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Winding number transitions in the two-dimensional softly broken O~3! nonlinears model are studied at
finite energy and temperature. New periodic instanton solutions which dominate the semiclassical transition
amplitudes are found analytically at low energies, and numerically for all energies up to the sphaleron scale.
The Euclidean periodb of these finite energy instantonsincreaseswith energy, contrary to the behavior found
in the Abelian Higgs model or simple one-dimensional systems. This results in asharp crossoverfrom
instanton-dominated tunneling to sphaleron-dominated thermal activation at a certain critical temperature.
Since this behavior is traceable to the soft breaking of conformal invariance by the mass term in thes model,
semiclassical winding number transition amplitudes in the electroweak theory in 311 dimensions should
exhibit a similar sharp crossover. We argue that this is indeed the case in the standard model for
MH,4MW . @S0556-2821~96!01324-0#

PACS number~s!: 11.15.Kc, 11.10.Lm, 11.10.Wx, 12.15.2y
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I. INTRODUCTION

Gauge theories of the strong and electroweak interactio
are characterized by a multiple vacuum structure. Tunneli
transitions between different vacua are responsible for phy
cally interesting effects, such as baryon-number violation
the electroweak theory@1#. At zero temperature and energy
these winding number transitions are dominated by the
miliar zero energy instanton solutions of the Euclidean fie
equations, with vacuum boundary conditions@2#.

At finite temperatures thermal activation over the pote
tial barrier separating the multiple vacua can take place,
addition to quantum tunneling. The static classical solutio
whose energy is equal to the top of this barrier betwe
neighboring vacua is the sphaleron@3#. At sufficiently high
temperatures, transitions between different winding numb
sectors are dominated not by quantum tunneling but by cl
sical thermal activation, with a rate controlled by the energ
of the sphaleron@4#.

In simple one-dimensional quantum mechanics, as t
temperature is increased, there is typically a smooth cro
over from zero energy quantum tunneling via the instanton
high temperature thermal activation via the sphaleron@5#.
The corresponding classical solutions which interpolate b
tween these two situations are known as periodic instanto
~or ‘‘calorons’’! @6,7#. These finite energy solutions of the
classical Euler-Lagrange equations possess turning point
finite Euclidean timeb, and dominate the semiclassical tran
sition rate at a temperature related to the Euclidean period
kBT5\/b. ~Hereafter, we set\5kB5c51, so that
T5b21.!

Similar considerations are expected to apply to finite e
ergy winding number transitions in quantum field theor
although there the situation is much less well explored a
540556-2821/96/54~12!/7774~20!/$10.00
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very few of the required Euclidean periodic classical solu
tions are known. In particular, it is not cleara priori if the
smooth crossover of the transition rate from quantum tunne
ing to thermal activation is a generic feature, or if not, on
what aspects of the field theory this behavior depends. O
purpose in this paper is to investigate this question by findin
and studying the finite energy periodic instanton solutions i
a specific model, the O~3! nonlinears model in two dimen-
sions, modified by a suitable conformal symmetry-breakin
term. This model is chosen for the many features it shares
common with spontaneously broken gauge theories in fou
dimensions, and in particular, the standard model of elec
troweak interactions. In the SU(2)3U(1) electroweak
theory the rate of baryon-number-violating winding transi-
tions at high energies remains an open question, despite co
siderable efforts in recent years@8#. A detailed study of the
solutions of the classical nonlinear field equations of th
theory appears to offer the best hope of addressing this iss
@9,10#.

The O~3! s model possesses the advantage of bein
simple enough that the zero energy instanton, the finite e
ergy sphaleron, and the spectrum of linearized fluctuation
about each of these solutions are all known analytically
These analytic results are fixed markers in the classical s
lution space that can be used as launching points for a d
tailed numerical study of the finite energy periodic instanton
solutions, and which provide useful nontrivial checks on th
numerical methods. The numerical techniques developed
the context of thes model may be applied then with consid-
erably more confidence to four-dimensional gauge theorie
such as the electroweak theory. The present work may b
regarded as the first step in this program.

The chief result of our study of periodic instanton solu-
tions in the softly broken O~3! s model is that the Euclidean
7774 © 1996 The American Physical Society

https://core.ac.uk/display/25170174?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ra-

e

y

e
n
.

d
-
te
a

e

-

t-
h
ce
o

c-

e
n-

e
t

t

54 7775WINDING TRANSITIONS AT FINITE ENERGY AND . . .
period b of the finite energy instanton solutionsincreases
with increasing energy: i.e.,

db~E!

dE
.0 , ~1.1!

for all energies from zero up to the sphaleron. Since
Euclidean solution with periodb is associated with the wind
ing number transition amplitude at temperatureT5b21, one
might expect that it should beT which increases with energy
and not b. Indeed, in simpler models, such as the on
dimensional quantum pendulum or the two-dimensio
Abelian Higgs model, the veryoppositebehavior to Eq.~1.1!
is found. Our analytic and numerical study of periodic i
stanton solutions in the O~3! model will show that Eq.~1.1!
holds all the way up to the sphaleron energy, where the
riodic instantons merge with the sphaleron. Continuing f
ther to energiesE.Esph results in the periodic instanton so
lutions moving off into the complex domain with stil
increasing real period.

As we shall see, the main physical consequence of
increase of period with energy is that there is a sharp cro
over from instanton-dominated quantum tunneling
sphaleron-dominated thermal activation at a certain criti
temperature~of the order of the mass in the model!, rather
than a smooth transition between the two. Since this fea
is traceable to the conformal invariance of the unbroken O~3!
model, the same sharp crossover from quantum tunnelin
thermal activation should be expected in four-dimensio
gauge theories where the conformal and spontaneous g
symmetry breaking arises from the Higgs sector vacuum
pectation value. Thus, the global picture which emerges fr
our study of the space of classical Euclidean solutions
their contribution to fixed energy and fixed temperatu
winding number transitions in the O~3! model should be di-
rectly applicable to the electroweak theory. We present e
dence that this is indeed the case, at least for not too la
Higgs self-coupling, i.e., for a Higgs boson ma
MH,4MW .

