~r; ~r
0

) � 1
M

log
G(~r;~r

0

;M)

G(~r;~r
0

;2M)
.
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pure momentum states (of energy Ep = n=R) or pure windings states (of energy

Ew = mR), which we would most simply reinterpret as momentum states of a torus

of radius 1=R. This would lead us in a natural way to restrict the allowed outcome

of our experiments to the interval d 2 (1;1).

There are some technical complications, stemming from the fact that the Polyakov

method only allows to compute on-shell correlators, which means that we cannot

probe directly o�-shell amplitudes.

In the absence of any clear physical distinction among di�erent classes of states,

perhaps the most natural possibility is to de�ne distances out of \unpolarized"

correlators, that is, considering the contribution of all states at the same time.

There is still a certain freedom as to how to perform the corresponding Fourier

transform in order to de�ne physical quantities in position space. The most sensible
thing seems, however, to make use of the fact that momentum and winding states
de�ne a lattice [11, 12]. To be speci�c, sticking for concreteness to the case in which
r dimensions (called ~x) are compacti�ed in circles of radius R, and denoting by ~y
the (d� r)-dimensional set of all other coordinates, the above considerations yield:

G(~x; ~x
0

; ~y�~y0; t�t0) �
X
~n;~m

e2�i(~x�~x
0

)(~n=R+~mR=2)
Z
dp0d�(~p)e

i~p(~y�~y0 )�ip0(t�t
0

)hV~n;~mV�~n;�~mif~n;~m;

(6.0. 1)
where V~n;~m represents the vertex operator corresponding to the sector with mo-
mentum numbers ~n and winding numbers ~m, and we will moreover consider pure
solitonic states, without any oscillators N = ~N = 05.

The momentum space correlator is then given essentially by the delta function
implementing the condition that the vertex operator has conformal dimension 1,
that is:

p20 � ~p2 � (
~n

R
+ ~m

R

2
)2 = N � 1 + ~N � 1 = �2: (6.0. 2)

A further restriction (~n~m = 0) comes from invariance under translations in � (L0 =
~L0).

Using the integral representation for the delta functions, the integral over p0 can

be easily performed, and the double sum packed into a Riemann theta-function:

G(~x; ~x
0

; ~y � ~y
0

; t� t
0

) =
Z
d�(~p)

Z 1

�1
d���1=2

Z 1

�1
d�e�i

(t�t
0

)2

4�
�i�(~p2�2)+i~p(~y�~y0 )�(~z;
);

(6.0. 3)
where ~z � (~x� ~x

0

)(R
2
; 1
R
) and


 � 1

�

 
��R2=2 (���)

2
(���)

2
� �

R2

!
: (6.0. 4)

5In the unpolarized case we are favouring, the selection function is trivial f~n;~m = 1, but we

have written it in the formula in order to allow for more general possibilities.
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A di�erent expression can be obtained in terms of a double sum of (d�r)-dimensional

Pauli-Jordan functions

G(d)(~x; ~x
0

; ~y � ~y
0

; t� t
0

) =
X
~m;~n

G
(d�r)
PJ (~y � ~y

0

; t� t
0

;M2(~n; ~m))e2�i(
~n
R
+~mR

2
)(~x�~x0 )�(~n~m);

(6.0. 5)

where the \mass spectrum" is given by

M2(~n; ~m) � (
~n

R
+ ~m

R

2
)2 � 2: (6.0. 6)

It is plain that any de�nition of distance based on the preceding ideas lacks any

periodicity (which shows only in the particular cases in which pure winding states
f~n;~m = �~n;~0 or pure momentum states f~n;~m = �~m;~0 are used).

It is also arguable whether these correlators are indeed the most natural ones to
consider from the physical point of view. At extreme (either very high or very low)
values of the radius, \pure" states (winding or momentum) are much lighter than
all the others, so that it is perhaps more natural to de�ne distances in terms of the
lightest states only [42].

One could always consider our suggestion as a concrete implementation of earlier
speculations that at very short distances there could be a physical regime at which
geometry ceases to be smooth, but distances can nevertheless be de�ned, and they
obey the triangular inequality [43].

