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ABSTRACT
We establish the main features of homogeneous and isotropic dilaton, metric and Yang-

Mills con�gurations in a cosmological framework. We identify a new energy exchange term
between the dilaton and the Yang-Mills �eld which may lead to a possible solution of the
Polonyi problem in 4-dimensional string models.

String theory is the best candidate advanced so far to make General Relativity com-
patible with quantum mechanics and unify all the fundamental interactions of nature.
However, this uni�cation takes place at very high energy, presumably at the Planck scale,
and it is, therefore, particularly relevant to study the salient features of this theory in
a cosmological context, hoping to be able to observe some of its implications 1. Four-
dimensional string vacua emerging, for instance, from heterotic string theories, correspond
to N=1 non-minimal supergravity and super Yang-Mills models. The four-dimensional
low-energy bosonic action arising from string theory is, at lowest order in �0, the string
expansion parameter, given by

SB =

Z
d4x

p�g
�
� R

2k2
+ 2(@�)2 � e�2k�Tr (F��F

��) + 4V (�)

�
; (1)

where k2 = 8�M�2

P ,MP being the Planck mass and we allow for a dilaton potential, V (�).
The �eld strength F a

�� corresponds to the one of a Yang-Mills theory with a gauge group
G, which is a subgroup of E8 �E8 or Spin(32)/Z2. We have set the antisymmetric tensor
�eld H��� to zero and dropped the F a

��
~F��a term.

As we are interested in a cosmological setting, we shall focus on homogeneous and
isotropic �eld con�gurations on a spatially 
at spacetime. The most general metric is then
given by

ds2 = �N2(t)dt2 + a2(t)d
2

3; (2)

where N(t) and a(t) are respectively the lapse function and the scale factor.
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As for the gauge �eld, we consider for simplicity the gauge group G=SO(3); most
of our conclusions, however, will be independent of this choice. An homogeneous and
isotropic ansatz, up to a gauge transformation, for the gauge potential is the following 2;3

A�(t)dx
� =

3X
a;b;c=1

�0(t)

4
Tab�acbdx

c; (3)

�0(t) being an arbitrary function of time and Tab the generators of SO(3).
Introducing the ans�atze (2) and (3) into the action (1) leads, after integrating over

R3 and dividing by the in�nite volume of its orbits, to the e�ective action from which our
considerations about the Polonyi problem will follow
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�
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where the dots denote time derivatives.
Let us consider the so-called entropy crisis and Polonyi problems associated with the

Einstein-Yang-Mills-Dilaton (EYMD) system. The former di�culty concerns the dilution
of the baryon asymmetry generated prior to � conversion into radiation. The entropy crisis
problem can be solved by regenerating the baryon asymmetry after � decay, as discussed
in Ref. 4, considering models in which the A�eck-Dine mechanism can be implemented
to generate an O(1) baryon asymmetry and then allow for its dilution via � decay.

In models where the dilaton mass is very small, such that its lifetime is greater than
the age of the Universe (��1� � tU � 1060 M�1

P ), one may encounter the Polonyi problem,
i.e. �� dominates the energy density of the Universe at present. This problem exists in
various N=1 supergravity models with one or more chiral super�elds and even non-minimal
models as well as in string models. A necessary requirement to avoid the problem is that,
at the time when � becomes non-relativistic, i.e. H(tNR) = m, the ratio of its energy
density to the one of radiation satis�es 5

� =
��(tNR)

��0(tNR)
<�10�8: (5)

Notice that, since the condition ��1� � tU implies m � 10�20MP , which falls outside
the mass interval for which in
ation takes place (see below), we have to assume that, in
models where this problem occurs, some �eld other than the dilaton will drive in
ation
and be responsible for reheating. Initially and until � becomes non-relativistic, �� '
��0 ' 1

2
m2�2

�
, implying that � = O(1) (see e.g. Ref. 5). Hence, any mechanism for

draining � energy into radiation has to be quite e�ective in order to be able to help to
avoid the Polonyi problem. The mechanism we propose is related to the fact that our
construction does allow us to describe radiation through the �eld �o rather than treating
it as a macroscopic 
uid, a fact which has an immediate bearing on the issue of energy
exchange between the dilaton and the Yang-Mills �eld. In fact, it is then easy to show,
working out the equations of motion resulting from the variation of the e�ective action
(4), that
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and �� =

