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Abstract

A QCD based e�ective action is constructed to describe the dynamics of con�nement

and symmetry breaking in the process of parton-hadron conversion. The decon�ned quark

and gluon degrees of freedom of the perturbative QCD vacuum are coupled to color singlet

collective �elds representing the non-perturbative vacuum with broken scale and chiral

symmetry. The e�ective action recovers QCD with its scale and chiral symmetry properties

at short space-time distances, but yields at large distances (r >� 1 fm) to the formation of

symmetry breaking gluon and quark condensates. The approach is applied to the evolution

of a fragmenting q�q pair with its generated gluon distribution, starting from a large hard

scale Q2. The modi�cation of the gluon distribution arising from the coupling to the non-

perturbative collective �eld results eventually in a complete condensation of gluons. Color


ux tube con�gurations of the gluons in between the q�q pair are obtained as solutions of

the equations of motion. With reasonable parameter choice, the associated energy per unit

length (string tension) comes out ' 1 GeV/fm, consistent with common estimates.

e-mail: klaus@surya11.cern.ch

CERN-TH. 7440/94, September 1994

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25170397?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1. INTRODUCTION

The physics of QCD exhibits di�erent relevant excitations at di�erent length scales. At

space-time short distances (below 1 fm) the relevant degrees of freedom are quarks and

gluons whose interactions are well described by perturbative QCD [1, 2]. The long distance

physics on the other hand is governed by the hadronic degrees of freedom, and the particles

which are observed at large scales are hadrons whose interactions are well described by

chiral models [3]. The change of resolution of our microscope with which we probe the

physics of QCD is formally described by a renormalization group equation, or evolution

equation, that determines the scale dependence of the theory [4, 5, 6].

The transition from short distance (high momentum transfer) regime to the long dis-

tance (low energy) domain can be cast in terms of an evolution equation for an e�ective

QCD action that embodies both, fundamental partonic degrees and hadronic degrees of

freedom. By increasing the distance scale (decreasing the momentum scale), the evolution

[7] of the e�ective �eld theory must lead from one set to the other set of degrees of freedom.

Experiments on high energy QCD processes, such as e+e� annihilation, deep inelastic ep

scattering, Drell Yan, etc., strongly support the conception that the observed parton frag-

mentation into hadrons is a universal mechanism. Moreover, the dynamical transformation

of color charged quarks and gluons in high energy QCD processes into colorless hadrons is

commonly believed to be a local phenomenon [8]. Thus, a consistent description of the lo-

cal hadronization mechanism must be independent of the details of the partons prehistory

and should in principle apply also to hadron-hadron, hadron-nucleus, or nucleus-nucleus

collisions.

To date most of the theoretical tools to study properties of QCD are inadequate to

describe the dynamics of the transformation from partonic to hadronic degrees of freedom:

Perturbative techniques are limited to the decon�ned, short distance regime of high energy

partons [9], QCD sumrules [10] and e�ective low energy models [11] are restricted to the

long distance domain of hadrons, and lattice QCD [12] lacks the capability of dynamical

calculations concerning the quark-gluon to hadron conversion. On the other hand, phe-

nomenological approaches to parton fragmentation [13], are mostly based on hadronization

models with adhoc prescriptions to simulate hadron formation from parton decays.

In this paper I follow a rather di�erent, universal approach to the dynamic transition

between partons and hadrons based on an e�ective QCD �eld theory description, as re-
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cently proposed in Ref. [14]. In the spirit of the aforementioned evolution of e�ective �eld

theory from high energy to low energy scales [5, 7], the key element is to project out the

relevant degrees of freedom for each kinematic regime and to embody them in an e�ective

QCD Lagrangian which recovers QCD with its scale and chiral symmetry properties at high

momentum transfer, but yields at low energies the formation of symmetry breaking gluon

and quark condensates including excitations that represent the physical hadrons. In Sec.

2, I will �rst formulate the general �eld theoretical framework. On the basis of the dual

vacuum picture of coexisting perturbative and non-perturbative domains an e�ective action

is constructed that embodies the correct scale and symmetry properties of QCD. The con-

cept is here more phenomenologically motivated than the related formal approach of Ref.

[7]. However, there appears to be a clear correspondance bertween those two descriptions.

In Sec. 3, I shall demonstrate the applicability of this e�ective QCD �eld theory to the

dynamics of parton-hadron conversion by exemplarily considering the evolution of gluons

produced by a fragmenting quark-antiquark pair. The change of the gluon distribution in

the presence of a con�ning composite �eld is studied and 
ux tube solutions of the gluon

�eld resulting from the equations of motion are analyzed in terms of the string tension, that

characterizes the e�ective con�nement potential. Various perspectives of the approach are

discussed in Sec. 4, in particular the applicability to the QCD phase transition, and high

density QCD.

2. EFFECTIVE QCD FIELD THEORY WITH SPONTANOUS SYMMETRY

BREAKING

The goal is to construct an e�ective �eld theory that describes the dynamics of both

partonic and hadronic degrees of freedom and their interplay. The approach is based on

the concept of the e�ective action [4, 7], which will be represented here as (r � r� denotes

the space-time 4-vector)

Seff =

Z
d4r

�
L[ ;A] + L[�; U ] + L[ ;A; �]

�
: (1)

The three contributions to the action, which will be discussed below, correspond to the

QCD Lagrangian with the quark ( i) and gluon �elds (Aa), an e�ective low energy La-

grangian introducing composite �elds � and U , and a term that couples the "microscopic"

fundamental quark and gluon degrees of freedom to the "macroscopic" �elds � and U which

represent the hadronic degrees of freedom.
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2.1 L[ ;A]

The QCD Lagrangian in (1) contains the gluon �elds A�a coupled to massless quark

�elds  i (i = 1; : : : ; Nf),

L[ ;A] = �1
4
F��;aF

��
a +  i

�
i
�@

� � gs
�A�aTa
�
 i + Lgauge + Lghost : (2)

Here F ��
a = @�A�a � @�A�a + gsfabcA

�
bA

�
c is the gluon �eld strength tensor. The subscripts

a; b; c label the color components and gs denotes the color charge related to �s = g2s=(4�).

The Ta are the generators of the SU(3) color group, satisfying [Ta; Tb] = ifabcTc with the

structure constants fabc. The gauge �xing term Lgauge = 1=(2a)(��A
�
a)

2 with gauge param-

eters a and ��, and the contribution of Fadeev-Popov ghost �elds �, Lghost = (@��
�

a)(�ab@
��

gsfabcA
�
c )�b, will be irrelevant later on, because a physical gauge � � A = 0 can be �xed,

which eliminates the presence of ghosts.

The Lagrangian (2) is well known to be invariant under chiral transformations [3].

At the tree level it is also invariant under scale transformations r� ! r0� = e�r� [15],

generated by a so-called dilaton charge D(t) =
R
d3rJS0 (r), where J

S
� is the scale current

and
�
D;'(r)

�
= i (r�@

� + d')'(r) for a generic quantum �eld ' with scale dimension d'.

The convention is dA = 1 for gauge boson �elds and d = 3=2 for fermion �elds. It follows

that L( ;A) has scale dimension 4 so that
�
D;L( ;A)� = 0 and therefore massless QCD

proves to be scale invariant at tree level.

At high energies and short space-time distances, asymptotic freedom leads to uncon�ned

gluon and quark �elds in (2). However, in the physical world these color degrees of freedom

are con�ned, and both chiral and scale symmetry are explicitely broken. To describe the

dynamics of the symmetry breakdown of the transition between the perturbative, scale

and chiral invariant, regime and the non-perturbative world with broken symmetries, one

needs to supplement (2) (by adding �L = L[�; U ] + L[ ;A; �]) to construct an e�ective

description such that at high energies the fully symmetric QCD phase is recovered, but at

low energies massive hadrons emerge.
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2.2 L[�;U ]

The speci�c form of L[�; U ] in (1) is adopted from Refs. [16, 17], where an e�ective low

energy Lagrangian was constructed, guided by the scale and chiral symmetry properties

of the QCD Lagrangian. The construction is based on the observation that even massless

QCD is no longer scale invariant when going beyond tree level, because of the scale anomaly

[15] @�JS� = �(gs)=(2gs)F��F
�� , where JS� is the scale current as before. In addition chiral

invariance breaks down when �nite quark masses are taken into account. As a consequence,

the QCD energy momentum tensor ��� exhibits the well known trace anomaly [18]:

��� =
�(�s)

4�s
F��F

�� + (1 + 
m)
X
q

mq�qq ; (3)

where � is the Callan-Symanzik function and 
m is the anomalous mass dimension. This

anomaly constrains the form of the e�ective low energy Lagrangian, because without it

Poincar�e invariance would be broken, and the mass of the proton would come out wrong,

since 2m2
p = hpj���jpi.