The structure of the paper is as follows. In the next s
tion we discuss the general properties of periodic instan
solutions and their contribution to winding number transiti
rates at finite energy and temperature, in the context o
quantum mechanical model with only one degree of fre
dom, viz., the simple pendulum. In Sec. III we review th
O~3! nonlinears model both before and after introducing th
explicit soft symmetry-breaking mass term. The mass term
necessary in order for a finite energy sphaleron solution
exist. In Sec. IV we consider finite energy instantons in t
softly brokens model, employing analytic techniques at lo
energies where perturbation theory about the zero energy
stantons of the unbroken model is applicable, and discus
the behavior of the periodic solutions near the sphaleron
ergy Esph. In Sec. V we describe our numerical techniqu
and present results for the finite energy instanton soluti
smoothly interpolating between the two limits. We conclu
in Sec. VI with a discussion of our results, and their imp
cations for the analogous winding number transitions in
electroweak theory.
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II. PERIODIC INSTANTONS IN QUANTUM MECHANICS

At finite temperature the partition function for a quantum
system may be expressed as a path integral over configu
tions with fixed Euclidean periodicityb:

Z~b!5E
q~0!5q~b!

@Dq#exp~2S@q;b#!, ~2.1!

whereS is the classical Euclidean action evaluated on th
configuration over one periodb. If there is a small coupling
in the problem which can be scaled out of the action b
S5s/g2 and we consider the weak coupling limitg2→0,
then the path integral is dominated by the extrema of th
classical action, i.e., solutions of the classical Euclidea
equations of motion obeying periodic boundary conditions

Strictly speaking only stable solutions, i.e., local minima
of the action, can contribute to the true equilibrium partition
function at finite temperature. However, we are intereste
here in calculating the rate of real time winding number tran
sitions at finite temperature or energy. In order to contribu
to such a transition rate a classical solution should not be
strict minimum but rather a saddle point possessingexactly
one negative mode direction. Analytic continuation of the
semiclassical approximation toZ(b) in this one negative
mode direction leads to an imaginary part which may b
interpreted as a real time transition rate@11#. A similar con-
clusion follows from an analytic extension of the path inte
gral in Eq.~2.1! to complex-valued configurations@12#.

In systems with only one degree of freedom it is straigh
forward to find the relevant periodic instanton solutions wit
a single negative mode direction by simple quadrature. Sin
the energy is an integral of the motion, we have simply t
calculate

b~E!5 R dq

A2V~q!22E
~2.2!

over the periodic trajectory with fixed energyE beginning
and ending at the same turning point of the potentialV(q).
The Euclidean action corresponding to this periodic traje
tory is

S~b!5 R dqA2V~q!22E~b! , ~2.3!

whereE(b) is obtained by inverting Eq.~2.2!.
In order to make the discussion definite let us consider th

case of a simple pendulum with the classical periodic pote
tial,

V~q!5v2~12cosq!. ~2.4!

The periodic local minima of this potential atq52np cor-
respond to the periodic ground-state vacuum structure w
find in non-Abelian gauge theories. The local maxima a
q5(2n11)p are the static but unstable ‘‘sphaleron’’ solu-
tions of this simple model with energy:

Esph52v2. ~2.5!

In this case the ratio of the zero point energyv/2 of the
harmonic potential in the vicinity of the minima to the heigh
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of the potential barrier between minima, i.e.
v/2Esph5(4v)21 is the parameter which must be small~in
units of \5I51) in order to justify a semiclassical treat-
ment of the quantum pendulum with moment of inertiaI
about its pivot point.

At very low temperatures and energies the winding num
ber transitions between neighboring minima at 0 and 2p are
dominated by quantum tunneling with a rate of orde
exp(22S0) whereS0 is the classical action for the zero en-
ergy kink solution,

cosS q0~t!

2
D 52tanh~vt!, ~2.6!

which interpolates between the two minima in infinite Eu
clidean timet. The antikink solution is obtained from Eq.
~2.6! by time reversalt→2t and the periodic trajectory
beginning and ending at the same vacuum is a widely sep
rated kink-antikink pair with total action 2S0516v@1,
which implies that tunneling is exponentially suppressed
zero temperature or energy.

At the same time it is quite clear that this exponentia
suppression disappears at temperatures or energies com
rable toEsph when the pendulum can jump over the barrie
between the neighboring minima by classical thermal activ
tion. The semiclassical behavior of the transition rate at i
termediate energies and temperatures is easily found anal
cally in the case of the pendulum since both of the integra
~2.2! and ~2.3! may be expressed in terms of the complet
elliptic integralsK andE as

b5
4

v
K ~k! ~2.7!

and

S58v@2E~k!2~12k2!K ~k!#, ~2.8!

wherek is the modulus of the elliptic functions, related to the
energy by

dS

db
5E52v2~12k2! or k5A12

E

2v2. ~2.9!

The actual periodic instanton solutionq(t) with these prop-
erties may be expressed in terms of a Jacobian elliptic fun
tion sn with modulusk by

cosS q~t!

2 D 52ksn~vt,k!→H 2tanh~vt!, E→0,

0, E→2v2.
~2.10!

The corresponding behaviors of the Euclidean period a
action in these limits are

E~b!52v2k82→H 0, b→`,

Esph, b→b2 ,
~2.11!

and

S~b!→H 16v, b→`,

Esph/T2 , b→b2 ,
~2.12!
,
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where

T2[b2
215

v

2p
~2.13!

andk8[A12k2 is the complementary modulus of the ellip-
tic functions.

In the first limitE→0, we recover the vacuum-to-vacuum
kink ~or antikink! of Eq. ~2.6! with periodicityb→`, corre-
sponding to a zero temperature winding transition of the pen-
dulum by quantum tunneling. The second limit,
E→Esph52v2 andb→2p/v corresponds to thermal acti-
vation through the unstable, static sphaleron solution at
q5p halfway between the two neighboring periodic vacuum
states. The action of the periodic instanton solution~2.10!
interpolates smoothly between these two limits, as illustrated
in Fig. 1.

SinceV9(q5p)52v2 the eigenvalues of the second or-
der fluctuation operator of the Euclidean action with periodic
boundary conditions, expanded around the sphaleron solu-
tion, are

ln5S 2pn

b D 22v2. ~2.14!

Hence, there is clearly exactly one negative mode corre-
sponding to the unstablen50 perturbation of the sphaleron
solution in the high temperature regimeb,b2 , whereb2

is just the period of the harmonic oscillation about the in-
verted potential2V(q) atq5p. Thermal activation through
the sphaleron dominates the transition rate for high tempera-
turesT.T2 .

