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1. Introduction

The experimental precision of the luminosity measurement has increased dra-
matically from the times of PETRA (2%) and early LEP (0.5%) down to the present
value close to 0.1%. It is measured with the help of the low-angle Bhabha (LABH)
process e+e� ! e+e�. In the LEP/SLC accelerators the LABH process is measured
in the angular range below 100 mrad. The luminosity determined in this way pro-
vides absolute normalization of the cross section of all other processes in the e+e�

scattering. The LABH cross section is therefore not of physical interest itself, but,

on the contrary, is regarded as completely known from theory, i.e. from Quantum
Electrodynamics (QED). On the other hand, although in principle the LABH cross
section is calculable in perturbative QED with arbitrary precision (except a small
hadronic correction), it is subject to theoretical uncertainties due to a truncation
of the perturbative expansion and also due to a limitation of the calculational tools
(computer programs). All LEP/SLC experiments use theoretical calculations for
LABH, based on works published by some of the actual authors three years ago1.
This calculation has an overall theoretical/technical precision precision of 0.25%
and is embodied in the form of the Monte Carlo (MC) event generator2 BHLUMI

version 2.0. This error was acceptable in 1991 but now, with an improvement of
the experimental precision by a factor of two more it dominates the present overall
luminosity error. It is therefore quite urgent to reduce the theoretical error of the
QED calculation down to a precision level of 0.1% at least.

The backbone of the 0.25% theoretical precision estimate1 is due to missing
second-orderO(�2L2) (0.15%) and O(�2L) (0.09%) contributions in the matrix ele-
ment encoded in the Monte Carlo calculations. Here L = ln(jtj=m2

e) is the so-called
big-log in the leading-logarithmic (LL) approximation where t is t-channel transfer

(of order 1 GeV); see also Fig. 1 for a pictorial de�nition of the LL approximation.
The �rst of the above contributions (0.15%) includes also the technical precision

of the Monte Carlo programs due to programming bugs, rounding errors, quality
of random numbers, etc. It is illustrated1 in Fig. 2 as a di�erence of three Monte
Carlo sub-generators of BHLUMI 2.0: (i) multiphoton O(�)exp BHLUMI, (ii) O(�)
OLDBIS (without exponentiation) and, (iii) O(�3)LL leading logarithmic (collinear
photon emission) event subgenerator LUMLOG. The di�erence of the three MC
subgenerators provides a solid estimate of the technical precision. In addition, sub-
generators (ii) and (iii) have separate estimates of their technical precision at the

level below 0:05% coming, in the case of (ii), from an independent comparison3 with
a semi-analytical calculation, and, in the case of (iii), with another Monte Carlo4.
The comparison in Fig. 2 provides, therefore, an estimate of the technical precision
mainly for the multiphoton BHLUMI subgenerator, which did not have any other
independent analytical or Monte Carlo cross-checky.

As for the physical precision, which is mainly due to a truncation of perturba-

yAt the time it seemed unthinkable to integrate analytically the total cross section of the O(�)exp
BHLUMI.
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Figure 1: QED perturbative leading and subleading corrections. Rows represent corrections in
consecutive perturbative orders { the �rst row is the Born contribution. The �rst column represents
leading logarithmic (LL) approximation and the second column depicts the next-to-leading (NLL)
approximation. In the �gure, terms selected for (a) second and (b) third-order pragmatic expansion
are limited with help of an additional line.
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Figure 2: We plot the di�erence1 of �B2 of BHLUMI 2.0 and �O+L from OLDBIS and LUM-

LOG. It represents the missing O(�2L2) bremsstrahlung correction in BHLUMI version 2.0 event

generator2 together with its technical precision. The di�erence of the cross sections (divided by
Born) is calculated for symmetric and asymmetric calorimetric trigger �NW as a function of the
energy cut zmin. Dotted lines mark the 0.15% limit. Vacuum polarization, Z and s channel  are
switched o�.