The extension of these symmetry properties of the QCD Lagrangian to the low energy

domain was modeled by Campbell, Ellis and Olive [17] as1

L[�; U ] =
1

2
(@��)(@

��) +
1

4
Tr

�
(@�U)(@

�U y)

�
� b

�
1

4
�40 + �4 ln

�
�

e1=4�0

��

� c Tr

�
mq(U + U y)

� �
�

�0

�3
� 1

2
m2

0 �
2
0

�
�

�0

�4

: (4)

This form introduces a scalar gluon condensate �eld � and a pseudoscalar quark condensate

�eld U = f� exp
�
i
P8
j=0 �j�j=f�

�
for the nonet of the meson �elds �j (f� = 93 MeV,

Tr[�i�j] = 2�ij, UU
y = f2�), with non-vanishing vacuum expectation values

�0 = h 0 j � j 0 i 6= 0 ; U0 = c h 0 j U + U y j 0 i 6= 0 (5)

that explicitly break scale, respectively chiral symmetry. In (4), b is related to the con-

ventional bag constant B by B = b�40=4, c is a constant of mass dimension 3, mq =

diag(mu; md; ms) is the light quark mass matrix, and m2
0 is an extra U(1)-breaking mass

term for the ninth pseudoscalar meson �0.

Notice that the anomaly constraint (3) is modeled by the third and fourth term in (4)

with the correspondence

h 0 j �(�s)
4�s

F��F
�� j 0 i = � b �40 (6)

1In Ref. [17] the second term in eq. (4) was scaled by a factor (�=�0)
2, which however is not necessary

[16], since just this term gives a chiral symmetric contribution in agreement with the QCD anomaly (3).
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and

h 0 j �qq j 0 i = c

�
�

�0

�3
h 0 jU + U y j 0 i : (7)

2.3 L[ ;A;�]

The key ingredient in (1) is the connection between the scale and chiral symmetric, short

distance regime of colored 
uctuations and the world of colorless hadrons with broken

symmetries. It is mediated by the coupling between the fundamental quark and gluon

degress and the collective �elds � and U through coupling functions g(�) and �(�),

L[ ;A; �] = �(�)

4
F��;aF

��
a �  i g(�) i : (8)

The coupling functions �(�) and g(�) are chosen in the spirit of Friedberg and Lee [19],

who formulated a dual QCD vacuum picture: High momentum, short distance quark-gluon


uctuations (the perturbative vacuum) are embedded in a collective background �eld �

(the non-perturbative vacuum), in which by de�nition the low momentum, long range


uctuations are absorbed. Con�nement is thus associated with the colordielectric stucture

of the QCD vacuum. This property is modeled by a colordielectric function

�(�) = 1 � �(�) (9)

that satis�es

�(0) = 1 ; �(�0) = 0 ; (10)

thereby generating color charge con�nement, because a color electric charge creates a dis-

placement ~Da = �~Ea, where E
k
a = F 0k

a , with energy 1
2

R
d3rD2

a=� which is in�nite for

non-zero total charge if � falls o� faster than 1=
p
r for large distances r. The particular

form of �(�) is not crucial as long as the properties (10) are satis�ed [20]. A speci�c choice

is [21]

�(�) = 1 +

�
�

�0

�3 �
3
�

�0
� 4

�
�(�) ; (11)

which has the further properties of �0(0) = �00(0) = 0. Other forms used in the literature

are e.g. �(�) = j1� (�=�0)
njm [22] (Friedberg and Lee originally proposed n = m = 1).

Similarly, absolute con�nement can be ensured also for quarks by coupling the quark

�elds to the �-�eld through [23]

g(�) = g0

�
1

�(�)
� 1

�
; (12)
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which leads to an e�ective con�nement potential with the masses of the quarks inside

approximately equal to the current masses, but at � = �0 it generates an in�nite asymptotic

quark mass (the value of g0 is irrelevant in the present paper).

2.4 Equations of motions

To summarize to this end, the complete e�ective action (1) is determined by the La-

grangian

Leff = L[ ;A] + L[�; U ] + L[ ;A; �]
= �1

4
�(�)F��;aF

��
a +  i

�
i
�@

� � gs
�A�aTa � g(�)

�
 i

+
1

2
(@��)(@

��) +
1

4
Tr

�
(@�U)(@

�U y)

�
� V (�; U) ; (13)

plus the terms Lgauge and Lghost of (2). The potential V is given by

V (�; U) = b

�
1

4
�40 + �4 ln

�
�

e1=4�0

��

+ c Tr

�
m̂q(U + U y)

� �
�

�0

�3

+
1

2
m2

0 �
2
0

�
�

�0

�4

; (14)

which has its minimum when � = �0 = h0j�j0i and equals the vacuum pressure (bag

constant) B = b�40=4 at � = 0. Typical forms of V (�; U) for di�erent values of B and mq

are depicted in Fig. 1.

The e�ective �eld theory de�ned by (1) and (13) represents a description of the duality

of partonic and hadronic degrees of freedom by coupling the high energy QCD phase with

uncon�ned gluon and quark degrees of freedom to a low energy QCD phase with con�nement

and broken chiral symmetry which contains a gluon condensate (6) and a quark-antiquark

condensate (7). Small oscillations about the minimum of the potential V (�; U) are to be

interpreted as physical hadronic states that emerge after symmetry breaking. They include

[17]: (i) glueballs and hybrids as quantum 
uctuations in the gluon condensate �0, (ii)

pseudoscalar mesons as excitations of the quark condensate U0, (iii) the pseudoscalar 
avor

singlet meson �0, and (iv) baryons as non-topological solitons [24].

The �eld equations which derive from (1) and (13) are:

[
� (i@
� � gsA

�
aTa) � g(�)]  i = 0 (15)

@� [�(�)F
��
a ] = �gs �(�) fabcA�;bF��c + gs i 


�Ta i (16)

@�@
�� +

@V (�; U)

@�
+

@�(�)

@�
F��;aF

��
a + g(�) i i = 0 (17)
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@�@
�U +

@V (�; U)

@U
= 0 : (18)

Notice that the U -�eld does not couple directly to the quark and gluon �elds. Per con-

struction [17], the dynamics of the quark condensate �eld U is solely driven by the gluon

condensate �eld �. It is important to realize that the interplay between the �-�eld and the

quark and gluon �elds,  and A, is the crucial element of this approach.

2.5 Comments

The following remarks concerning the e�ective Lagrangian (13) are important:

a) At short distances or high momentum transfers the exact QCD Lagrangian (2) is

recovered, since � = U = 0 and �(�) = 1 (i.e. �(�) = 0) and g(�) = 0, whereas the

long distance QCD properties emerge as �=�0 ! 1 and U=U0 ! 1 [17] and no colored

quanta survive. The transition from one set of degrees of freedom ( ;A) to the other

(�; U) corresponds to consecutively integrating out all colored quantum 
uctuations

and absorbing them e�ectively in the collective color singlet �elds.

b) The problem of double counting degrees of freedom has to be carefully inspected.

Although it does not arise in one-loop calculations (to which I will restrict here),

processes with e.g. two-gluon exchange could also be contained in the exchange of

a color singlet �-quantum. A minimal possibility to avoid this problem is a rigid

separation of high and low momentum modes, by introducing a characteristic scale

Q0: above Q0 the physics is described in terms of quark gluon degrees and below Q0

the dynamics is governed by the collective degrees of freedom [7].

c) L[�; U ] for the composite �elds embodies the correct QCD scaling and chiral prop-

erties and accounts for the important anomaly (3) of the physical energy-momentum

tensor of QCD. The coupling between quarks and gluons to the composite �eld � in

L[ ;A; �] can be interpreted in analogy to a thermodynamic system in equilibrium

with a heat bath, with a net 
ow of energy between the system and the heat bath

environment such that the bare energy of the system is not conserved. However the

free energy of the system, here high momentum quarks and gluons, is constant [25].

It corresponds to the conserved energy momentum tensor ��� with its non-zero trace

(3).
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d) There is no need for explicit renormalization of �L = L[�; U ] + L[ ;A; �]. The

composite �elds � and U are already interpreted as e�ective degrees of freedom with

loop corrections implicitely included in �L and it would be double counting to add

them again. Moreover, in the present approach the low energy domain of L[�; U ] is
per construction bounded from above by the onset of the high energy regime described

by L[ ;A]. In correspondance to item b) the scale Q0 that separates the two domains,

provides an "ultra-violet" cut-o� for L[�; U ], and at the same time an infra-red cut-o�
for L[ ;A].