Forb.b2 , i.e., low temperaturesT,T2 , the sphaleron
has more than one negative mode and does not dominate the
semiclassical winding number transition rate. However, in
this low temperature range the periodic instanton given by
Eq. ~2.10! possesses exactly one negative mode by the fol-
lowing standard argument. Since the periodic instanton
obeys the classical Euclidean Euler-Lagrange equation,

d2q

dt2
5V8~q!, ~2.15!

FIG. 1. Exact action, Eq.~2.8! ~solid curve!, and perturbative
action, Eq.~2.26! ~dashed curve! of the periodic instanton solutions
of the simple pendulum model as a function of their Euclidean
periodb. The curves start atb5b252p/v.
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it follows by differentiation that its time derivative is a ze
mode of the second order fluctuation operator: i.e.,

S 2
d2

dt2
1V9~q! D q̇50 . ~2.16!

From the periodic behavior ofq(t) it follows that q̇ has
exactly one node in the interval (0,b), and hence by a stan
dard theorem of second order linear differential operat
the fluctuation operator,

2
d2

dt2
1V9~q!52

d2

dt2
12v2k2sn2~vt,k!2v2 ~2.17!

must possess exactly one mode with no nodes and a l
~i.e., negative! eigenvalue. Hence, the finite energy perio
instanton solution~2.10! dominates the winding numbe
transition rate for temperaturesT,v/2p and energies
E,2v2.

The one negative mode may be understood intuitively
the result of the attractive interaction between a kink a
antikink which binds the pair into a kink-antikink ‘‘mol
ecule’’ and lowers the classical action of the bound perio
instanton configuration. This attractive interaction may
studied analytically in perturbation theory at low energi
Since the same approach proves quite useful in more c
plicated models let us review the general method in the p
dulum problem.

Since the kink solutionq0(t) of Eq. ~2.6! has zero energy
we expect the periodic solution for small but finite energy
consist of an infinite chain of widely separated alternat
kinks and antikinks which are very loosely bound. Thus,
consider the trial configuration

q~t!5H q0~t!, 0<t<b/4,

q0S b

2
2t D , b/4<t<3b/4,

q0~t2b!, 3b/4<t<b,

~2.18!

defined on the fundamental interval@0,b#, and consisting of
a kink at 0 andb and an antikink halfway between atb/2.
This configuration may be repeated indefinitely along tht
axis to form an infinite chain of alternating kinks and an
kinks. The configuration is everywhere continuous and
finite action per period,

S@q~t!#5E
0

b

dtF12q̇21V~q!G
54v2F E

2b/4

b/4

dtsech2vt

1E
b/4

3b/4

dtsech2vS b

2
2t D G

516vtanhS vb

4 D
516v232ve2vb/21O~e2vb!, ~2.19!
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where we retain only the leadingb dependence for large
b.

The configuration~2.18! is also a solution of the Euclid-
ean equation~2.15! except at the matching points,t5b/4
and t53b/4, where the first derivative is discontinuous.
That is,

L@q~t!#[2
d2

dt2
q1V8~q!

522dS t2
b

4 D q̇0S b

4 D12 dS t2
3b

4 D q̇0S 2
b

4 D
54vsechS vb

4 D F2dS t2
b

4 D1dS t2
3b

4 D G .
~2.20!

These delta functions act as point sources for the fiel
q(t). If we expand about the trial configuration~2.18!,
q→q1j, then the nonzero result of Eq.~2.20! implies that
there are linear source terms for the fluctuationsj. The effect
of these sources on the action functional may be found b
shifting the fluctuation

j~t!→j~t!2E
0

b

dt8Gb~t,t8!L@q~t8!# ~2.21!

to remove the linear term@12,13#. The periodic Green’s
functionGb(t,t8) obeys

F2
d2

dt2
1V9~q!GGb~t,t8!5db~t2t8!

5
1

b (
n52`

`

exp@2p i ~t2t8!n/b#.

~2.22!

To leading order in the exponentially small taile2vb/2 we
can replaceV9(q) by its vacuum valuev2 and use the free
~perturbative! periodic Green’s function,

Gb~t,t8!5
1

2v

1

sinh~bv/2!
coshvS ut2t8u2

b

2 D , ~2.23!

for t andt8 in the fundamental interval@0,b#.
To leading order inL@q# the effect of the shift~2.21! to

remove the linear term is to alter the action at quadratic
order: i.e.,

S@q~t!#→S@q~t!#

2
1

2E0
b

dtE
0

b

dt8L@q~t!#Gb~t,t8!L@q~t8!#.

~2.24!

Substituting Eqs.~2.20! and~2.23! into this extra term leads
to the result that the action of the periodic instanton is the
action of the trial kink-antikink configuration~2.19! shifted
by
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28v2sech2S vb

4 D FGbS b

4
,
b

4 D1GbS 3b

4
,
3b

4 D2GbS b

4
,
3b

4 D
2GbS 3b

4
,
b

4 D G5232ve2vb/21O~e2vb!. ~2.25!

Adding this shift to Eq.~2.19! we find that the action of the
periodic instanton in the pendulum model is

S~b!516v264ve2vb/21O~e2vb!, ~2.26!

while its energy becomes

E~b!5
dS

db
532v2e2vb/21O~e2vb! ~2.27!

to leading order in the expansion in powers
E/Esph516exp(2vb/2). The negative second term in Eq
~2.26! is the effect of the short-ranged attractive interacti
between neighboring kinks and antikinks along the chain t
lowers the action functional to first order in the two-bod
interaction exp@2v(ut12t2u)# between them.

This result and this general method of patching toget
zero energy kinks and antikinks can be checked in the p
dulum example by comparison to the exact results~2.7!–
~2.9! in terms of the elliptic functions. Indeed, in the low
energy limit the modulusk→1 and the expansion of the
complete elliptic integrals in powers of the complementa
modulus,

k8[A12k2→4 e2vb/4, ~2.28!

yields

S~b!516vS 12
k82

4
1O~k84! D

516v264ve2vb/21O~e2vb! ~2.29!

and

E~b!52v2k82532v2e2vb/21O~e2vb!, ~2.30!

which coincides with Eqs.~2.26! and ~2.27!. The exact and
perturbative results for the action as a function ofb are
compared in Fig. 1.