_�2

2
+ V (�). The

new and somewhat surprising feature of the above equations is the appearance of terms
proportional to _�. The origin of these terms is ultimately related with the coupling of the
dilaton to the kinetic energy terms of other �elds. Let us then estimate the e�ciency of
the terms proportional to _� in Eqs. (6) and (7). We get for �

� ' 1� 2�=m2�2
�

1 + 2�0=m2�2
�

; (8)

where �� ' �(tRN ) � MP and �, �0 are the integrated contributions of the last two
terms of Eqs. (6) and (7), respectively, over the time interval (ti; tNR). One expects that
� ' �0. Demanding � to satisfy condition (5) implies that the ratio � � 2�

m2�2
�

has to be

fairly close to 1. From the equations of motion resulting from the variation of action (4),
it is easy to see that e�ective energy exchange occurs during the period where H ' 2k _�
1. Assuming that this relation holds after in
ation and, furthermore, that ��0 � a�4 and

a(t) = aR

�
t
tR

�1=2
, we obtain

� ' t2R
a4R

(t�2i � t�2NR); (9)

where the index R refers to the time when the in
aton decays. Hence, in order to get
� = O(1), we must have, if tNR � ti

ti ' 1

mMP

tR
a2R

: (10)

For typical values of the relevant parameters, e.g. ti ' 1010M�1

P , tR>�1030M�1

P

and aR>�1030M�1

P , we see that the dilaton mass is required to be exceedingly small,
m � 10�40MP . Since solving the Polonyi problem requires � to be very close to 1, it
is clear, from our estimate, that this can be achieved provided the energy exchange is
e�ectively maintained over a su�ciently long time. Actually, energy exchange via terms
proportional to _� occurs also when coupling the dilaton to bosons and fermions through
e�2k�Lmatter (see e.g. Ref. 6), which will then contribute to further draining of � energy.
Other contributions to this process would occur if we had chosen a larger gauge group as,
besides �0(t), another multiplet of �elds would appear in the e�ective action 2;3 leading
to extra energy exchange terms.

Notice that, when discussing a very light or massless dilaton, one has to deal with
the implications of the fact that coupling constants and masses are dilaton dependent
and the ensued problems, such as cosmological variation of the �ne structure constant as
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well as other coupling constants and violations of the weak equivalence principle. The
study of the cosmological evolution of the Einstein-Matter-Dilaton system indicates that
the inclusion of non-perturbative string loop e�ects is crucial to render consistency with
the experimental data if the dilaton is massless 7. The impact of the string loop e�ects in
the EYMD system is to change the Yang-Mills-Dilaton coupling to B(�)F a

��F
��a, where

B(�) = e�2k� + c0 + c1e
2k� + ::: and c0; c1; ::: are constants. Hence, in what concerns the

Polonyi problem we have been discussing, the extra terms may either weaken or reinforce
our previous conclusions regarding a possible solution to this problem, depending on the
value and more crucially the sign of the constants ci.

Finally, we brie
y describe our results concerning the in
ationary solutions of the
model. As shown in Ref. 6, where radiation is treated as a 
uid, one obtains chaotic
in
ationary solutions driven by the dilaton for V (�) = 1

2
m2(� � �0)

2, with 10�8MP <
m < 10�6MP and �0 �MP , a result which remains valid if we add a quartic term to the
potential. Although the dilaton potential, which has its origin is non-perturbative e�ects
such as gaugino condensation and a possible v.e.v. for the antisymmetric tensor �eld, has a
more complicated structure, it is reassuring to see that it is possible to obtain in
ationary
solutions in simple cases. We have checked that, with our �eld treatment of radiation,
in
ationary solutions do exist and in
ation with more than 65 e-foldings requires that the
initial value of the � �eld is such that �i>�4MP

1;3;6 and, actually, these correspond to most
of the trajectories, with a probability 1� (m=MP )2. In
ation is therefore a fairly general
feature of expanding models with V (�) = 1

2
m2(� � �0)2, for � � �0 > 0 and where the

initial value of � satis�es the condition �i>�4MP . In fact, this initial condition is indeed
shown to be favoured, as follows from the study of the solutions of the Wheeler-DeWitt
equation for the EYMD system in the minisuperspace approximation8.
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