This e�ective �eld theory approach o�ers a wide range of physical applications and can

be extended and re�ned in various directions, as discussed in Sec. 4. The scope of the

remainder of this paper is however concepted as a exemplary demonstration of how of the

dynamics of parton-hadron conversion emerges within this framework.

3. CONFINEMENT OF GLUONS IN A FRAGMENTING q�q SYSTEM

The e�ective QCD �eld theory de�ned by (13) is readily applicable to describe the

dynamic evolution from perturbative to non-perturbative vacuum in high energy processes.

In accord with the symmetry breaking formalism of Sec. 2, the parton-hadron transition can

be visualized as the conversion of high momentum colored quanta of the fundamental quark

and gluon �elds into color neutral composite states that are described by the condensate

�elds � and U and their excitations.

In the following I shall consider as an example the fragmentation of a q�q jet system with

its emitted bremsstrahlung gluons and describe the evolution of the system as it converts

from the parton phase to the hadronic phase. The process is illustrated in Fig. 2: A

time-like virtual photon in an e+e� annihilation event with large invariant mass Q2 � �2

is assumed to produce a q�q pair which initiates a cascade of sequential gluon emissions.

(Here and in the following � denotes the fundamental QCD scale). The early stage is

characterized by emission of "hot" gluons far o� mass shell in the perturbative vacuum.

Subsequent gluon branchings yield "cooler" gluons with successively smaller virtualities,

until they are within Q2
0, where Q0 is of the order of m� � 4b�20 ' 1 GeV. At this point

condensation sets in, or loosely speaking, the "cool" gluons are eaten up by the color neutral

gluon condensate �eld �, the particle excitations of which must then decay into physical
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hadrons by means of some local interaction in the non-perturbative vacuum. A similar

picture holds for the U -�eld.

It is well known that the bulk of produced particles stems from rather soft gluon emis-

sions that are characterized by small values x of the fraction of the initial energy. Secondary

production of q�q pairs is comparably rare on the perturbative level. It is therefore reasonable

to neglect the quark degrees of freedom and study the purely gluonic sector. Furthermore it

is convenient to work in a physical (axial) gauge for the gluon �elds, � �A = 0, by choosing

the gauge vector in (2) as �� = n� with n being space-like and constant, in which case the

ghost contribution vanishes. Consequently, the equations of motion (15)-(18) reduce to:

@� [�(�)F
��
a ] = �gs�(�)fabcA�;bF��c (19)

@�@
�� = �@V (�)

@�
� @�(�)

@�
F��;aF

��
a (20)

@�@
�U = � 4 c

�
�

�0

�3

Tr[mq] : (21)

The solution of these equations is a still formidable task, because not only the gluon �elds

but also � and U are quantum operators. To make progress, I will now proceed by (i)

treating the quantum gluon �elds perturbatively, and (ii) employing the mean �eld approx-

imation for the composite �elds � and U . Representing

�(r) = ��(r) + �̂(r) ; (22)

where �� is a c-number and �̂ a quantum operator (similarly for U), the mean �eld approx-

imation is obtained by neglecting the quantum 
uctuations �̂ and keeping only ��. Thus,

the approximations (i) and (ii) correpond to the semiclassical limit in which gluonic quan-

tum 
uctuations interact with a classical mean �eld. To a good approximation this should

provide a reasonable description: �rst, because renormalization group improved QCD per-

turbation theory allows for an accurate description of the evolution of the gluon �eld [26] at

short distances where � = 0, and second, because the dynamics of the system around � = ��

is governed by a large number of virtual excitations, corresponding to coherent modes of

�eld quanta, so that a quasiclassical mean �eld description should be applicable in the low

energy regime [19].

3.1 Evolution of the gluon distribution in the presence of the collective �eld �

As I will show now, the equations of motion (19)-(21) simplify to a perturbative evolution

equation for the gluon distribution which is coupled to the equation for the mean �eld ��.
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The key problem is the �rst equation, since the gluon �elds A�, or equivalently F�� , drive

the dynamics of the �-�eld which in turn feeds back via �(�). As mentioned before, the U -

�eld does not couple directly to the gluon �eld. The procedure in the following is therefore

to 'solve' eq. (19) as a function of � and then to insert the solution into (20), so that one

is left (aside from the simple third equation) with a single equation for �, which however

is non-linear.

Solving the equation of motion (19) for the gluon �eld is equivalent to the calculation

of the complete Greens function with an arbitrary number of gluons. Instead, I will restrict

to evaluate the 2-point Greens function only (Fig. 3), i.e. the full gluon propagator which

includes both the one-loop order gluon self-interaction through real and virtual emission

and absorption, and the e�ective interaction with the con�ning background �eld �. In

the framework of "jet calculus" [27], this gluon propagator denoted as Dg(x; k
2; x0; Q

2),

describes how a gluon, produced with an invariant mass Q2, evolves in the variable x

(momentum or energy fraction) and the virtuality k2 (or transverse momentum k2
?
) through

these interactions. To one-loop order, it is obtained by calculating the corresponding cut

diagrams. In the present case, one has in addition to the usual gluon branching and

fusion processes, g ! gg and gg ! g, contributions from energy transfer and two gluon

annihilation processes g ! g� and gg! �, respectively 2. This is illustrated in Fig. 3.

To write down the determining equation for the gluon propagator Dg, it is convenient

employ lightcone variables, de�ned by the identi�cation of components of four-vectors as

k� = (k+; k�;~k?) ; k� =
1p
2
(k0 � k3) ; k? = (k1; k2) : (23)

The k+ component of a particle's momentum, the light cone momentum, is always positive

de�nite, k+ > 0, and the light cone energy, k� = (k2
?
+m2)=(2k+) is also positive. Further-

more, the light cone time r+ = (t+ z)=
p
2 is conjugate to k� and the light cone coordinate

r� is conjugate to k+. The invariant momentum space element is

d3k

(2�)32E
=

d4k

(2�)4
�+(k2 �m2) =

dk+ d2k?

16�3 k+
: (24)

Choosing the light cone gauge for the gluon �elds, � � A = A+ = �A� = 0, results in

well known simpli�cations in the perturbative analysis of light cone dominanted processes

2In the present case of q�q jet evolution, the contribution of perturbative 2-gluon fusion processes gg ! g

for k2 � �2 is very small [28], but the non-perturbative gluon recombination gg ! � in the range Q2

0
>

� k2 �

�2 is of essential importance in order to achieve complete con�nement.
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and has the advantage that there are neither negative norm gluon states nor ghost states

present [29]. As a consequence only the transverse components Ai
?
(i = 1; 2) are dynamical

�eld variables, since A+ is identically zero and A� is determined at any 'time' r+ by A1
?

and A2
?
. The particular choice � = (pq + p�q)=2 has the advantage that interference terms

do not contribute [2] to leading log accuracy (they are suppressed / 1=k2). Therefore, in

the leading log approximation (LLA) [30, 9, 26, 31], it is enough to realize that for every

choice of b (Fig. 3 top), one can group the other gluons in a unique way to groups forming

dressed rungs of a ladder (Fig. 3 middle) whose discontinuity is taken (Fig. 3 bottom).