As b is decreased from infinity tob2 andE is increased
from zero toEsph, the kink-antikink molecule becomes mor
tightly bound and the nonlinear interactions between the k
and antikink become more important. The action of the
riodic instanton ~2.10! decreases from 2S0516v to
S(b2)5Esphb254pv,2S0 and it is easy to see from th
properties of the elliptic functions involved that the deriv
tive db(E)/dE is negative everywhere in the interva
(0,Esph). At E5Esph, b5b2 , S5Esphb2 , and the periodic
instanton solution~2.10! becomesidentical to the sphaleron.
Beyond this point we no longer have a real periodic insta
ton solution. This presents no difficulty as analytic contin
ation of the solution~2.10! for E.Esph is easily accom-
plished by allowing the modulusk to become purely
imaginary. Then, the solutionq(t) becomes complex~in
fact,p plus a purely imaginary function oft), but the period
~2.7! and action~2.8! remain real and continue to decrease
of
.
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the energy is increased. However, the fluctuation operator
~2.17! now has additional negative modes and hence the ana-
lytically continued solution no longer dominates the winding
number transition rate, its place having been taken by the
static sphaleron forT.v/2p. At b50.61627b2 and
E55.74914Esph, the action~2.8! of the complex instanton
actually plunges through zero and then becomes negative
finally going to2` as E→` and b→0. The situation is
most conveniently illustrated graphically in Fig. 2. Notice
that, in this simple pendulum model the zero temperature
tunneling exponent 2S0 is equal to the thermal activation
Boltzmann exponentEsph/T at T5v/8 which is less than
T25v/2p.

The merging and resplitting off into the complex domain
of the periodic instanton solution asb is decreased through
b2 is an interesting aspect of the behavior we have just
sketched. This may be understood from the fact that near
b5b2 the eigenvalues of the static sphaleron fluctuation
operatorl61 in Eq. ~2.14!, go through zero. Whenever a
zero mode appears in the second order fluctuation operator
this indicates the existence of a nearby solution of the clas-
sical equations. When the zero mode is not related to a sym-
metry of the action but instead appears only at special values
of a parameter in the boundary conditions, then the solution
generally splits off orbifurcatesinto two ~or more! different
solutions as the parameter is varied. Conversely, as the pa
rameter is varied in the opposite direction two or more solu-
tionsmergeat the critical value of the parameter. This is just
the case for the static sphaleron solution as the paramete
b is varied throughb2 . At b2 we find another classical
solution with the same Euclidean period splitting off or
merging with the static sphaleron in the~generally complex!
direction of the zero mode in function space. Hence, near
b5b2 the periodic instanton solution is given approxi-
mately by a small perturbation of the sphaleron in the rel-
evant zero mode direction, viz.,

q~t!.qsph1dcos~vt1f!, ~2.31!

wheref is an arbitrary phase of the periodic solution and
d is a small parameter that goes to zero asb→b2 . The

FIG. 2. The action of the periodic instanton and sphaleron as a
function ofb for the simple pendulum model. The instanton solu-
tion goes from real~solid curve! to complex ~dashed curve! at
b5b2 , where the sphaleron actionS5Esphb ~straight line! is tan-
gent to the curve. Atb5bcr58/v.b2 the zero energy instanton
action 2S0 equals the sphaleron action.
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arbitary phase informs us that in fact there is a one param
U~1! family of periodic instanton solutions which merge an
then resplit off from the sphaleron atb2 which accounts for
the two zero mode directions,n561 atb5b2 .

This situation is also easier to visualize graphically. Let
suppress all but the relevant zero mode directions and re
sent the action functionalS as a function only of a few vari-
ablesj i together with the parameterb. Clearly, asb varies
the surfaces ofS5const change, as does the location of t
extrema,]S/]j i50. At certain values ofb if two of the
extrema split off or merge, there is a zero eigenvector of
second order fluctuation matrix]2S/]j i]j j . Since the num-
ber of extrema is determined by the global properties ofS,
generally the bifurcation of extrema does not mean that th
total number changes discontinuously, but rather that
extrema move into the complex domain as the parameterb is
varied throughb2 . The U~1! invariance of the action unde
the arbitrary phasef implies that a ring of equal action
extrema converges on the sphaleron and then becomes
plex for b,b2 . This action as a function of the three re
evant variablesj61 andj0 is illustrated in Fig. 3.

FIG. 3. The actionS as a function of the variablesj61 ~a!
corresponding to the two near-zero mode directions, and as a f
tion of one of these variables and the negative mode directionj0,
~b! for fixedb slightly larger thanb2 . The ring of extrema ofS in
the first figure@due to the arbitrary phase in Eq.~2.31!# or the two
outer extrema in the second figure correspond to the periodic
stanton solution. Asb approachesb2 these extrema merge with th
sphaleron in the center. Since the periodic instanton solution
one negative mode and lower action than that of the sphalero
dominates the winding number transition rate which is control
by the lowest available saddle in~b!.
eter
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To summarize this discussion, the physical interpretatio
of the properties of the classical Euclidean periodic solution
for winding number transitions in the simple pendulum
model is clear. At low temperaturesT,1/b2 , the periodic
instanton solution dominates the vacuum-to-vacuum windin
number transition amplitude which is exponentially sup
pressed. As the temperature is raised the classical perio
solutions become a more closely spaced chain of kinks a
antikinks with a larger nonlinear interaction between them
that lowers the action. The tunneling rate becomes less su
pressed as the turning points of the periodic solution mov
inwards toward their midpoint atq5p, corresponding to less
quantum tunneling and more thermal motion in the allowe
region. AtT5T25v/2p, the turning points become identi-
cal with the sphaleron atq5p and tunneling has been re-
placed by purely classical thermal activation which is sti
only slightly less exponentially suppressed than the ze
temperature transition rate. At this and all higher temper
tures the winding number transition rate is dominated by th
sphaleron which has exactly one negative mode fo
T.T2 . The periodic instanton solution moves off into the
complex domain and no longer contributes to the transitio
rate, which becomes less and less exponentially suppres
as the temperature is raised further. Finally, at temperatur
greater than of orderEsph52v2, the exponential suppression
disappears entirely and the pendulum swings freely arou
its pivot, the probability of finding the pendulum anywhere
then becoming nearly uniform as the temperature is rais
still further.