7 The Canonical Approach

The procedures to implement duality explained in section 2 look unnecessarily com-
plicated. In the one due to Ro�cek and Verlinde the isometry is gauged, the (non
propagating) gauge �elds are constrained to be trivial, and the Lagrange multipliers

themselves are promoted to the rank of new coordinates once the gaussian integra-

tion over the gauge �elds is performed. One suspects that all those complicated
intermediate steps could be avoided, and that it should be possible to pass directly
from the original to the dual theory.

Some suggestions have indeed been made in the literature pointing (at least

in the simpli�ed situation where all backgrounds are constant or dependent only
on time) towards an understanding of duality as particular instances of canonical

transformations [14, 44].
In this section we are going to show that this idea works well when the back-

ground admits an abelian isometry [45], laying duality on a simpler setting than
before, namely as a (privileged) subgroup of the whole group of (non-anomalous,

that is implementable in Quantum Field Theory [46]) canonical transformations on

the phase space of the theory.
We will proof that Buscher's transformation formulae can be derived by perform-

ing a given canonical transformation on the Hamiltonian of the initial theory. We
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believe that this is a \minimal" approach in the sense that no extraneous structure

has to be introduced, and all standard results in the abelian case (and more) are

easily recovered using it. In particular it is possible to perform the duality transfor-

mation in arbitrary coordinates not only in the original manifold (which was also

possible in Ro�cek and Verlinde's formulation) but also in the dual one. The mul-

tivaluedness and periods of the dual variables can be easily worked out from the

implementation of the canonical transformation in the path integral. The gener-

alization to arbitrary genus Riemann surfaces is in this approach straightforward.

The behavior of currents not commuting with those used to implement duality can

also be clari�ed. In the case of WZW models it becomes rather simple to prove that

the full duality group is given by Aut(G)L �Aut(G)R, where L;R refer to the left-

and right-currents on the model with group G, and Aut(G) are the automorphisms
of G, both inner and outer. Due to the chiral conservation of the currents in this
case, the canonical transformation leads to a local expression for the dual currents.
In the case where the currents are not chirally conserved, then those currents asso-
ciated to symmetries not commuting with the one used to perform duality become
generically non-local in the dual theory and this is why they are not manifest in

the dual Lagrangian. All the generators of the full duality group O(d; d;Z) can be
described in terms of canonical transformations. This gives the impression that the
duality group should be understood in terms of global symplectic di�emorphisms.
It would be useful to formulate it in the context of some analogue of the group of
disconnected di�eomorphisms, but for the time being such a construction is lacking.

Concerning non-abelian duality, it seems to fall beyond the scope of the Hamil-
tonian point of view. There is one example [47] in which the non-abelian dual has
been constructed out of a canonical transformation but it is still early to say whether
the general case can be treated similarly.

7.1 The Abelian Case

We start with a bosonic sigma model written in arbitrary coordinates on a manifold
M with Lagrangian

L =
1

2
(gab + bab)(�)@+�

a@��
b (7.1. 1)

where x� = (� � �)=2, a; b = 1; : : : ; d = dimM . The corresponding Hamiltonian is

H =
1

2
(gab(pa � bac�

0 c)(pb � bbd�
0 d) + gab�

0 a�
0 b) (7.1. 2)

where �
0 a � d�a=d�. We assume moreover that there is a Killing vector �eld ka,

Lkgab = 0 and ikH = �dv for some one-form v, where (ikH)ab � kcHcab and H = db

locally. This guarantees the existence of a particular system of coordinates, \adapted

coordinates", which we denote by xi � (�; x�), such that ~k = @=@�. We denote the

jacobian matrix by eia � @xi=@�a.
This de�nes a point transformation in the original Lagrangian (7.1. 1) which

acts on the Hamiltonian as a canonical transformation with generating function
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� = xi(�)pi, and yields:

pa = eiapi

xi = xi(�): (7.1. 3)

Once in adapted coordinates we can write the sigma model Lagrangian as

L =
1

2
G( _�2 � �

0 2) + ( _� + �
0

)J� + ( _� � �
0

)J+ + V (7.1. 4)

where

G = g00 = k2 V =
1

2
(g�� + b��)@+x

�@�x
�

J� =
1

2
(g0� + b0�)@�x

� J+ =
1

2
(g0� � b0�)@+x

�: (7.1. 5)