Introducing the variable x = k+=P+ (the light cone fraction), and parametrizing the

momenta of initial quark and antiquark as P � pq + p�q with

P+ = Q ; P� =
4m2

q

2P+
; ~P? = ~0 ; (25)

i.e. P 2 = Q2, where as before Q denotes the invariant mass of the time-like photon that

creates the pair, the determining equation for the gluon propagator Dg(x; x0; k
2; Q2) can

now be represented in the form (c.f. Appendix A):

Dg(x; k
2; x0; Q

2) = x0�(x� x0) �(k2� Q2) Fg(Q
2; Q2

0)

+ Fg(Q
2; k2)

Z k2

Q2
0

dk
0 2

k0 2

Z 1

x

dx0

x0
w(x0; x; k2) Dg(x

0; k
0 2; x0; Q

2) Fg(k
0 2; Q2

0)

: (26)

This equation has a simple physical signi�cance: The �rst term is the inclusive sum of

virtual emissions and reabsorptions, and therefore does not change the number of gluons in

the gluonic wavefunction of the fragmenting Q �Q pair, whereas the second term describes

the change of the gluon distribution as a result of real decay or fusion processes. The

Sudakov formfactor

Fg(Q
2; k2) = exp

"
�
Z Q2

k2

dk
0 2

k0 2
wg(k

0 2)

#
(27)

is the probability a gluon propagates like a bare, non-interacting particle while degrading its

virtuality from Q2 to k2. As the gap between Q2 and k2 grows, such a 
uctuation becomes

increasingly unlikely. The total interaction probability

wg(k
2) =

Z 1

0

dx

Z 1

x

dx0

x0
w(x0; x; k2) (28)

is the integral over the inclusive probability for all possible gluon interaction processes i,

w(x0; x; k2) =
X

proceses i

w(i)(x
0; x; k2) : (29)
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The normalization is such that

1 = Fg(Q
2; Q2

0) + Fg(Q
2; k2)

Z Q2

Q2
0

dk
0 2

k0 2
wg(k

0 2) Fg(k
0 2; Q2

0) (30)

in accord with unitarity (probability) conservation. Multiplying (26) by F�1g , di�erentiat-

ing, and accounting for (30), yields:

k2
@

@k2
Dg(x; k

2; x0; Q
2) =

Z 1

x

dx0

x0
w(x0; x; k2) Dg(x

0; k2; x0; Q
2) � wg(k

2) Dg(x; k
2; x0; Q

2)

(31)

As summarized in the Appendices, one obtains for the individual interaction probabil-

ities w(i) to one loop order (with the assignment x1 ! x2; (x1 � x2) for branchings and

x1; (x2� x1)! x2 for fusions)

wg!gg(x1; x2; k
2) =

�s(k
2)

2�

g!gg

�
x2

x1

�

wg!gg(x1; x2; k
2) =

�s(k
2)

2�

�
8�2 cgg!g

k2�2

x1(x2 � x1)
x22

�

g!gg

�
x1

x2

�

wg!g�(x1; x2; k
2) =

��(k
2)

2�

g!g�

�
x2

x1

�

wgg!�(x1; x2; k
2) =

��(k
2)

2�

�
8�2 cgg!�

k2�2

x1(x2 � x1)
x22

�

�!gg

�
x1

x2

�
; (32)

where cgg!g = cgg!� = 1=8, and


g!gg(z) = 2CA

�
z(1� z) + z

1� z +
1� z
z

�


g!g�(z) =
1

4

�
1 + z2

1 � z

�


�!gg(z) = 8

�
z2 � z +

1

2

�
: (33)

Here CA = Nc = 3, and z is the fraction of x-values of daughter to mother gluons. In (32),

�s(k
2) =

�
b ln

�
k2

�2

���1
; b =

11Nc � 2Nf

12�
; (34)

is the one loop order QCD running coupling (in the present case Nf = 0), and

��(k
2) =

~�2�(k
2)

4�
(35)

denotes the coupling to the �-�eld in momentum space, with ~�� denoting the Fourier

transform of �(�) in (8).

Eq. (26) for the propagatorDg(x; k
2; x0; Q

2) corresponds the evolution equation for the

gluon distribution g(x; k2
?
), which is de�ned [32] as average number of gluons at 'light cone

12



time' r+ = 0 in the multi-gluon state3 jP i with light cone fractions x � k+=P+ in a range

dx and transverse momenta in a range d2k?:

x g(x; k2
?
) =

1

P+

Z
dr�d2r?

(2�)3
e�i(k

+r��~k?�~r?) hP jF+�
a (0; r�; ~r?) Fa; �

+ (0; 0;~0?) jP i :(36)

Thus, as is evident from Fig. 3, the probability for �nding a gluon with x and k2
?
is given

by the identi�cation

g(x; k2
?
) = Dg(x; k

2; 1; Q2)

����
k2=k2

?

: (37)

On account of the explicit expressions (32)-(35), and taking as evolution variable the gluon

transverse momentum k2
?
rather than the invariant mass k2 [33], one �nally arrives at the

master equation for the evolution of the gluon distribution:

k2
?

@

@k2
?

g(x; k2
?
) = +

�s(k
2
?
)

2�

Z 1

0

dz

�
1

z
g

�
x

z
; k2
?

�
� 1

2
g(x; k2

?
)

�

g!gg (z) �

�
k2
?
� Q2

0

�

� �s(k
2
?
)

2�

�
�2

k2
?

�
8�2 cgg!g

Z 1

0

dz

�
g(2)

�
x;

1� z
z

x; k2
?

�

� 1

2
g(2)

�
zx; (1� z)x; k2

?

��

g!gg (z) �

�
k2
?
� Q2

0

�
+
��(k

2
?
)

2�

Z 1

0

dz

�
1

z
g

�
x

z
; k2
?

�
� g(x; k2

?
)

�

g!g� (z) (38)

� ��(k
2
?
)

2�

�
�2

k2
?

�
8�2 cgg!�

Z 1

0

dz g(2)
�
x;

1� z
z

x; k2
?

�

�!gg (z) :

This equation re
ects the probabilistic parton cascade interpretation of the LLA [34, 35, 36],

in which the change of the gluon distribution on the left hand side is governed by the balance

of gain (+) and loss (�) terms on the right hand side. Notice that (38) is free of infrared

divergences, because the singularities in (33) at z = 0 and z = 1 cancel between gain and

loss terms. A diagrammatic illustration of these gain and loss terms is shown in Fig. 4. Also

notice that the gluon fusion terms (second and fourth term) involve the 2-gluon distribution

g(2)(x1; x2; k
2
?
), the presence of which causes the evolution equation to be non-linear.

By means of a Mellin transformation the multiple convolutions of z-integrals inherent in

the iteration of eq. (38) can be converted into products of independent successive interaction

probabilities. Let me de�ne the gluon distribution in the moment representation as

g(!; k2
?
) :=

Z 1

0

dx x! g(x; k2
?
) =

Z
1

0

dy e�! y
�
xg(x; k2

?
)
�
; (39)

3It is convenient to visualize the initial q�q pair (25) as a single incoming 'gluon' with momentum P , i.e.

with x0 = 1 and invariant mass Q (c.f Fig. 3).
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where y = ln(1=x), in which the variable ! is conjugate to ln(1=x), implying that the low

x behaviour is determined by small values of !. Analogously, the 2-gluon distribution is

represented as

g(2)(!; z; k2
?
) :=

Z 1

0

dx x! g(2)
�
x;

1� z
z

x; k2
?

�
; (40)

which carries an additional z-dependence. In general g(2) is a complicated correlation

function not available in analytical form, except for certain special cases [27, 37]. It is

therefore inevitable on an analytical level to assume a phenomenological form of g(2) that

allows to convert eq. (38) into a tractable linear form. This can be achieved with the

following ansatz of product form [28, 38]

g(2)
�
x;

1� z
z

x; k2
?

�
= �(k2

?
) g
�
x; k2

?

�
g

�
1� z
z

x; k2
?

�
; (41)

where �(k2
?
) is a parameter that characterizes the magnitude of the probability for �nding

two gluons at the same point in phase-space, depending on their typical transverse size r? �
1=k?. Since the 2-gluon correlation must become substantial when the number of gluons

per unit area ng=(�R
2
?
) becomes so large that the gluons overlap spatially (R? � 0:5� 1

fm), one expects that � = O(1) when k2
?
� Q2

0 (Q0 = 1 GeV), and monotonically increasing

as k2
?
! �2. Using (41) in (40), the 2-gluon distribution in the moment representation can

be approximated in the soft limit (z � 1) as

g(2)(!; z; k2
?
) � �(k2

?
)
z!

!
g(!; k2

?
) : (42)

In the moment representation the evolution equation (38) now becomes an linear alge-

braic equation for the Mellin transformed gluon distribution:

k2
?

@

@k2
?

g(!; k2
?
) = 
(!; k2

?
) g(!; k2

?
) ; (43)

where 
(!; k2
?
) plays the role of a generalized anomalous dimension,


(!; k2
?
) =

�s(k
2
?
)

2�
�(k2

?
� Q2

0)

�
Ag!gg(!) �

�
�2

k2
?

�
Agg!g(!)

�

+
��(k

2
?
)

2�

�
Ag!g�(!) �

�
�2

k2
?

�
Agg!�(!)

�
� 
QCD(!; k

2
?
) + 
�(!; k

2
?
) : (44)

The functions A(!) are given by

Ag!gg(!) = 2 CA

�
11

12
+

1

!
� 2

! + 1
+

1

! + 2
� 1

! + 3
� S(!)

�

14



Agg!g(!) =
�2 �

!
Ag!gg(!)