This fixed temperature discussion has a natural analog
at fixed energy. The probability of making a winding numbe
transition at fixed energy betweenE and E1dE may be
expressed in the form,

P~E!dE5(
i , f

u^ f uSPEu i &u2, ~2.32!

whereS is theS matrix,PE is a projector onto energyE, and
the initial and final statesu i & and u f & lie in different winding
sectors in the energy intervalE to E1dE. Periodic instan-
tons appear again as the configurations which satura
P(E), and the probability is given, with exponential accu
racy, by the exact analogue of the quantum-mechanical fo
mula @5,7#

P~E!dE;exp@2W~E!#dE, ~2.33!

where

W~E!5S@b~E!#2Eb~E! ~2.34!

is the Legendre transform ofS(b). The relevant instanton
solutions should be considered now as fixed in energy rath
than in periodicityb.

The initial and final multiparticle states can be read of
from the analytic continuation of the finite energy periodic
instanton into Minkowski time at its turning points. Hence
periodic instanton solutions to the classical Euclidean equ
tions contain nontrivial information about multiparticle tran-
sition amplitudes between different winding number secto
at finite energy. It has been suggested that by suitably mo
fying the boundary conditions in the complex time plane
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information about transition amplitudes from few partic
initial states to many particle final states may be obtained
well @10#.

The fixed temperature transition rate can be reconstruc
from the fixed energy tunneling probability by weightin
with a Boltzmann distribution and integrating over energ
To exponential accuracy we have

G~T!5E
0

`

dEexpS 2
E

TDP~E!;E
0

`

dEexpS 2
E

T
2W~E! D .

~2.35!

Evaluating this integral by the method of steepest desc
~which is valid in the limit of arbitrarily weak coupling
v21;g2→0, providedT is coupling independent! gives the
saddle-point condition,

1

T
52

dW

dE
5b~E!, ~2.36!

by the properties of the Legendre transformW5S2Eb.
Hence, we recover the connection between the tempera
and Euclidean periodicity of the instanton solution in th
way. Evaluating the second derivative of the exponent in E
~2.35! at this saddle point yields

2
d2W

dE2
51

db~E!

dE
, ~2.37!

which tells us that only solutions for which the quantity i
Eq. ~2.37! is negativecan contribute to the fixed temperatur
rateG(T). On the other hand, classical solutions for whic
this derivative is positive cannot contribute to the integr
~2.35! since they are localminimarather than maxima of the
the exponent in the integrand. In the case of the simple qu
tum pendulum example considered in detail in this sect
Eq. ~2.37! is indeed negative and the periodic instanto
given by Eq.~2.10! do contribute to the finite temperatur
transition rateG(T) in the expected way, for all temperature
T<T2 . We turn now to the O~3! s model where the behav-
ior of the periodic instanton solutions, the correspondi
quantity~2.37! and the crossover from quantum tunneling
thermal activation, are all quite different.

III. THE O „3… s MODEL

The two-dimensional O~3! nonlinears model is defined
by the Euclidean action functional,

S5
1

2g2E dxdt~]mn
a!2, ~3.1!

wherena(x), a51,2,3 are three components of a unit vecto
nana51, andm5t,x. The constraint on the magnitude o
na at every spacetime point is the source of nonlinearity
the model. A convenient parametrization in which the co
straint is removed at the price of explicit nonlinearity is th
complex field definition,

w[
n11 in2
12n3

. ~3.2!
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Introducing the complex coordinate,

z[x1 i t[reiu, ~3.3!

in terms of the spatial positionx and Euclidean timet en-
ables us to rewrite the action~3.1! in the equivalent forms

S5
2

g2E dxdt
]mw]mw̄

~11w̄w!2

or

S5
4

g2E dxdt
1

~11w̄w!2S ]w

]z

]w̄

] z̄
1

]w̄

]z

]w

] z̄ D , ~3.4!

where the overbar denotes complex conjugation and
w̄5w(z,z̄)5w( z̄,z).

This model possesses some remarkable similarities wit
pure gauge theories in four dimensions. The most importan
properties which concern us here are the conformal invari
ance of the classical actionS, and the existence of a periodic
vacuum structure in the model. In connection with the con-
formal invariance we observe that the coupling constantg is
dimensionless and there is no length scale inS. Correspond-
ingly, the quantum theory is logarithmically renormalizable
and in fact, asymptotically free in the couplingg @14#.

The periodic structure should be clear from the fact tha
an O~3! rotation by 2p around any axis brings the vector
na back to itself. The topological winding number associated
with this field periodicity will be made explicit if we identify
the points at infinity of the complex plane in the coordinate
z5x1 i t. Then the plane has the topology of the sphere
S2. Since the fieldna is also constrained to lie onS2, the
na field is a map fromS2 to S2 which is characterized by an
integer winding number, given explicitly by

Q5
1

8pE dxdtemneabcn
a]mn

b]nn
c

5
1

pE dxdt
1

~11w̄w!2S ]w

]z

]w̄

] z̄
2

]w̄

]z

]w

] z̄ D . ~3.5!

Comparing the latter form of the topological winding num-
ber with the action~3.4!, it is clear that the action in any
integerQ topological sector is bounded from below, i.e.,

S>
4p

g2
uQu ~3.6!

and, moreover, that this bound is saturated by meromorphi
functionsw of the complex variablez or z̄ @15#. In particular,
the conformal map ofS2 to S2, topologically equivalent to
the identity map is the one instanton solution of the Euclid-
ean equations withQ51. This solution can be written in the
form

w0~z!5
r

z
5

r

r
e2 iu, ~3.7!

and has action
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4p

g2
. ~3.8!

The anti-instanton solution is obtained from Eq.~3.7! by
Euclidean time reversal which in thew description is equiva-
lent to complex conjugation.

The instanton and anti-instanton solution have zero E
clidean energy,

E05
1

2g2E dx~2]tn
a]tn

a1]xn
a]xn

a!50 . ~3.9!

They correspond, respectively, to the classical Euclide
path of least action and its time reverse, connecting perio
vacua separated by unit winding number. Together, the
stanton and anti-instanton constitute a periodic trajectory
ginning and ending at the same vacuum state, with one ne
tive mode corresponding to the attractive interaction betwe
them, just as in the simple pendulum model. Hence, in
limit of weak couplingg2→0 the rate for a unit winding
number vacuum-to-vacuum tunneling transition
exp(22S0)5exp(28p/g2) to exponential accuracy, and i
strongly suppressed.