In �nding the dual with a canonical transformation we can use the Routh function
with respect to �, i.e. we only apply the Legendre transformation to (�; _�). The

canonical momentum is given by

p� = G _� + (J+ + J�) (7.1. 6)

and the Hamiltonian

H = p� _� � L =
1

2
G�1p2� �G�1(J+ + J�)p� +

1

2
G�

0 2 +

+
1

2
G�1(J+ + J�)

2 + �
0

(J+ � J�)� V: (7.1. 7)

The Hamilton equations are:

_� =
�H

�p�
= G�1(p� � J+ � J�)

_p� = ��H
��

= (G�
0

+ J+ � J�)
0

(7.1. 8)

and the current components:

J+ =
1

2
G@+� + J+ =

1

2
p� +

1

2
G�

0

+
J+ � J�

2

J� =
1

2
G@�� + J� =

1

2
p� �

1

2
G�

0 � J+ � J�

2
: (7.1. 9)

It can easily be seing that the current conservation @�J+ + @+J� = 0 is equivalent

to the second Hamilton equation _p� = ��H=��.
The generator of the canonical transformation we choose is:

F =
1

2

Z
D;@D=S1

d~� ^ d� = 1

2

I
S1
(�

0 ~� � �~�
0

)d� (7.1. 10)
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that is,

p� =
�F

��
= �~�

0

p~� = ��F
�~�

= ��0 : (7.1. 11)

This generating functional does not receive any quantum corrections (as explained

in [46]) since it is linear in � and ~�. If � was not an adapted coordinate to a

continuous isometry, the canonical transformation would generically lead to a non-

local form of the dual Hamiltonian. Since the Lagrangian and Hamiltonian in our

case only depend on the time- and space-derivatives of �, there are no problems with
non-locality. The transformation (7.1. 11) in (7.1. 7) gives:

~H =
1

2
G�1~�

0 2 +G�1(J+ + J�)~�
0

+

1

2
Gp2~� � (J+ � J�)p~� +

1

2
G�1(J+ + J�)

2 � V: (7.1. 12)

Since:
_~� =

� ~H

�p~�
= Gp~� � (J+ � J�); (7.1. 13)

we can perform the inverse Legendre transform:

~L =
1

2
G�1(

_~�
2

� ~�
0 2) +G�1J+(

_~� � ~�
0

)

�G�1J�( _~� + ~�
0

) + V � 2G�1J+J�: (7.1. 14)

From this expression we can read the dual metric and torsion and check that they
are given by Buscher's formulae6:

~g00 = 1=g00; ~g0� = �b0�=g00; ~g�� = g�� �
g0�g0� � b0�b0�

g00

~b0� = �g0�
g00

; ~b�� = b�� �
g0�b0� � g0�b0�

g00
(7.1. 15)

For the dual theory to be conformal invariant the dilaton must transform as �
0

=

� � 1
2
log g00 [16] [10]. We have not been able to �nd any argument justifying this

transformation within the canonical transformations approach.
The dual manifold ~M is automatically expressed in coordinates adapted to the

dual Killing vector
~~k = @=@~�. We can now perform another point transformation,

with the same jacobian as (7.1. 3) to express the dual manifold in coordinates which
are as close as possible to the original ones.

6The minus signs in ~g0� and ~b0� can be absorbed in a rede�nition ~� !�~�.
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The transformations we perform are then: First a point transformation �a !
f�; x�g, to go to adapted coordinates in the original manifold. Then a canonical

transformation f�; x�g ! f~�; x�g, which is the true duality transformation. And

�nally another point transformation f~�; x�g ! ~�a, with the same jacobian as the

�rst point transformation, to express the dual manifold in general coordinates.

It turns out that the composition of these three transformations can be expressed

in geometrical terms using only the Killing vector ka, !a � e0a and the corresponding

dual quantities7.