Ag!g�(!) =
1

4

�
3

2
� 1

! + 1
� 1

! + 2
� 2S(!)

�

Agg!�(!) =
�2 �

2!

�
1

! + 1
� 2

! + 2
� 2

! + 3

�
: (45)

where S(!) =  (! + 1) �  (1) with the Digamma function  (z) = d[ln �(z)]=dz and

� (1) = 
E = 0:5772 the Euler constant.

The anomalous dimension 
(!; k2
?
), eq. (44), reduces at k2

?
� �2 to 
QCD, the QCD

anomalous dimension in the LLA [33], since in this kinematic region �(�) = 1 and therefore

�� = 0. However, at k2
?
' Q2

0, ��(k
2
?
) becomes non-zero, so that the evolution of the

gluon distribution receives modi�cations due to the coupling of gluons to the �-�eld. In the

region Q2
0 > k2

?
� �2, the perturbative QCD contributions / �s vanish per construction,

so that the gluons solely interact with the �-�eld, the coupling to which increases, because

�! 0, i.e. �� ! 1. This behaviour is evident in Fig. 5, which shows 
(!; k2
?
) versus ! for

di�erent values of k2
?
.

The formal solution of eq. (43) is

g(!; k2
?
) = exp

(Z Q2

k2
?

dk02
?

k02
?


(!; k02
?
)

)
(46)

from which the x distribution can be reconstructed by considering the inverse Mellin trans-

form

x g(x; k2
?
) =

1

2�i

Z
C

d! x�!g(!; k2
?
) ; (47)

where ! is now a complex variable and the contour of the integration C runs paralell to

the imaginary axis. For the full anomalous dimension (44) this inversion must be done

numerically [39].

3.2 Analytical estimates for x-spectra and gluon multiplicity

To exhibit the main features of the evolution of the gluon distribution in the presence

of the �-�eld, it is instructive to make some analytic estimates. Of particular interest is

the low x-region, because the soft, small x gluons are most preferably radiated, but at the

same time take away only a very small portion of the total energy. For simplicity I will

divide the kinematic range of the k2
?
-evolution into two distinct domains as indicated in

Fig. 2:
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(i) Q2 � k2
?
> Q2

0 and k
2
?
=�2 � 1: In this region �� ' 0 and @��=@ ln k

2
?
' 0, so that

(44) reduces to


(!; k2
?
) =

�s(k
2
?
)

2�
Ag!gg(!) : (48)

(ii) Q2
0 � k2

?
� �2 and k2

?
=�2 ! 1: Here �� ! (4�)�1 and @��=@ ln k

2
?
> 0, in which

case (44) becomes


(!; k2
?
) =

��(k
2
?
)

2�

�
Ag!g�(!) �

�
�2

k2
?

�
Agg!�(!)

�
: (49)

As stated before, the low x region corresponds to the limit ! ! 0, so that an expansion

of 
(!; k2
?
) around ! = 0 gives the dominant contributions at small x. Up to to order !

one has in the region (i)

k2
?

@

@k2
?

ln g(!; k2
?
) =

�s(k
2
?
)

2�

�
2CA

�
1

!
� 11

12

��
� 
(i)(!; k2

?
) ; (50)

whereas in the region (ii) one gets in the same order of approximation

k2
?

@

@k2
?

ln g(!; k2
?
) = � ��(k

2
?
)

2�
�
�2

k2
?

�
8�2

3!

�
� 
(ii)(!; k2

?
) : (51)

The accuracy of the expressions 
(i) and 
(ii) in the relevant range of ! is exhibited in Fig.

6, where the exact expression 
(!; k2
?
) is compared to the small-! expansions (50) and (51)

at large and small k2
?
. Evidently the approximation is rather good for ! < 2.

Eqs. (46) and (47) can now be solved analytically with the saddle point method. The

k2
?
-dependence of �s is given in (34) and for �� = ~�2�=(4�), eq. (35), I will use here the

form

��(k
2
?
) =

�(Q2
0 � k2?)
4�

ln(Q2
0=k

2
?
)

ln(Q2
0=�

2)
; (52)

which has the required properties that �� = 0 (~�� = 0) for k2
?
� Q2

0 and �� ! (4�)�1

(~�� ! 1) for k2
?
! �2 (as before ~�� denotes the Fourier transform of �(�) in eq. (8)).

Introducing the variables t̂ for the region (i) and û for the region (ii),

t̂(k2
?
) =

Z Q2

k2
?

dk
0 2
?

k
0 2
?

�s(k
0 2
?
)

2�
=

1

2� b
ln

�
ln(Q2=�2)

ln(k2
?
=�2)

�

û(k2
?
) =

Z Q2
0

k2
?

dk
0 2
?

k
0 2
?

 
��(k

0 2
?
)

2�
�
�2

k2
?

!
=

�

8�2
1 � (Q2

0=k
2
?
)
�
1� ln(Q2

0=k
2
?
)
�

(Q2
0=�

2) ln(Q2
0=�

2)
; (53)

the combination of (46) and (47) yields for the kinematic domains (i), respectively (ii):

xg(x; t̂) =
1

2�i

Z
C

d! exp
h
! y + �(i)(!) t̂

i
g(!; 0) ; �(i)(!) = 2CA

�
1

!
� 11

12

�

xg(x; û) =
1

2�i

Z
C

d! exp
h
! y + �(ii)(!) û

i
g(!; 0) ; �(ii)(!) =

8�2

3!
; (54)
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where y = ln(1=x). The saddlepoint !
(i)
S of the integrand in (54) is determined by the

condition
d

d!

n
! y + �(i) t̂

o����
!=!

(i)

S

= 0 (55)

and similarly !
(ii)
S . Using the method of steepest descent then gives the following results.

(i) In the region Q2 � k2
?
� Q2

0:

x g(x; k2
?
)
��
Q2�k2

?
�Q2

0

= N1(x) + G1(x; k
2
?
) exp

�
�11CA
12�b

H1(k
2
?
)

�
exp

"s
4CA

�b
H1(k

2
?
) ln

�
1

x

�#

N1(x) = xg(x; k2
?
= Q2) = �(1� x)�(k2

?
�Q2)

G1(x; k
2
?
) =

1p
4�

�
CA

�b
H1(k

2
?
)

�1=4 �
ln

�
1

x

���3=4
(56)

H1(k
2
?
) = ln

�
ln(Q2=�2)

ln(k2
?
=�2)

�
:

(ii) In the region Q2
0 � k2

?
� Q2

0:

x g(x; k2
?
)
��
Q2
0�k

2
?
��2 = N2(x) � G2(x; k

2
?
) exp

"s
4�

3
H2(k2?) ln

�
1

x

�#

N2(x) = xg(x; k2
?
= Q2

0)

G2(x; k
2
?
) =

1p
4�

�
�

3
H2(k

2
?
)

�1=4 �
ln

�
1

x

���3=4
(57)

H2(k
2
?
) =

1 � (Q2
0=k

2
?
)
�
1� ln(Q2

0=k
2
?
)
�

(Q2
0=�

2) ln(Q2
0=�

2)
:

In Fig. 7 the x-spectra of (56) and (57) are shown for di�erent values of k2
?
with �xed

Q0 = 1 GeV. Two di�erent initial distributions were chosen to start the evolution from

k2
?
= (3:5GeV)2, one 
at in rapidity and the other one a Gaussian form. The parameter

� introduced in (41) was set equal to one. For k2
?

>�Q2
0 the gluon distribution xg(x; k2

?
) is

just the well known LLA solution with its strong increase at small x as k2
?
decreases. For

k2
?
< Q2

0 however, the e�ect is reversed such that g(x; k2
?
) decreases as k2

?
falls below Q2

0.

This suppression, which is particularly substantial at small x, re
ects the "condensation"

of gluons in the collective background �eld �.

The k2
?
-dependence of the total gluon multiplicity can also be estimated in the above

approximation. The gluon multiplicity is given by the ! = 0 moment,

Ng(k
2
?
) = g(! = 0; k2

?
) =

Z 1

0

dx g(x; k2
?
) : (58)
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Using eqs. (43)-(45), one arrives in the soft limit (z � 1) [40, 37] at the following integral

equations that govern the approximate behaviour of the gluon multiplicity for the two cases

(i) and (ii):

(i) k2
?

@

@k2
?

Ng(k
2
?
) =

�s(k
2
?
)

2�

(
2CA

Z Q2

k2
?

dk
0 2

k0 2
Ng(k

0 2
?
) � 1

2
Ng(k

2
?
)

)

(ii) k2
?