Because of the conformal invariance of the action~3.1!,
the zero energy instanton can have arbitrary scaler. This
implies that the potential energy barrier between windi
number sectors, i.e., the second term of Eq.~3.9! evaluated at
t50, which is proportional tor21, can be made arbitrarily
small and no finite energy sphaleron solution exists in t
symmetric O~3! model. This feature is quite different from
the simple pendulum and Abelian Higgs models but is sha
by the pure Yang-Mills theory in four dimensions.

In the electroweak theory conformal invariance is brok
in the Higgs sector which then makes possible the existe
of a classical sphaleron solution. In the O~3! s model the
conformal invariance may be broken by adding to the act
~3.1! the explicit mass term

Sm5
m2

g2 E dxdt~11n3!, ~3.10!

which also violates the O~3! symmetry and fixes the vacuum
state to ben(vac)

a 5(0,0,21). In the Heisenberg spin lan
guage this corresponds to placing the system in an exte
magnetic field which aligns all the spins in the directio
n(vac)
a at zero temperature.
When thes model has been modified in this way by th

introduction of the soft symmetry-breaking mass termSm ,

S→S1Sm , ~3.11!

the instanton configuration with arbitrary nonzeror in Eq.
~3.7! ceases to be an exact solution of the field equations,
there is now an exact sphaleron solution@16,17#, namely,

n~sph!
1 ~x!522tanh~mx!sech~mx!, n~sph!

2 ~x!50 ,

n~sph!
3 ~x!52112 sech2~mx!, ~3.12!

with finite energy,
u-

an
dic
in-
e-
ga-
en
he

is

g

he

ed

n
ce

on

nal
n

e

but

Esph5
8m

g2
. ~3.13!

Geometrically, this solution maps the infinite spatial line
onto a great circle beginning and ending at the south pole
n(vac)
3 521. The sphaleron lies exactly halfway between the
vacua of winding numbers 0 and 1, andEsph is, therefore, the
height of the potential energy barrier between these vacuu
states, which is now fixed and finite.

Let us recall that the spectrum of time-independent per
turbations around the static sphaleron has exactly one no
malizable negative mode with the eigenfunction
u2
a (x)5„0,sech2(mx), 0… and the eigenvaluee2

2 523m2.
There are two zero modes of the spatial fluctuation operato
corresponding to spatial translations of the sphaleron pos
tion and rotation of its great circle trajectory around then3

axis. The remaining eigenvalues are strictly positive and
form a continuous spectrum withe1

2 >m2. Taking the peri-
odic t dependence of the fluctuations into account yields th
following eigenvalues for the full second order fluctuation
operator of the action around the sphaleron solution:

ln,e5S 2pn

b D 21e2. ~3.14!

Periodic boundary conditions are the appropriate ones fo
contributions to the path integral at finite temperature
T5b21. By the same argument as in the one-dimensiona
pendulum the existence of one and only one negative eige
value ~3.14!, namely, n50 and e25e2

2 523m2 for
b,b2[2p/ue2u52p/(A3m)53.628m21 implies that the
sphaleron configuration contributes to the winding numbe
transition rate for temperaturesT.T2 . The sphaleron con-
tribution to the rate per unit one-dimensional spatial volume
can be expressed in the notation of the present paper in th
form @16#

Gsph5
2

pg2
mT

sin~ ue2u/2T!
exp@2Esph/T2h~m/T!#, ~3.15!

where

h~m/T![2
4m

p E
0

`

dkF 1vk
2 1

1

vk
213m2G ln~12e2vk /T!,

~3.16!

and

vk[Ak21m2. ~3.17!

The asymptotic form of this function in the high temperature
limit mb!1 is

h~m/T!→23ln~m/T!2
4m

pT
ln~m/T!2C1O~m/T!,

~3.18!

where we take this opportunity to correct an error in the
numerical evaluation of the constantC in Eq. ~5.7! of Ref.
@16#, viz. @18#,
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C5
2

pE0
`

dxF 1

x211
1

1

x214G ln~x211!5 ln1252.4849.

~3.19!

As a result, the constant defined in Eq.~5.17! of Ref. @16#
changes as well, becomingK52eC/A358A3513.8564.

The sphaleron thermal activation rate~3.15! is less than
the instanton-mediated tunneling rate unlessT.Tcr where
the crossover temperature,

Tcr5
m

p
.T25A3

2

m

p
, ~3.20!

is defined by equating the quantum tunneling and therm
activation exponents, 2S05Esph/Tcr . Hence, although the
sphaleron provides a second semiclassical escape pat
winding number transitions for all temperatures aboveT2 ,
its contribution is exponentially subdominant until the tem
peratureT>Tcr.T2 where there is asharp crossoverfrom
quantum tunneling mediated by the zero scale singular
stanton to thermal activation via the static sphaleron, in
semiclassical weak coupling approximationg2!1.

The fact that the crossover between winding number tr
sitions dominated by quantum tunneling and those do
nated by thermal activation takes place at a temperatureTcr
greater than that at which then51 eigenvalue~3.14! goes
through zero is a qualitative difference from the situation
one-dimensional quantum mechanics or the Abelian Hig
model in 111 dimensions. In each of these examples t
temperature at which the sphaleron and instanton–a
instanton exponents are equal issmallerthan the correspond
ing T2 of the sphaleron negative mode. In such cases
crossover between zero temperature quantum tunneling
finite temperature thermal activation is smooth and
sphaleron dominates the transition rate for allT>T2 . The
situation for the O~3! s model is illustrated in Fig. 4 where
the numerical results from Sec. V are incorporated.

FIG. 4. The action of the periodic instanton and sphaleron a
function of b for the O~3! s model. As in Fig. 2, the instanton
solution goes from real~solid curve! to complex~dot-dashed curve!
at b5b2 , where the sphaleron actionS5Esphb is tangent to the
curve. However, in contrast with Fig. 2 the value ofbcr at which the
sphaleron action equals the zero energy action 2S0 ~dashed horizon-
tal line! is less thanb2 .
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As is easy to see from scaling arguments~Derrick’s theo-
rem!, the mass termSm now drives the instanton size
r→0, so there is no exact instanton of the form~3.7! except
the singular one withr50. However, for small but finiter
the instanton configuration~3.7! remains an approximate so-
lution for r!m21. Furthermore, forr@r, uw0u!1 and the
field equations linearize for anym. Hence, if mr!1 a
smooth field configuration which is an approximate solution
for all r is

wm~x,t!5mre2 iuK1~mr!, ~3.21!

where the Bessel functionK1 is the solution of the linearized
Euler-Lagrange equations obeying the boundary condition a
infinity. This approximate solution with action close to the
instanton action 4p/g2 contributes to the winding number
vacuum-to-vacuum transition amplitude just as the exact in
stanton~3.7! solution does in the symmetricm50 model.