2



tive calculation1, the dominant (beyond �rst-order) correction of O(�2L2) was under

good control because it was calculated using the O(�3)LL subgenerator LUMLOG4.
The hybrid Monte Carlo calculation OLDBIS + LUMLOG includes the entire
O(�2L2) correction for the integrated cross section, but due to zero-angle collinear
emission of photons, LUMLOG is not very suitable for experimental analysis where
various �ne-grain inclusive/muliphoton distributions are checked in the process of
reducing the systematic experimental error. In view of the above, experimentalists
have always preferred to use the muliphoton MC generator BHLUMI 2.0, which
includes only the part of O(�2L2) generated by a Yennie-Frautschi-Suura exponen-
tiation (providing excellent realistic di�erential distributions), and then to employ

the OLDBIS+LUMLOG hybrid solution in order to estimate the missing O(�2L2)
correction. For realistic cuts this correction has turned out to be small, typically
below 0:2%.

The obvious development path of the above calculation scheme was the following:
(A) to implement the O(�2L2) missing part of the matrix element in the muliphoton
exponentiated subgenerator of BHLUMI, (B) to provide a new independent analyt-
ical cross-check of the new matrix element, (C) to improve the estimate of the next
dominant bremsstrahlung-type corrections, i.e. of O(�2L) and O(�3L3) corrections
and, (D) to estimate again other higher-order corrections like light pairs, vacuum

polarization, remnant of s-channel Z-exchange etc.
The outline of our talk is the following. In Section 2 we discuss step (A) and

in Section 3 step (B). Step (C) will be mainly discussed in Section 4, but some
preliminaries will be given in Section 3. Point (D), and to some extent also point
(C), were already elaborated5 in the literature.

Before we come to more details let us explain/de�ne several useful concepts,
approximations and terminology typical for QED calculations of the LABH cross
section, which will be used or referred to in the course of this presentation.

Up-down interference: At angles below 100 mrad all \photonic" corrections in
which the additional photon line connects the upper electron line with the lower
positron line (so called up-down interference) are strongly suppressed. This phe-
nomenon was conjectured and proved numerically, using an O(�) calculation3. This
phenomenon we call \suppression of the up-down interference". In all presented cal-
culations we exploit this approximation.

The Monte Carlo (MC) technique which is used heavily in all presented work
is nothing more and nothing less but the technique of the exact (up to statistical
error) integration over the multiparticle phase-space.

Yennie-Frautschi-Suura (YFS) exponentiation is, in one word, a technique of sum-
ming exactly all infrared singularities to in�nite order, which provides us with ex-
clusive multiphoton di�erential distributions. The multiphoton distributions (with
virtual corrections as well) are derived from Feynman diagrams and are calcu-
lated/improved orded by order.

Trigger is our short-hand name for the set of kinematical cuts which de�ne
accepted events for the LABH total cross section. Real experimental triggers of
LEP/SLC detectors are calorimetric, i.e. all photons and electrons which satisfy the
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Figure 3: Perturbative content of the matrix element of BHLUMI version 4.0 in the pictorial
representation. The correct/complete contributions of O(�2)prag are above dotted line. The right
hand side picture illustrates perturbative content of the di�erence of the two types A and B of the
O(�2)prag matrix elements.

angular acceptance condition �min < � < �max are registered without making any
distinction among them, and the minimum total energy required is x = E=Ebeam >
1�Xmax in the forward and backward hemisphere simultaneously. In practice, quite
often �min;max in the forward and backward direction are taken di�erent (asymmetric
trigger). Also, in the real experiment the association of photons and electrons into
a single cluster with energy E and average angle � is a little bit involved, see

contribution of B. Pietrzyk6 for more details. In the calculations we often use, as
an example, the algorithm which describes the trigger of the new ALEPH SICAL
detector.

2. New O(�2)prag exponentiated BHLUMI.4 Monte Carlo

In the following we shall characterize the new O(�2)prag exponentiated matrix
element implemented in the new version of Monte Carlo BHLUMI.4.0. We cannot
a�ord to include here the full de�nition of the matrix element used in the program
because of lack of space (it requires more than �ve pages). Nevertheless we shall

try to characterize all its essential properties.
In the O(�2), in order to reach 0.1% physical precision level, it is probably

enough to add in the Monte Carlo matrix element, beyond the regular O(�), the
dominant second-order contribution of O(�2L2) (if possible, with exponentiation).
This type of calculation we denote as O(�2)prag and it is depicted in Fig. 1a and
in Fig. 3. In fact, in BHLUMI.4 we include even two examples of the O(�2)prag
matrix element, marked with A and B, which di�er by O(�2L) and O(�2) terms.
This is also illustrated in Fig. 3. Why are we free to pick two choices and why is it