@

@k2
?

Ng(k
2
?
) = � ��(k

2
?
)

2�

�
8�2 cgg!�

�2

k2
?

� Z Q2
0

k2
?

dk
0 2

k
0 2
Ng(k

0 2
?
) : (59)

On account of the k2
?
-dependence of �s (34) and �� (52), the corresponding solutions are

obtained as:

(i) Ng(k
2
?
)
��
Q2�k2

?
�Q2

0
= Ng(Q

2)

�
ln(Q2=�2)

ln(k2
?
=�2)

��1=4 exp
h
2
p
(CA=�b) ln(Q2=�2)

i
exp

h
2
p
(CA=�b) ln(k

2
?
=�2)

i

(ii) Ng(k
2
?
)
��
Q2
0�k

2
?
��2 = Ng(Q

2
0) exp

�
� �

2

�2

k2
?

1 + [1 + ln(k2
?
=Q2

0)]
2 � 2k2

?
=Q2

0

ln(Q2
0=�

2)

�
:(60)

In the region (i) Q2 � k2
?
> Q2

0, the multiplicity coincides with the QCD result [33],

characterized by a rapid growth as the gap between the hard scale Q2 and k2
?
increases.

On the other hand, in the region (ii) Q2
0 � k2

?
> �2, the multiplicity becomes strongly

damped. The exponent is always negative so that the number of gluons rapidly decreases

and vanishes at k2
?
= 0, ensuring that no gluons and therefore no color 
uctuations exist

at distances R >���1. This behaviour is evident in Fig. 8, where Ng(k
2
?
) is plotted versus

�2=k2
?
, starting from �2=Q2 � 1.

It must be emphasized that the perturbative evolution of gluons is cut o� at Q2
0, and in

the transition region Q2
0 � k2

?
> �2 the evolution is purely non-perturbative, although it is

described here as an extension of the perturbative evolution above Q2
0 and treated on the

same footing.

3.3 Flux tube con�gurations of gluons interacting with the mean �eld �

In Secs. 3.1 and 3.2 the evolution of the gluon con�guration between the fragmenting q�q

pair was analyzed in terms of the non-perturbative modi�cation as a function of ��(k
2
?
) =

~�2�=(4�). However, the coupling strength �� or ~�� between the gluon �eld and the �-

�eld must be determined by the dynamics itself, since ~�� is the Fourier transform of the

�-dependent coupling function �(�) in eq. (8).
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The dynamics is governed by the the coupled system of equations eqs. (19)-(21), which

can now be solved numerically by utilizing the de�nition (36) together with the general

solution for the gluon distribution given by (46) and (47). To do so, one obtains the

expectation value of eq. (20) by multiplying with the multigluon state vector hP j and
jP i from the left and right, respectively. In the mean �eld approximation, � = �� is a c-

number function, so that this operation a�ects only the F��F
�� term which gives the gluon

distribution by virtue of (36). With the explicit solution of the gluon distribution (56) and

(57) inserted, the remaining task is to solve the single equation (20) for the �-�eld. (Recall

that the equation (21) for the U -�eld couples only to � and is in principle readily solved

once the solution for � is known.)

An interesting phenomenological application [20, 22, 41] is to calculate the string tension

t, which characterizes the linearly rising potential between the q�q-pair due to the gluon in-

teractions. usually obtained by �tting heavy quarkonium spectra [42] with a non-relativistic

potential of the form

Vq�q(r) = �a
r

+ t r2 ; (61)

where a = 4�s=3. Typical �t values for the string constant t range from 750 MeV/fm to

950 MeV/fm.

Here I shall estimate the string constant within the present approach on the basis of the

equations of motion (19)-(21). Similar calculations have been done earlier in the framework

of the static MIT bag model [43] and the Friedberg-Lee soliton model [22, 41].

In the following I will consider the fragmentation of a heavy q�q pair within an adiabatic

approximation. That is, a quasistatic treatment is employed which neglects the motion

of the q�q pair and considers the instantanous gluon con�guration in between the pair.

This should provide is a reasonable approximation, because one can view the ith gluon

as being emitted from the q�q pair plus gluons g1; g2; : : : ; gi�1, with the spatial coordinates

of these "sources" being frozen during the emission of the gluon i [44]. In a space-time

picture of the fragmentation of the q�q and its emitted gluons it is the change of the typical

transverse momenta k? or transverse separation r? / k�1
?

of gluons which governs the

dynamical transition from short distance, uncon�ned regime to long distance, con�ned

stage [2], because there must be a critical separation of color charges beyond which the

total color is screened. In the present case, the role of this non-perturbative phenomenon is

played by the �-�eld. In the adiabatic approximation, there is no explicit dependence on the
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longitudinal variables here, because the separation in the transverse plane is independent

of when during the cascade, or where along the jet axis, a gluon was produced [45].

Thus, within the adiabatic treatment, one may use the separation Rq�q of the receding

q�q as a measure for the typical gluon transverse momenta k2
?
� R�2q�q . By minimizing the

energy per unit length of this system, one obtains then for each gluon con�guration at a

given Rq�q the form of � and the string tension t. The total energy per unit length, the

string tension t, receives contributions from both the �-�eld in the low energy regime and

the gluon �eld in the high energy domain, which on account of the the trace anomaly (3)

is given by:

t � E

Rq�q
=

Z
dA

�
1

2
jr�j2 + V (�)

�
+

Z
dA �(�) hP j�(�s)

4�s
F��;aF

��
a jP i : (62)

Here A is the cross-sectional area of the 
ux tube of the gluons between the q�q, perpendicular

to Rq�q . In one loop order the beta-function is � = �b�2s with b = 33=(12�) for Nf = 0.

Then, by using eq. (36) to express the second integral in terms of the gluon distribution

g(x; k2
?
), assuming cylindrical symmetry along the Rq�q axis, and minimizing t with respect

to �, one arrives at the following non-linear integro-di�erential equation (r is the radial

coordinate perpendicular to Rq�q):

�
�
d2

dr2
+

1

r

d

dr

�
�(r) +

@V (�)

@�
+ (P+)2

b

2
Ig(Rq�q)

Z
dr r �(�) = 0 ; (63)

where

Ig(Rq�q) =

Z (P+)2

1=Rq�q

d2k? �s(k
2
?
)

Z 1

0

dx x g(x; k2
?
) : (64)

In pulling Ig out of the r-integral, it is assumed that the spatial distribution of gluons

is approximately homogenous. Eq. (63) determines the energetically most favorable 
ux

tube con�guration. However, a physical meaningful 
ux tube solution has to satisfy the

constraint that the system as a whole, q�q plus gluons, must form a global color singlet,

implying that all of the color 
ux that originates from the q must be directed towards the

�q. In other words, the total color electric 
ux through a plane between the q and �q must

be equal the color charge Qq = gsTa on one of them [22, 41]. This translates into the

requirement that the gluons in the 
ux tube streched between q and �q with certain Rq�q

carries a total color charge squared that is equal to Q2
q , the one of q�q. De�ne

�g =
(P+)2

A

Z
d2r Jg(Rq�q) ; (65)
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where A is the cross-sectional area of the 
ux tube, and

Jg(Rq�q) =

Z (P+)2

1=Rq�q

d2k?

Z 1

0

dx g(x; k2
?
) ; (66)

is the total number of gluons radiated from the initial point of q�q-production up to Rq�q.

Then the above constraint then reads

�g
!
= Q2

q = h g2s Ta � Ta i =
16�

3
�s(k

2)

����
k2=R�2

q�q

: (67)

Combining eqs. (63)-(67), one arrives at

�
�
d2

dr2
+
1

r

d

dr

�
�(r) +

@V (�)

@�
+

8�

3
b �s(R

�2
q�q )

Ig(Rq�q)

Jg(Rq�q)

Z
dr r �(�) = 0 ; (68)

which is now independent of the overall boost momentum (P+), and thus of the initial hard

scale Q2 = (P+)2, as it should be.