It is then quite easy to check that the total canonical transformation to be made

in (7.1. 1) is just

kapa ! ~!a ~�
0 a

!a�
0 a ! ~ka~pa; (7.1. 16)

whose generating function is8

F =
1

2

Z
D
~! ^ ! =

1

2

Z
D
~!ad~�

a ^ !bd�b: (7.1. 17)

One then easily performs the transformations in such a way that the dual metric
and torsion can be expressed in geometrical terms as

~gab = gab �
1

k2
(kakb � (va � !a)(vb � !b)) (7.1. 18)

~gab = gab +
1

(1 + k:v)2
[(k2 + (v � !)2)kakb � 2(1 + k:v)(k(a(v � !)b)] (7.1. 19)

and
~bab = bab �

2

k2
k[a(v � !)b]; (7.1. 20)

where

k(a(v � !)b) =
1

2
(ka(vb � !b) + kb(va � !a))

k[a(v � !)b] =
1

2
(ka(vb � !b)� kb(va � !a)): (7.1. 21)

These formulae are the covariant generalization of (7.1. 15). The canonical approach
has been very useful in order to obtain the dual manifold in an arbitrary coordinate

system. With the usual approaches it is expressed in adapted coordinates to the dual

7Note that we must raise and lower indices with the dual metric, i.e. ~eia = ~gij~e
j
a; ~e

ia = ~gab~eib,

which implies ~!a = !a, but ~!a = ka(k2 + v2) + ~e a � v (where ~e a � ea�),
~ka = ka but ~ka =

(!a � (~ea � v))=k
2. We have moreover ~! 2 = k2 + v2 + g��v�!� and ~k2 = 1=k2.

8The one-form ! � !ad�
a is dual to the Killing vector ~k: !(~k) = 1, !(~e�) = 0, but it is of

course di�erent from k � ka=k
2 d�a (the former is an exact form, whereas the latter does not even

in general satisfy Frobenius condition k ^ dk = 0).
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isometry. This happens because the dual variables appear as Lagrange multipliers

and after an integration by parts only the derivatives of them emerge, being then

adapted coordinates automatically.

Some other useful information can be extracted easier in the approach of the

canonical transformation.

From the generating functional (7.1. 10) we can learn about the multivaluedness

and periods of the dual variables [19]. Since � is periodic and in the path integral

the canonical transformation is implemented by [46]:

 k[~�(�)] = N(k)
Z
D�(�)eiF [~�;�(�)]�k[�(�)] (7.1. 22)

where N(k) is a normalization factor, �k(� + a) = �k(�) implies for ~�: ~�(� + 2�)�
~�(�) = 4�=a, which means that ~� must live in the dual lattice of �. Note that
(7.1. 22) su�ces to construct the dual Hamiltonian. It is a simple exercise to

check that acting with (7.1. 12) on the left-hand side of (7.1. 22) and pushing the
dual Hamiltonian through the integral we obtain the original Hamiltonian acting on
�k[�(�)]:

~H k[~�(�)] = N(k)
Z
D�(�)eiF [~�;�(�)]H�k[�(�)] (7.1. 23)

This makes the duality transformation very simple conceptually, and it also im-
plies how it can be applied to arbitrary genus Riemann surfaces, because the state
�k[�(�)] could be the state obtained by integrating the original theory on an arbi-
trary Riemann surface with boundary. It is also clear that the arguments generalize
straightforwardly when we have several commuting isometries.

One can easily see that under the canonical transformation the Hamilton equa-
tions are interchanged:

_p� = ��H
��

= (G�
0

+ J+ � J�)
0 ! _~� = Gp~� � J+ + J�

_� =
�H

�p�
= G�1(p� � J+ � J�)! _p~� = (G�1(~�

0

+ J+ + J�))
0

; (7.1. 24)

and that the canonical transformed currents conservation law is in this case equiv-

alent to the �rst Hamilton equation.
In the chiral case J� = 0 (i.e. g0i = �b0i) and G is a constant, therefore we can

normalize � to set G = 1 and :

L =
1

2
( _�2 � �

0 2) + ( _� � �
0

)J+ + V: (7.1. 25)

The Hamiltonian is

H =
1

2
p2� � J+p� +

1

2
(J+ + �

0

)2 � V: (7.1. 26)

The action is invariant under �� = �(x+), a U(1)L Kac-Moody symmetry. The U(1)

Kac-Moody algebra has the automorphism J+ ! �J+. This is precisely the e�ect
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of the canonical transformation. The equation of motion or current conservation is:

@�(@+� + J+) = 0: (7.1. 27)

J+ = @+� + J+ = p� + �
0

transforms under the canonical transformation in J c:t:
+ =

�~�
0 � p~� = �J+.