4



OLDBIS LUMLOG OLDBIS+LUMLOG

1

�L �
L

1

�L

�
2
L
2

�
3
L
3

=

1

�L �

�
2
L
2

�
3
L
3

Figure 4: Perturbative content of the matrix element of the hybrid Monte Carlo calculation
OLDBIS+LUMLOG.

pro�table to do it? While O(�) distributions, come directly from the Feynman dia-
grams (no freedom!) the additionalO(�2L2) contributions we derive more simply by
convoluting twice the Altarelli-Parisi kernel. The same kind of LL ansatz was used
successfully in the YFS2 and YFS3 Monte Carlo programs 7;8;9. For the O(�2L2)
contribution, the soft limit is improved by handzto the well known behaviour and

the �nite transverse momenta of photons are introduced in the distributions using
the soft limit as a model to follow. Obviously, the above procedure has some free-
dom in the construction of the matrix element. How big is the freedom? Let us
�rst note that (even without exponentiation!) the above procedure creates some
non-zero contributions of O(�2L1) and O(�2L0). The two types of O(�2)prag matrix
elements may have di�erent such contributions. The important advantage of our
O(�2L2) ansatz is that it is simple (also quick in the computer evaluation) and its LL
content, which is of primary interest, is explicit and therefore very easy to control.
As we have already mentioned, the LL ansatz for the O(�2L2) comes before YFS

exponentiation. Exponentiation introduces new non-zero contributions of O(�3)
and higher-orders. Among them, the O(�3L3) contribution will be numerically
dominant. Since YFS exponentiation is well founded physically, these higher-order
terms improve perturbative convergence of the calculation substantially. (This was
proved explicitly for the O(�3L3) terms10.)

Note that option B for matrix element, degraded to O(�)prag exponentiated, is
identical to the matrix element in the published BHLUMI 2 program. The BH-
LUMI.4 is also backward compatible with BHLUMI.2 for OLDBIS and LUMLOG

subgenerators. They are still included. In fact the LUMLOG generator with LL
matrix element (exponentiated and unexponentiated) up to third-order is extended
a little bit, because emission of photons is now included not only in the initial state
but also in the �nal state. It is done in the zero transverse momentum approxi-
mation as previously. For completeness we depict the perturbative content of the

zIn the LL approximation correct soft limit is in the general case not reproduced.
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LUMLOG and OLDBIS event generators in Fig. 4.

3. Technical precision

Generally, technical precision is obtained by doing two technically very di�erent
calculations and taking the di�erence. The most powerful method is to take di�er-
ence between the Monte Carlo and analytical calculation4. The serious disadvantage
of this method is that it can be applied only for certain rather simple kinds of trig-
ger. In the case of BHLUMI.4 even the existence of one such trigger for which the
above method can be applied is a highly non-trivial question! The method in which
two di�erent Monte Carlo calculations are compared can be applied for a wider

family of cuts. Its very serious disadvantage is that if one encounters (it is always
the case!) an intolerably big di�erence of the two MC results then it is very di�cult,
often impossible, to �nd the source of the di�erence (debug the corresponding MC
programs).

We are in the process of determining the technical precision of BHLUMI.4 using
an elaborate multistep method. It consists of the following steps:

1. Invent \academic trigger" for which analytical integration of the BHLUMI
cross section is feasible down to a precision of 3 � 10�4. This precision level
requires a calculation of O(�3)prag.

2. Perform analytical calculation and debug the BHLUMI.4 Monte Carlo pro-
gram and the corresponding semi-analytical calculation/program until j�MC�
�analytj < 3 � 10�4 is obtained for the \academic trigger".

3. Do the same for the easier cases of OLDBIS and LUMLOG.

4. Take the di�erence BHLUMI � (OLDBIS + LUMLOG) and explore it ana-
lytically and numerically in every �ne detail down to 3� 10�4 precision.

5. Do an \adiabatic transition" from academic trigger to realistic trigger using
series of intermediate triggers looking carefully at the evolution of the dif-
ference BHLUMI � (OLDBIS + LUMLOG). It should be understood to a
precision comparable to 3� 10�4 (for instance better than 5 � 10�4).

In the above scenario we take advantage of the extremely important fact that the
technical precision for (OLDBIS + LUMLOG) is practically zero for any kind of
trigger!