Solving eq. (68) numerically [46], subject to the the boundary conditions �0(0) = 0

and �(1) = �0 yields the solutions for t, � and �(�) shown in Fig. 9. The reasonable

parameter values [17] �0 = f� and bag constant B = (150MeV)4 were chosen for V (�),

eq. (14), and the coupling function � was taken of the form (11). One sees that with

increasing separation Rq�q of q and �q, the gluons �rst multiply which results in a growing

string tension, but then gluon condensation sets in, yielding a saturating behaviour of

t with the string constant approaching t ' 1 GeV/fm (Fig. 9a). For Rq�q � 1 fm the

gluon �eld is completely con�ned within a 
ux tube of radius r ' 1 fm (Fig. 9b). For

comparison, a simple estimate within the MIT bag model [43] gives t = 910 MeV/fm, but

a rather large tube radius of 1.6 fm. Detailed calculations with in the soliton model [22]

gave qualitatively similar results. Finally, Fig. 10 shows in correspondance to Fig 9b the

form of the potential V (�) � V (�; U)jmq=0, de�ned in eq. (14), and the e�ective squared

mass M2(�) = d2V (�)=d�2 for the same parameter values as above.

4. SUMMARY AND OUTLOOK

The e�ective QCD �eld theory approach presented here to describe the dynamics of high

energy partons in the presence of a collective con�nement �eld provides a framework that

has the potential to be developed towards a systematic description of the hadronization

mechanism. The corresponding e�ective action has been constructed such that it

(i) incorporates both parton and hadron degrees of freedom;
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(ii) recovers the exact QCD (Yang-Mills) action with its symmetry properties at short

space-time distances;

(iii) merges into an e�ective low energy description of hadronic degrees of freedom at large

distances;

(iv) allows for a dynamical description of parton-hadron conversion on the basis of the

resulting equations of motion.

As an exemplary demonstration, the approach was applied to the evolution of a fragmenting

q�q pair with its generated gluon distribution, starting from a large hard scale Q2 all the

way downwards to �2. The transformation of the initially high virtual gluons to a gluon

condensate �eld � was studied in terms of the coupled evolution of the gluon distribution

and the mean �eld �. The solution of the equations of motion yields color 
ux tube

con�gurations with an associated energy per unit area (string tension) of about 1 GeV/fm,

consistent with the common estimates.

In perspective, important points to be addressed in the future, are:

(i) The establishment of the relation with the exact renormalization group equation for

the e�ective action as derived by Reuter and Wetterich [5] is desirable. This would

allow to quantify the e�ect of consecutively integrating out all quantum 
uctuations

of gluons and quarks with momenta larger than some infra-red cut-o� scale Q0, the

variation of which determines the con�nement dynamics.

(ii) With the inclusion of quark degrees of freedom and possibly quantum 
uctuations of

the �- and U -�elds, one could calculate e.g. the mass spectrum of glueball and meson

excitations as physical hadrons. This would provide a complete description from a

physical initial state, via a not directly observable decon�ned partonic stage, up to

the formation of observable hadronic excitations.

(iii) Ultimately one would like to address the microscopic dynamics in full 6-dimensional

phase-space [47], with explicit inclusion of the color degrees of freedom and the local

color stucture. This could be realized in a transport theoretical formulation similar

as in Ref. [48], in which the partons propagate with a modi�ed propagator that

embodies the e�ects of the mean �eld � in the e�ective mass. As the con�ning �eld
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becomes signi�cant the e�ective mass increases and asymptotically becomes in�nite

so that the propagation of color 
uctuations ceases.

(iv) The possible applications are manifold. One particular interest is the expected

(non)equilibrium QCD phase transition in high energy systems as in heavy ion col-

lisions or the early universe, an issue which could be addressed along the lines of

Campbell, Ellis and Olive [17] in combination with the space-time evolution of the

multi-parton system [47] in the presence of the collective �eld.
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APPENDIX A

For completeness a "derivation" of the evolution equation (26) is given in the spirit of

Lipatov [49]. The full propagator of a single gluon of momentum k may be represented as

D��(k) =
d��(k)

k2
�
1 + �(k2)

� � D0
��(k)

1 + �(k2)
; (69)

where D0
�� = d��=k

2 is the free propagator, and with the choice of gauge for the gluon �elds

� �A = 0,

d��(k) = g�� � k��� + k���

k � � ; d��(k) = 2 (70)

and k�d��(k)jk2=0 = 0 guarantees that only 2 physical (transverse) gluon polarizations

propagate on mass shell. The self-energy part

�(k2) = �g$g(k
2) + �g$�(k

2) (71)

contains both the gluon self-interactions and the "medium" corrections due to the coupling

to the con�ning background �eld � Expanding �g$g and �g$� in powers of the squared

couplings g2s and �
2
�, respectively, the contribution to one loop order is determined by the

total gluon "decay" probability, i.e. the probability of losing a gluon out of a momentum

space element between k2 and k2 + dk2:

wg(k
2) =

@

@ ln(k02=�2)

�
�g$g(k

02) + �g$�(k
02)
�
k02=k2

� wg$g + wg$� : (72)

Here, wg$g and wg$� are the inclusive probabilities for a gluon to emit (absorb) another

gluon, due to the self-interaction, respectively the interaction with the �-�eld, corresponding

to the diagrams in Fig. 4,

wg$g(k
2) =

Z 1

0

dx

Z 1

x

dx0

x0
�
wg!gg(x

0; x; k2) + wgg!g(x
0; x; k2)

�
wg$�(k

2) =

Z 1

0

dx

Z 1

x

dx0

x0

�
wg!g�(x

0; x; k2) + wgg!�(x
0; x; k2)

�
: (73)

The individual contributions in square brackets w(x1; x2; k
2) can be obtained in the standard

fashion [50, 51] by evaluating the cross-section ratios (c.f. Appendix B)

k2
?

�(0)
d�(1)

dzdk2
?

=
g2

8�2

a!bc(z) ; (74)

where g denotes the appropriate coupling for the process under consideration (here g = gs

or g = ��), �
(0) is the Born cross-section for the production of a gluon a and �(1) represents

the �rst order correction associated with the "decay" a! bc.
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For the process g ! gg and its reversal gg ! g the probability distributions (33) are

well known [50, 38]. Assigning the momentum fractions as x1 ! x2; (x1 � x2) for g ! gg

and x1; (x2 � x1)! x2 for gg ! g, one has

wg!gg(x1; x2; k
2) =

�s(k
2)

2�

g!gg

�
x2

x1

�

wgg!g(x1; x2; k
2) =

�s(k
2)

2�

�
8�2 cgg!g

�2

k2
x1(x2 � x1)

x22

�

g!gg

�
x1

x2

�
; (75)

where in the second expression the factors in square brackets arise from the di�erence

of phase-space and 
ux factors for fusions compared to branchings. The color factor is

cgg!g = 1=8 and


g!gg(z) = 2CA

�
z(1� z) + z

1� z +
1� z
z

�
; (76)

where CA = Nc = 3, and z is the fraction of x-values of daughter to mother gluons.

The new, additional processes are the friction process g ! g�, corresponding to energy-

momentum transfer from gluons to the �-�eld, and the fusion process gg ! �, by which

two gluons couple color neutral to the �-�eld and "annihilate" 4. As outlined in Appendix

B, one arrives at (with the assignment x1 ! x2; (x1�x2) for g! g� and x1; (x2�x1)! x2

for gg! �)

wg!g�(x1; x2; k
2) =

��(k
2)

2�

g!g�

�
x2

x1

�

wgg!�(x1; x2; k
2) =

��(k
2)

2�

�
8�2 cgg!g

�2

k2
x1(x2 � x1)

x22

�

�!gg

�
x1

x2

�
; (77)

where cgg!� = 1=8, and


g!g�(z) =
1

4

�
1 + z2

1 � z

�


�!gg(z) = 8

�
z2 � z +

1

2

�
: (78)

The total interaction probability wg (72) determines via the unitarity condition (30)

the Sudakov formfactor Fg,

Fg(Q
2; k2) = exp

"
�
Z Q2

k2

dk
0 2

k
0 2
wg(k

0 2)

#
(79)

4Since the conversion of partons into hadrons in the process of fragmentation is an irreversible process,

the spontanous production of gluons by the �-�eld �! gg, as well as the energy transfer from the �-�eld to

the gluons, g�! g, are omitted. These latter interactions would counteract the transition, which certainly

is possible in the sense of local 
uctuations, but globally, and in the average, the parton-hadron conversion

is a one-way process in the present context.
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which is the probability that a gluon does not at all interact (i.e. emit or absorb other

gluons) while degrading its virtuality from Q2 to k2.