One can also follow the transformation to the dual model of other continuous

symmetries. The simplest case is as usual the WZW-model which is the basic model

with chiral currents. Consider for simplicity the level-k SU(2)-WZW model with

action

S[g] =
�k
2�

Z
d2�Tr(g�1@+gg

�1@�g) +
k

12�

Z
Tr(g�1dg)3: (7.1. 28)

The left- and right-chiral currents are

J+ =
k

2�
@+gg

�1 J� = � k

2�
g�1@�g: (7.1. 29)

Parametrizing g in terms of Euler angles

g = ei��3=2ei��2=2ei�3=2; (7.1. 30)

J+ are given by:

J 1
+ =

k

2�
(� cos� sin �@+ + sin�@+�)

J 2
+ =

k

2�
(sin� sin�@+ + cos�@+�)

J 3
+ =

k

2�
(@+� + cos�@+); (7.1. 31)

and similarly for the right currents. If we perform duality with respect to � !
� + constant, J 3

+ ! �J 3
+;J 3

� ! J 3
� since J 3

+ is the current component adapted
to the isometry. For these currents it is easy to �nd the action of the canonical

transformation because only the derivatives of � appear. For J 1;2
+ there is an explicit

dependence on � and it seems that the transform of these currents is very non-

local. However due to its chiral nature, one can show that there are similar chirally
conserved currents in the dual model. To do this we �rst combine the currents in

terms of root generators:

J (+)
+ = J 1

+ + iJ 2
+ = e�i�(i@+� � sin �@+) = e�i�j

(+)
+

J (�)
+ = J 1

+ � iJ 2
+ = �ei�(i@+� + sin�@+) = ei�j

(�)
+ : (7.1. 32)

From chiral current conservation @�J (�)
+ = 0 we obtain

@�j
(�)
+ = �i@��j(�)+ : (7.1. 33)
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In these equations only _�;�0 appear, and after the canonical transformation we can

reconstruct the dual non-abelian currents (in the previous equations the canonical

transformation amounts to the replacement �! ~�) which take the same form as the

original ones except that with respect to the transformed J 3
+ the rôles of positive and

negative roots get exchanged. One also veri�es that J a
� are una�ected. This implies

therefore that the e�ect of duality with respect to shifts of � is an automorphism

of the current algebra amounting to performing a Weyl transformation on the left

currents only while the right ones remain unmodi�ed. This result although known

[21] is much easier to derive in the Hamiltonian formalism than in the Lagrangian

formalism where one must introduce external sources which carry some ambiguities.

The construction for SU(2) can be straightforwardly extended to other groups. This

implies that for WZW-models the full duality group is Aut(G)L �Aut(G)R, where
Aut(G) is the group of automorphisms of the group G, including Weyl transforma-
tions and outer automorphisms. For instance if we take SU(N), the transformation
J+ ! �JT

+ , i.e. charge conjugation, follows from a canonical transformation of the
type discussed. It su�ces to take as generating functions for the canonical trans-
formation the sum of the generating functions for each generator in the Cartan

subalgebra. It is important to remark that the chiral conservation of the currents
is crucial to guarantee the locality of the dual non-abelian currents. If the con-
served current with respect to which we dualize is not chirally conserved locality is
not obtained. The simplest example to verify this is the principal chiral model for
SU(2), which although is not a CFT serves for illustrative purposes. The equations

of motion for this model imply the conservation laws:

@�J a
+ + @+J a

� = 0 (7.1. 34)

where

J� =
k

2�
@�gg

�1: (7.1. 35)

If we perform duality with respect to the invariance under � translations we know
how J 3

� transform, since they are the currents associated to the isometry. With the

canonical transformation is possible to see as well which are the other dual conserved

currents. Since the dual model is only U(1)-invariant one expects the rest of the
currents to become non-local [47]. In terms of the root generators introduced in

(7.1. 32) the conservation laws

@�J (�)
+ + @+J (�)

� = 0 (7.1. 36)

are expressed:
@�j

(�)
+ + @+j

(�)
� � i(@��j

(�)
+ + @+�j

(�)
� ) = 0: (7.1. 37)

Performing the canonical transformation we obtain that the dual conserved currents
are given by:

~J (+)
� = exp (i

Z
d�( _~� + cos�

0

))(i@�� � sin�@�)

~J (�)
� = � exp (�i

Z
d�( _~�+ cos �

0

))(i@�� + sin�@�) (7.1. 38)
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which cannot be expressed in a local form.