In the following we shall show results concerning step 1 in the method outlined
above, i.e. we shall: (a) de�ne a set of \academic" cuts used for the semi-analytical
integration of the above matrix element over muliphoton phase-space, (b) briey

characterize methods used in the analytical integration and the class of corrections
kept in the analytical phase-space integration (it is not the same as in matrix ele-
ment!), (c) show the numerical agreement of the Monte Carlo (with the new matrix
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element) with the semi-analytical formula down to the 0:03% level (technical preci-

sion).
Ad (a): The most important criterion used to de�ne our set of kinematical

cuts for semi-analytical integration of the O(�2)prag new matrix element over the
multiphoton phase-space (so called academic trigger) is that, actually, this semi-
analytical integration is really feasible. We de�ne the cuts of our \academic trigger"
as follows: jtminj < jtj < jtmaxj and V < Vmax, where t is the four-momentum
transfer squared and the variable V represents some kind of measure of the total
energy carried away by all emitted real photons. We require that 0 < V < 1
represents the condition of completeness of the phase-space and V < � represents

the condition that all photons are soft. The V -variable we actually de�ne, in terms
of the four-momenta, as follows:

V = 1 �
2(p1p2) jtj

(2(p1p2) + 2(p1Kp))2
2(q1q2) jtj

(2(q1q2) + 2(q1Kq))2
; (1)

where pi = 1; 2 are the four-momenta of the incoming and outgoing electron, qi = 1; 2
are the four-momenta of the incoming and outgoing positron and, Kp and Kq are
the total four-momenta of all photons emitted from electron and positron lines,
respectively.

Ad (b): With the above de�nition of the phase-space window, it is rather

straightforward to integrate O(�2)prag matrix element, keeping all terms within the
O(�2)prag approximation. This we found insu�cient for the purpose of establish-
ing a technical precision at the 0.03% level because some terms beyond O(�2)prag
(especially for partial incomplete results!) are of that order. We have therefore
decided to follow in the integration the O(�3)prag approximation; see also Fig. 1b.
It means that terms of O(�2L) due to our LL ansatz and terms of O(�3L3) due
to exponentiation are integrated analytically over the phase-space (with academic
trigger) exactly!

The resulting integrated cross section is not very complicated and it reads as
follows:

�
(2)
B (tmin; tmax; Vmax) =

Z tmax

tmin

dt

Z Vmax

0
dV �

(2)
tot(t; V )

�
(2)
tot(t; V ) = b0 F (2) e2�Y FS() 2V 2�1

�
1 +  + 2=2

�

+b0 F (2) e2�Y FS() V 2
�
(�2 + V ) +

�

�
ln(1� V )(�4 + 4V � 2V �1)

+2(�2) + 2 ln(1 � V )(3� 3V=2 � 2V �1)

+3(�7V=4) + 3 ln(1 � V )[5=4 + V=2 � 2V �1]

+3 ln(1� V )2[�5=8 + 5V=16 + (1=4)V �1] + 3Li2(V )(2� V )

+
�

�
[1=4 + 11V

�(13=4)(2 � V )�1 + (1=2)(2 � V )�2 � 6(2 � V )�3 + 2(1 � V )1=2]
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+
�

�
ln(1 � V )[39=4 � 19V=4 � 2V �1

�2(2 � V )�1 + (2 � V )�2 � (1=2)(2 � V )�3 � (3=2)(1 � V )1=2]

+
�

�
ln(1 � V=2)[�9=2 + 3V=4 � 4(2 � V )�1 + 2(2� V )�2 � 4(2 � V )�3]

+
�

�
ln(1 � V )2[19=8 � 41V=16 + V �1] + 

�

�
ln(1� V ) ln(2� V )(�1=2 + V=4)

+
�

�
ln(1 � V ) ln(V )(12 � 10V ) + 

�

�
ln(1� V ) ln(V=2)(�6 + 5V )

+
�

�
ln(1 � V ) ln[1� (1 � V )1=2](�6 + 5V )

+
�

�
ln(2 � V ) ln(1� V=2)(3=2 � 11V=4)

+
�

�
ln(1 � V=2)2(3=4 � 5V=8) + 

�

�
Li2(1=2)(�3=2 + 11V=4)

+
�

�
Li2[(1� V )=(2 � V )](1=2 � V=4) + 

�

�
Li2(1=(2 � V ))(1 � 5V=2)