In either the softly broken or unbrokens model
instanton–anti-instanton configurations are also approximat
solutions to the field equations with finite energy. In the low
energy regime, perturbation theory is valid and one can con
struct the approximate solutions by forming an infinite chain
of alternating instantons and anti-instantons along the Eu
clidean time axis separated by a half periodb/2. At this point
a new parameter, the periodb enters the problem and we
have a finite interaction between instantons and anti
instantons along the chain, just as in the pendulum examp
of the previous section. Hence, we can have a competitio
between the tendency of the scaler to shrink to zero for an
instanton in isolation and the tendency ofr to increase due to
the attractive interaction between neighboring instantons an
anti-instantons, with the two effects balanced at a particula
r which is a function ofb. In order to obtain some detailed
understanding of this qualitative picture and provide a quan
titative benchmark for the numerical methods to follow, we
work out in the next section the periodic instanton solution
for energiesE!Esph where perturbative methods are appli-
cable.

IV. LOW ENERGY PERTURBATION THEORY

Our construction of the periodic instanton solution at low
energies will take place in two steps. Since we are not in
possession of an exact solution to the classical equations fo
finite mr we evaluate the action of the configuration~3.21!
to first nonvanishing order inmr, at first without regard to
the finite periodicityb. Then, we proceed to patch the con-
figurations together to construct a trial configuration periodic
in Euclidean time as in the pendulum example. Extremizing
the resulting action function with respect to the free scale
parameterr will determine the particularr(b) at which the
attractive interaction between instantons and anti-instanton
just balances the self-interaction which would cause an in
stanton to shrink to zero size in isolation. Provided that in the
endmr(b)!1, the expansion is consistent and we may trus
the resulting extremal action constructed in this way as the
correct periodic instanton action to first nonvanishing order
in the small parametermr(b), or equivalentlyE/Esph.

The s model action for any function of the form
w(x,t)5e2 iu f (r ) may be expressed as

s a
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4p

g2 E0
`

rdr F ~ f 821 f 2/r 2!

~11 f 2!2
1

m2f 2

~11 f 2!G . ~4.1!

For the trial configurationf5mrK1(mr) we make use of the
Bessel function identity,K181K1 /u52K0, to rewrite the
first integral in the preceding expression in the form,

m2r2E
0

`

udu
@K0

2~u!22K1K18/u#

@11m2r2K1
2~u!#2

. ~4.2!

Let us divide the integration overu[mr into two parts,
u<a andu>a wherea is chosen so thatmr!a!1 in the
limit of small mr. For u<a we can make use of the series
expansions of the Bessel functions for small argument,

K0~u!52F lnS u2D1gEG@11O~u2!#,

K1~u!5
1

u
1
u

2 F lnS u2D1gE2
1

2G@11O~u2!#,

K2~u!5
2

u2
2
1

2
1O~u2lnu!, ~4.3!

taking care to include all terms that give a contribution to th
final answer up to orderm2r2, while in the intervalu>a we
can safely replace the denominator in Eq.~4.2! by unity
since the terms neglected are higher order inm2r2 and the
integral with lower cutoffa is nonsingular. In this way we
find

I 1[E
0

a

udu
@K0

2~u!22K1K18/u#

@11m2r2K1
2~u!#2

52
1

a2
1

1

m2r2
2 lnS a2D2gE1

1

2

1O~m2r2ln2mr,a2ln2a! ~4.4!

and

I 2[E
a

`

udu
@K0

2~u!22K1K18/u#

@11m2r2K1
2~u!#2

5
1

a2
1 lnS a2D1gE1O~m2r2ln2mr,a2ln2a!, ~4.5!

wheregE50.577 . . . is Euler’s constant. In the latter inte
gral we have made use of the integration formula 5.54(2)
Ref. @18#,

E
a

`

uduK0
2~u!52

a2

2
@K0

2~a!2K1
2~a!#. ~4.6!

Combining the results~4.4! and ~4.5!, the a dependence
drops out~as it must! and we obtain

I 11I 25
1

m2r2
1
1

2
1O~m2r2ln2mr!. ~4.7!
e

-
of

Analyzing the second integral in Eq.~4.1! in the same way,
we obtain

I 3[E
0

a uduK1
2~u!

@11m2r2K1
2~u!#

5 lna2 lnmr1O~m2r2ln2mr,a2ln2a! ~4.8!

and

I 4[E
a

` uduK1
2~u!

@11m2r2K1
2~u!#

52 lnS a2D2gE2
1

2
1O~m2r2ln2mr,a2ln2a!, ~4.9!

where in this latter integral we have made use of the integra-
tion formula,

E
a

`

uduK1
2~u!5

a2

2
@K0~a!K2~a!2K1

2~a!#. ~4.10!

Hence, we find

I 31I 452 lnSmr

2 D2gE2
1

2
1O~m2r2ln2mr!, ~4.11!

and all together the action of the trial configuration is

S@wm#5
4pm2r2

g2
~ I 11I 21I 31I 4!

5
4p

g2 H 12m2r2F lnSmr

2 D1gEG1O~m4r4ln2mr!J .
~4.12!

The leading 4p/g2 term is clearly the one instanton action of
the unbroken (m50) model, so that in considering periodic
instantons next we should multiply the result~4.12! by two.

In order to calculate the corrections to the action due to
the finite periodicity in thes model we follow the same
method as in the pendulum example. We consider the peri-
odic configuration

w~t,x!5H wm~t,x!, 0<t<b/4,

wmS b

2
2t,xD , b/4<t<3b/4,

wm~t2b,x!, 3b/4<t<b,

~4.13!

and evaluate its action in the fundamental interval@0,b# to
first nontrivial order inm2r2. Starting from

S5
2

g2E0
b

dtE
2`

`

dxH u]twu21u]xwu2

~11uwu2!2
1m2

uwu2

11uwu2 J ,
~4.14!

the b dependence of the action comes from the tail of the
configuration whereuwu!1, and hence to leading order in
m2r2 the uwu2 terms in the denominators may be neglected.
By introducing the spatial Fourier transform@19#,
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w̃m~t,k![E
2`

`

dxeikxwm~t,x!