7.2 The Non-Abelian Case

In view of the simplicity of the canonical approach to abelian duality, one could

be tempted to think that the corresponding generalization to the non-abelian case

would not be very di�cult. Unfortunately this is not the case, the reason being

that there are no adapted coordinates to a set of non-commuting isometries, and

therefore one is led to a non-local form of the Hamiltonian. In [25] we could carry

out the non-abelian duality transformation due to the existence of chiral currents

and as a consequence of the Polyakov-Wiegmann property [50] satis�ed by WZW-

actions. Although in the intermediate steps it was necessary to introduce non-local
variables, the �nal result led to a local action in the new variables as a result of the
special properties of WZW-models mentioned. The computations could be carried

out exactly until the end to evaluate the form of the e�ective action in terms of
the auxiliary variables needed in the construction of non-abelian duals. We have so
far been unable to express these functional integral manipulations in a Hamiltonian
setting as in the previous section.

To �nish this section we present an example from the literature in which a

canonical transformation produces a given non-abelian dual model. This example
was presented in [47]. They consider the principal chiral model with group SU(2)
and construct a local canonical transformation mapping the model in a theory which
turns out to be the non-abelian dual with respect to the left action of the whole
group. This example was studied in the context of non-abelian duality in [48, 19].

The initial theory is the principal chiral model de�ned by the Lagrangian:

L = Tr(@�g@
�g�1); (7.2. 1)

where g 2 SU(2). Parametrizing g = �0+i�j�j , with �0; �j subject to the constraint
(�0)2 + �2 = 1 and �2 � P

j(�
j)2, (7.2. 1) becomes:

L =
1

2
(�ij +

�i�j

1 � �2
)@��

i@��j: (7.2. 2)

The generating functional:

F [ ; �] =
Z +1

�1
dx i(

q
1 � �2

@

@x
�i � �i

@

@x

q
1� �2 + �ijk�j

@

@x
�k) (7.2. 3)

produces the canonical transformation:

pi =
�F [ ; �]

� i
= (

q
1 � �2�ij +

�i�jp
1 � �2

� �ijk�k)
@

@x
�j

~pi = ��F [ ; �]
��i

= (
q
1� �2�ij +

�i�jp
1 � �2

+ �ijk�k)
@

@x
 j +

(
2p

1 � �2
(�i j �  i�j)� 2�ijk k)

@

@x
�j; (7.2. 4)
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which transforms (7.2. 2) into:

~L =
1

1 + 4 2
[
1

2
(�ij + 4 i j)@� 

i@� j � ����ijk i@� 
j@� 

k]: (7.2. 5)

This is the non-abelian dual of (7.2. 1) with respect to the left action of the whole

group [48, 19]. The generating functional (7.2. 3) can be written as:

F [ ; �] =
Z +1

�1
dx iJ1

i [�] (7.2. 6)

where J1
i [�] are the spatial components of the conserved currents of the initial theory.

(7.2. 6) is linear in the dual variables but not in the initial ones, so it will receive
quantum corrections when implemented in the path integral. From (7.2. 4) it is not
obvious that the dual model will not depend on the original variables �i. However
this is so. Whether this way of constructing the generating functional of non-abelian

duality is general or only works in this particular example is still an open question.

8 Conclusions and Open Problems

In these lectures a general exposition of abelian and non-abelian duality has been

given. The usual approaches in the literature to both kinds of dualities have been
reviewed. The goals of these approaches have been also exhibited, and some of them
derived explicitly, as the formulation of abelian duality in an arbitrary coordinate
system. The canonical transformations approach to abelian duality presented in [45]
has been studied in detail, focussing especially in the problems that could not be

solved in the usual approaches of Buscher or Ro�cek and Verlinde or were di�cult
to study. The non-abelian case has been also considered, although the general con-
struction as a canonical transformation is not yet understood. As was mentioned in
the lectures the example given by Curtright and Zachos in [47] opens the possibil-

ity for non-abelian duality to be formulated in this way, in spite of the di�culties

already mentioned concerning the impossibility of �nding an adapted coordinate
system to the whole set on non-commuting isometries.

The relation between duality and external automorphisms [51, 52, 53] is also
much in need of further clari�cation.
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