+
�

�
Li2(�V=(2(1 � V )))(6� 5V ) + 

�

�
Li2[1� (1 � V )�1=2](6� 5V )

���(V )=(1 � V )

�
(2)

where  = 2(�=�)(L � 1), b0 = �(�), �(x) � (1 + (1 � x)2)=2, � = jtj=s, F (x) �
exp(�Cx)=�(1+x), and �Y FS() = =4�(�=�)(1=2+�2=6). Note that theO(�2)prag
part of the formula is very compact and that its LL content is identical to the non-
singlet second-order structure function of the photon in the electron x. The terms
of O(�3L3) and O(�2L) which represent most of the formula, �nally turn out to be
numerically small, in fact below 0.04%.
Ad (c): In Fig. 5a we show a comparison of eq. (2) with the Monte Carlo BH-
LUMI.4. Although the integration over jtj and V is feasible analytically we do it
numerically with the help of the standard Gauss technique, because the integrand

is a very smooth function, suitable for this method (peaks are removed either by
change of variables or subtraction). As we see, the Monte Carlo and semi-analytical
result di�er up to 0.03%. We conclude that for the above \academic trigger" we
have obtained 0.03% technical precision, i.e. we have attained the goals of steps 1
and 2.

In the multistep procedure outlined above we have gone through steps 1 to 4 and
we have the �rst numerical results concerning step 5. In step 3 we have also obtained

the simple semi-analytical results �
(1)
O and �

(3)
L , which agree with the corresponding

Monte Carlo OLDBIS and LUMLOG for \academic trigger" to better than 0.02%!
The next numerical result shown in Fig. 5b is relevant for step 4 and it demonstrates
that this step is also completed. As we see, the di�erence BHLUMI.4 � (OLDBIS
+ LUMLOG) is under control down to 0.05% because Monet Carlo and analytical
results agree at this precision level. In the next Section we include more discussion

xThis is due to the fact the variable V in the LL has a very simple meaning.
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Figure 5: In (a) we show comparison of BHLUMI version 4.0 (unpublished) with semi-analytical
formula for \academic" trigger de�ned with jtminj < jtj < jtmaxj and V < Vmax. Dotted
lines mark the 0.15% limit. In (a) we demonstrate the some kind of comparison, analytical versus
Monte Carlo, for the di�erence of the of the cross section (divided by Born) from three MC calcu-
lations BHLUMI.4 � (OLDBIS + LUMLOG). The limits tmin;max correspond to an angular range
26:125 < � < 55:875 mrad.

on the result of Fig. 5b.
The crucial question now is whether we can extend this result to triggers other

than our \academic trigger", in particular if we can port our result to realistic
experimental triggers. This part (step 5) is still being developed and we cannot
show all relevant partial results due to lack of space.

4. Physical precision

The precision estimate in our previous work1 was based to a large extent on

the calculation of the di�erence BHLUMI.2 � (OLDBIS + LUMLOG) which, for
BHLUMI.2, represented missing O(�2L2) plus technical precision. With the new
matrix element in BHLUMI.4, which includes the complete O(�2L2) contribution
we look immediately into the same three-generator di�erence. The result of such a
comparison, with the scale on the vertical axis inated by a factor of almost ten,
is presented in Fig. 6. It is done for the same trigger type and angular range as
in the older publication1 (calorimeter of ELCAL/ALEPH type1) and also for new
ALEPH/SICAL-type detector at lower angular range.

At �rst sight, the new result in Fig. 6 looks completely compatible with the old

published result shown in Fig. 2. As we see in Fig. 6 the di�erence is again well
within 0.15%. Of course, the interpretation of this di�erence is not the same now as
in the previous work1. The muliphoton Monte Carlo BHLUMI.4.0 includes O(�2L2)
corrections, hence the plotted di�erence BHLUMI.4 � (OLDBIS + LUMLOG) is
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Figure 6: We plot the di�erence BHLUMI.4�(OLDBIS+LUMLOG) (a) for ALEPH/ELCAL

type calorimeter/trigger (angular range 60 � 120 mrad) as de�ned in old publication1 (b) for
ALEPH/SICAL detector (25 � 60 mrads). Dotted lines mark the same 0.15% limit as in Fig. 2.