The self-energy part (71) is now readily evaluated on the basis of eq. (72), and inserted

in the representation (69), one obtains the single gluon propagator at one loop order,

D��(k) = D0
��(k)

"
1 +

Z Q2

k2

dk
0 2

k
0 2

Z 1

x

dx0

x0
w(x0; x; k2)

#
: (80)

The corresponding "jet calculus" [27] Greens function Dg(x; k
2; x0; Q

2) of eq. (26) describes

how a system of gluons evolves in the variable x and the virtuality k2 through the gluon

self-interactions and in the presence of the con�ning background �eld �. It is given by

the convolution of the single gluon propagator (69) with the gluon distribution function

g(x; k2). De�ning

Dg(x; k
2; x0; Q

2) � g��D
��(k) 
 g(x; k2) ; (81)

the self-consistent iteration of one loop contributions to all orders within the LLA gives the

evolution equation for the gluon distribution with respect to the variables x and k2:

k2
@

@k2
g(x; k2) � k2

@

@k2
Dg(x; k

2; x0; Q
2)

= +
�s(k

2)

2�

�Z 1

x

dx0

x0
g(x0; k2) 
g!gg

�
x

x0

�
� 1

2
g(x; k2)

Z 1

0

dz 
g!gg (z)

�
k2�Q2

0

� �s(k
2)

2�

�
8�2

�2

k2

� �Z 1

0

dx0 g(2)(x; x0; k2) �gg!g (x; x
0; x+ x0)

� 1

2

Z 1

x

dx0 g(2)(x� x0; x0; k2) �gg!g (x� x0; x0; x))
�
k2�Q2

0

+
��(k

2)

2�

�Z 1

x

dx0

x0
g(x0; k2) 
g!g�

�
x

x0

�
� g(x; k2)

Z 1

0

dz 
g!g� (z)

�

� ��(k
2)

2�

�
8�2

�2

k2

� �Z 1

0

dx0 g(2)(x; x0; k2) �gg!� (x; x
0; x+ x0)

�
(82)

where the factor 1/2 in the �rst (third) term arises from the indistinguishability of the two

gluons emerging from (coming in) the branching (fusion) vertex. The function g(2)(x1; x2; k
2)

denotes the 2-gluon density, and the gluon fusion functions � are de�ned in accord with

(75) and (77) as

�12!3(x1; x2; x3) = c12!3

x1x2

x23

3!12

�
x1

x3

�
= c12!3

x1x2

x23

3!21

�
x2

x3

�
: (83)

with x3 = x1 + x2. Changing to variables (x; x1; k
2) ! (x; z; k2

?
) and using (83), one

immediately arrives at eq. (31).
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APPENDIX B

Here I will outline the explicit calculation of the interaction probability densities 
g!g�

and �gg!� that appear in the evolution equation (82) or (38) in addition to the usual

probability densities 
g!gg and �gg!g . Notice that the vertex corresponding to three gluons

coupling to the �-�eld is unphysical and therefore to be excluded, because � is required to

be a color singlet �eld. On the other hand, the coupling of four gluons to � is possible,

however in the LLA such diagrams are kinematically suppressed and can be neglected [2].

Let �(N) denote the spin and color averaged cross-section for the production of a gluon at

orderN in perturbation theory. The probability distribution 
a!bc in the variable z = xb=xa

for the emission of a gluon b in the process a! bc, is the given by the ratio of cross-sections

1

�(0)
d�(1)

dz
=

g2

8�2

a!bc(z)

dk2
?

k2
?

; (84)

where g is the appropriate coupling of the process, �(0) is the lowest order cross-section for

the production of a gluon a and �(1) represents the �rst order correction associated with

the "decay" a! bc. The vertex function associated with the general gg� coupling is easily

obtained from the interaction Lagrangian L[ ;A; �], eq. (8), as:

V ab
�� (k1; k2; k) = �~��(k) �ab

�
(k1 � k2)g�� � (1� a) k1�k2�

�
(85)

where ~��(k
2) denotes the Fourier transform of �(�) in coordinate space, k1, k2 are the gluon

momenta and the convention is that all four-momenta are directed into the vertex. The

process g ! g� gives then (setting a = 1):

�(1)(k21) =

Z
d3k

(2�)32k0

2

(k1 � k)2�
(0)(k21) jMj2 ; (86)

where

jMj2 =
1

16

X
a;a0;b;b0

X
s1;s2

V ab
��V

�a0b0

�0�0 e��(s1)e
��(s2)e

�0(s1)e
�0

2 (s2) ; (87)

where the factor 1/16 in front results from the averaging over initial 2 transverse polariza-

tions and 8 color degrees, and it is summed over �nal color and spin polarizations si. The

sum over gluon polarizations s1; s2 must be performed over transverse polarizations only.

This is achieved by the projection

X
si

e�(si)e
� �(si) = �g�� +

k�k�i + k�k�i
(k � ki) � k2 k�i k

�
i

(k � ki)2 : (88)
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Assigning the momenta k� = (k+; k�;~k?) of incoming (outgoing) gluon k1 (k2) and the

momentum k transferred to the �-�eld as

k1 =

�
k+1 ; 0;~0?

�

k2 =

�
(1� z)k+1 ;

k2
?

(1� z)k+1
;�~k?

�

k =

�
zk+1 ;

k2
?

zk+1
;~k?

�
; (89)

and carrying out the appropriate change of integration variables, the result is

�(1)(k21) = �(0)(k21)
~�2�
8�2

Z k21

k20

dk2
?

k2
?

Z
dz

�
1

4

�
1� z + 2

z

1� z
��

: (90)

Hence, one can read o�


g!g�(z) =
k2
?

�(0)
d�(1)

dzdk2
?

=
1

4

�
1 + z2

1� z
�
: (91)

In complete analogous manner the process gg ! � can be calculated. The procedure

is to evaluate � ! gg, with incoming momentum k and the outgoing momenta k1 and

k2. Using the formula (83) one obtains the 2-gluon fusion function for the reverse process

gg! �. The result is:

�gg!�(x1; x2; x3) = cgg!�
x1x2

x23

�!gg

�
x1

x3

�
; (x3 = x1 + x2) ; (92)


�!gg(z) = 8

�
z2 � z +

1

2

�
: (93)
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FIGURE CAPTIONS

Figure 1: Typical shape of V (�; U), eq. (14), with @V=@� = 0 at � = �0 and V = B at

� = 0, where B = b�40=4 is the bag constant.

Figure 2: Schematics of the parton shower evolution of a fragmenting q�q pair with its

gluon con�guration as the virtualities of the partons gradually degrade, starting from the

hard scale Q2. At large gluon virtualities k2 the shower develops by perturbative branching

processes, but at k2 ' Q2
0 non-perturbative fusion and friction processes set in, such that

at k2 = �2 no colored 
uctuations remain.

Figure 3: Diagrammatic representation of the two-point Greens function of gluons, in-

cluding both the gluon (self) interactions and the e�ective interaction with the con�ning

background �eld � (indicated by the dashed lines). This gluon propagator describes the

evolution of a gluon from a chosen cascade branch in x and k2, starting from x0 and Q
2.

Figure 4: Diagrams for the interaction probabilities that determine the evolution of the

gluon distribution according to (38). In the probabilistic interpretation terms with positive

signs leadt to a gain of gluons and terms with negative sign to a loss. The gluon with

momentum fraction x is the "observed" particle.

Figure 5: The anomalous dimension 
(!; k2
?
) of eq. (44) versus ! for di�erent values of

k2
?
.

Figure 6: Comparison between exact expression for the anomalous dimension (44) and

the approximations (50) [top] and (51) [bottom].

Figure 7: Behaviour of the distributions xg(x; k2
?
) of (56) and (57) for di�erent values of

k2
?
. Top part shows result for a 
at initial distribution xg(x;Q2) = a(1� x)c with a = 2:8,

c = 5:3, and bottom part for a Gaussian initial distribution xg(x;Q2) = 1=
p
2�c2 exp[�(x�

d)=(2c2)] with c = 0:3, d = 0:5. (Q = 3:5 GeV, Q0 = 1 GeV, � = 0:23 GeV).

Figure 8: Evolution of the gluon multiplicity Ng(k
2
?
) from Q2 down to �2. At �rst the

gluons multiply, but at k2 � Q2
0 a condensation sets which is complete at �2 (Q0 = 1 GeV,

� = 0:23 GeV).
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Figure 9: a) String tension t versus separation Rq�q of the q�q pair, and b) the solutions

for � and � at Rq�q = 1 fm versus r which is the radial coordinate perpendicular to Rq�q

(�0 = f� and B
1=4 = 150MeV).

Figure 10: a) Form of the potential V [�(r)] and b) the e�ective squared mass M2[�(r)]

of the � �eld, both at Rq�q = 1 fm. (�0 = f� and B1=4 = 150MeV).
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Fig. 5
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Fig. 6
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Fig. 7
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Fig. 8
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Fig. 9
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Fig. 10
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