10



potentially dominated by the O(�2L), O(�3L3) and technical precision. (The es-

timate of the technical precision from Fig. 5 does not apply here automatically,
due to the di�erent type of trigger.) The O(�2L2) is absent in the new results of
Fig. 6! The above new results are very encouraging but they should be treated as
preliminary { they will soon be subjected to a new round of tests.

In the following we shall present additional numerical results which will teach
us to better understand the meaning of the results in Fig. 6. The immediate
question to answer is: How big was actually the \missing O(�2L2)" correction
in the published version of BHLUMI.2. We may simply look at the di�erence
BHLUMI.4�BHLUMI.2. Since the published BHLUMI.2 includes the matrix el-

ement of type A we are examining the di�erence O(�2)
exp
prag;A � O(�1)

exp
prag;A. It is

plotted in Fig. 7a for the SICAL detector of ALEPH. We see that the result is
small in comparisons with typical values/estimates 0.25%{0.5% quoted in previous
papers4;1 for the O(�2L2) corrections. We simply conclude that the choice of the
matrix element in BHLUMI.2 was very lucky! To see it more clearly, we show a
similar quantity for the matrix element of type B in Fig. 7b. Here, the situation
looks more \normal". The missing O(�2L2) contribution for the experimentally
relevant Xmax ' 0:5 is �0:25%. Of course, the next logical question is: Do the two
O(�2)prag results of type A and B agree? Yes, they do, as we see in Fig. 7c the

corresponding di�erence is tiny indeed, it is only ' 0:01%!
All the above cross-checks, together with the results from the previous Section

give us strong hint that the new O(�2)prag matrix element in BHLUMI.4 is correctly
implemented. Nevertheless, since the problem of high technical precision for a re-
alistic trigger is still not solved, we say that the di�erence BHLUMI.4 � (OLDBIS
+ LUMLOG) in the plots of Fig. 6 represent missing O(�3L3), O(�2L) and the
technical precision. In fact the O(�3L3) can be practically eliminated from this list.
Using the semi-analytical formula (2) we can calculate exactly what the missing

O(�3L3) is. The O(�3L3) missing terms are known10 and can be easily included
in eq. (2)! The e�ect of such a modi�cation on the cross-section is shown in Fig.
7c. It is negligible, below 0.02%. This result is not that surprising, because it was
shown10 that the YFS exponentiation sums up the LL part of higher-orders very
e�ciently. (We suspect that it may not hold for O(�2) calculation without YFS
exponentiation.) Note that the above result extends for any calorimetric experi-
mental trigger because it is of a pure LL character. We conclude, therefore, that
Fig. 6 contains only the missing O(�2L) and technical precision.

Can we, in view of the above discussion, already improve on the total precision

of the luminosity cross section? First of all, in the previous work1 we estimated
that the O(�2L) contribution is generically of order 0.1%. In fact the value 0.09%
was used and it was summed up with the 0.15% estimate of the missing O(�2L2)
from Fig. 2 to obtain a total bremsstrahlung error of 0.24%. Since we now know
that missing O(�2L2) was absent in the old Fig. 2 by luck and in the new Fig. 6
by construction, these �gures show us O(�2L) and technical precision. The 0.15%
spread of the curves in Fig. 6 is very well compatible with the generic estimate
of 0.1%. But since the generic estimate and the spread of the curves represent
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Canonical coe�cients

non-calorimetric case calorimetric case

O(�L) �
�
4L 140�10�3

1=2
�!

70�10�3

O(�) 21
2
�
�

2:5�10�3
1
�!

2:5�10�3

O(�2L2) 1
2

�
�
�
4L
�2

10�10�3
1=4
�!

2:5�10�3

O(�2L) �
�

�
�
�
4L
�

0:35�10�3
1=2
�!

0:2�10�3

O(�3L3) 1
3!

�
�
�
4L
�3

0:45�10�3
1=8
�!

0:05�10�3

Table 1: The canonical coe�cients indicating the generic magnitude of various leading and sub-
leading contributions up to third-order. The big-log L is calculated for � = 25 mrad.

now the same thing, in order to avoid double counting, we should take instead of
the sum the maximum of the two. This gives us roughly a 0.15% estimate of the
total bremsstrahlung uncertainty in BHLUMI.4, i.e. the corresponding physical and
technical precision. This is a net improvement over the published 0.24%! In order to
improve on the above we have to have a better, separate, estimate of the technical
precision for the experimental trigger below 0.05% and a better estimate (by direct

calculation) of the O(�2L) missing contribution. Of course, inclusion of the error
from the vacuum polarization, light fermion pairs, etc., will increase the error but
not too much. This more detailed analysis will be presented elsewhere.

The central question of the physical precision of the BHLUMI.4 problem is now
obviously the following: How big is the missing second-order subleading O(�2L)
correction. The best would be to calculate this object directly and there are attempts
in this direction of the present group and others11. For the moment let us gather
all indirect information on this subject. On the one hand the previous1 estimate of

0.1% is in good agreement with the 0.15% variation in Fig. 6. On the other hand,
there is also some indication that the actual value may be smaller. This comes
mainly from the analytical inspection of the di�erence BHLUMI.4 � (OLDBIS +
LUMLOG) for the academic trigger, see also in Fig. 5b, and con�rmed to some
extent by Fig. 7c for the real experimental trigger.

The closer look into O(�2L) terms in the analytical formula for BHLUMI.4 �
(OLDBIS + LUMLOG) reveals that almost all such terms are numerically unim-
portant because the value of the coe�cient (�=�)24L = 0:035% is small. All terms
which do matter numericaly have special resons for this. They are bigger because

they include enhanecment factors which can be understood and traced back to some
peculiarities of the calculation. In the case of Fig. 5b all these enhancement factors
reect either a lack of exponentiation in OLDBIS or a zero-transverse-momentum
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Figure 7: Plots (a)-(c) show Monte Carlo results for SICAL/ALEPH detector and (d) shows
analytical result for \academic" trigger. All cross sections are divided by Born value and plotted
as a function of the energy cut Xmax or Vmax. In (a) we demonstrate \missing second-order" of
published BHLUMI.2 as a di�erence with new version BHLUMI.4. In (b) we plot the same quantity

for matrix element type B. Plot (c) demonstrates di�erence of results with A and B type O(�2)prag
matrix elements. In (c) we show for \academic" trigger how the cross section would change if the

matrix element B was upgraded to O(�3)prag.
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approximation in LUMLOG. (They are typically logarithmss of cut-o� parameters

and �2 = �2=6 in the virtual corrections.) The fact that the result shown in Fig. 5b is
bigger than the canonical 0.035% reects these artefacts in the OLDBIS+LUMLOG
and not that we miss such contributions in BHLUMI.4. The important lesson for fu-
ture evaluation of O(�2L) contributions is that any such contribution above 0.035%
has to be checked and explained separately because it has to have a special rea-
son, the enhancement factor, to exist! We have done the above exercise in a bit
more systematic way and, looking into coe�cients in the eq. (2), we have obtained
all typical \canonical" coe�cients for various leading and subleading contributions
up to third-order, which are included in Table 1. Of course the coe�cients are

smaller for calorimetric detection of the �nal state electrons and we tried also to
estimate this e�ect. Note that our canonical coe�cients of Table 1 agree very well
for O(�2L2) with Fig. 7b, for O(�2L) with Fig. 7c, and for O(�3L3) with Fig. 7d.

5. Summary and outlook

The status of our work on the QED corrections for the luminosity cross section
can be summarized as follows:

� The O(�2)prag exponentiated matrix element in the new version of BHLUMI.4
is implemented and we have a lot of high-precision (technical precision: 3 �
10�4) evidence that it was done correctly.

� A technical precision as high as 3� 10�4 is established for BHLUMI.4 for the
special \academic' type of trigger (cut-o�'s).

� The OLDBIS/LUMLOG tandem is used to port the above high technical

precision to realistic examples of triggers (under development).

� There are indications that the main O(�2L) contribution to physical precision
is below 0.1% (even 0.03% is possible) but we have to stick to a conservative
estimate of 0.1%, which provides us the new BHLUMI.4 total bremsstrahlung

uncertainty of 0.15% for the generic experimental trigger. This is a consider-
able improvement over the previously published value of 0.24%.

In the future work we plan to extend the technical precision 3 � 10�4 to true
realistic experimental triggers, implement O(�2L) part of the matrix element or to

provide more solid numerical evaluation/estimate of its magnitude. Realization of
the above will de�nitely allow bringing the total precision below 0.1%, which will
match the best experimental errors.
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