522imrE
0

`dx

r
~tcoskx2xsinkx!K1~mr!

52 i
pr

vk
~vk2k!exp~2utuvk!, ~4.15!

we find that theb-dependent part ofSmay be expressed in
the form

]S

]b
5

8

g2
]

]bE0
b/4

dtE
2`

` dk

2p
$u]tw̃m~t,k!u21vk

2uw̃m~t,k!u2%

5
4pr2

g2 E
0

`

dk~vk
21k2!expS 2

bvk

2 D ~4.16!

to leading order in m2r2. The infinite periodicity,
b-independent part ofS, cannot be evaluated from only the
quadratic terms in the action but it is just given by twice th
zero energy action we calculated in Eq.~4.12! above. Hence,

S@w#5
8p

g2 H 12m2r2F lnSmr

2 D 1gEG2r2E
0

`

dk
~vk

21k2!

vk

3expS 2
bvk

2 D 1O~m4r4ln2mr!J ~4.17!

is the action of the configuration~4.13! to this order.
As in the pendulum example of the last section, the join

ing of the configurations att5b/4 and t53b/4 produces
delta function source terms proportional to

L@w#[S 2
]2

]t2
2

]2

]x2
1m2Dw~t,x!

522]twmS b

4
,xD dS t2

b

4 D
12]twmS 2

b

4
,xD dS t2

3b

4 D . ~4.18!

Making use of the periodic thermal propagator in two dimen
sions,

Gb~t,t8;x,x8!5E
2`

` dk

2p

1

2vk

eik~x2x8!

sinh~bvk /2!

3coshvkS ut2t8u2
b

2 D ~4.19!

and taking account of the two real degrees of freedom in t
complex fieldw, we obtain the quadratic shift in the action:

2

g2E dtE dt8E dxE dx8L8@w* #Gb~t,t8;x,x8!L@w#.

~4.20!

Substituting Eqs.~4.18! and ~4.19! into this expression, we
find that the quadratic shift becomes
-

-

e

4

g2E0
` dk

pvk
H U]tw̃mS b

4
,kD U2cothS bvk

2 D
2

1

sinh~bvk/2!
]tw̃m* S b

4
,kD ]tw̃mS 2

b

4
,kD J . ~4.21!

We did not need to keep the analogue of the second te
above in the pendulum model since there it is subdomina
to the first term asb→`. However, in the O~3! model
b→0 asE→0 as we shall see presently, and this seco
term must be retained as well.

Since from Eq.~4.15!,

]tw̃mS 6
b

4
,kD5 ipr~vk7k!expS 2

bvk

4 D , ~4.22!

the quadratic correction to the action arising from the sh
~4.20! is

2
8pr2

g2 E
0

`dk

vk

1

sinh~bvk /2!

3Fk2~11e2bvk!2
m2

2
~12e2bvk!G . ~4.23!

Combining this shift with the unshifted action~4.17! we se-
cure, finally,

S~b,r!5
8p

g2 H 12m2r2FF~mb!1 lnSmr

2 D1gEG J
~4.24!

to the lowest nontrivial order inmr, where

F~mb![E
0

`dk

vk

1

sinh~bvk /2! F2k2m2 112e2bvk/2G.0 .

~4.25!

This result may also be obtained by the ‘‘R-term’’ method
@7,10#.

With the action of the trial configuration in hand for arbi
trary smallmr we can determine the value ofr which ex-
tremizes the action and, therefore, leads to a classical p
odic instanton solution close to the trial configuration~4.13!.
Since

]S~b,r!

]r
52

8pm2

g2
rF2F12lnSmr

2 D12gE11G ~4.26!

vanishes forr50 or for

r5r~b!5
2

m
exp@2F~mb!2gE2 1

2 #, ~4.27!

the zero energy singular instanton atr50 with finite action
S58p/g2 is always a solution of the equations for any pe
riod b, but there is also a nontrivial periodic instanton solu
tion with action,
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S~b!5S„b,r~b!…

5
8p

g2
@112exp$22F~mb!22gE21%#.

8p

g2
,

~4.28!

and energy,

E~b!5
dS

db

52
32pm

g2
exp@22F~mb!22gE21#F8~mb!

5
16pe22gE21

g2
e22FE

0

` dk

sinh2~vkb/2!

3H S 2k2m2 11D coshS vkb

2 D21J . ~4.29!

This second nonsingular solution with nonzeror(b) is the
periodic instanton solution we seek in the limit of small bu
finite E.

The qualitative picture sketched in the previous sectio
has been verified by this explicit calculation, namely, at th
nontrivial value ofr(b) in Eq. ~4.27!, the tendency of an
individual instanton or anti-instanton to contract tor50,
represented by the logarithm in Eq.~4.26! is just balanced by
the attractive interaction between members of the infini
chain which tends to increaser, represented by theF(mb)
term in Eq.~4.26!. This competition between the two effects
can occur in thes model only because of the softly broken
conformal invariance of the mass termSm which leads to the
existence of the conformal scale parameterr.

Notice also that in contrast with the pendulum example o
the last section it isnot b→` which characterizes the low
energy limitE→0, but ratherF(mb)→` in the s model.
Since F(mb) vanishes exponentially asb→` but in the
opposite limit,

F~mb!→
p2

m2b2→` as mb→0 , ~4.30!

the low energy limit is characterized byb→0. This ~possi-
bly counterintuitive! result is, nevertheless, consistent with
perturbation theory and the dilute gas picture of instanto
and anti-instantons at low energies because the size of
individual ~anti-!instantons goes to zero much more rapidl
with b→0, and it is the ratio

r~b!

b
→

2e2gE2 1/2

mb
expS 2

p2

m2b2D→0 ~4.31!

which controls the validity of the dilute gas approximation
Clearly then, asb→0, r(b)→0 exponentially, and it is le-
gitimate to neglect the higher powers ofmr in Eq. ~4.29! in
the low energy limit,E!Esph, which justifies our expansion
in powers ofmr a posteriori. In the extreme low energy
limit we have the asymptotic forms
t
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.

S~b!→
8p

g2 F11
2

e2gE11 expS 2
2p2

m2b2D G ,
and

E~b!→
64p3

g2e2gE11m2b3 expS 2
2p2

m2b2D . ~4.32!

From either this last expression or the more accurate Eq.
~4.29! above we find that the behavior ofE increasing with
increasingb,

dE

db
.0 ~4.33!

is actually the case for the periodic instantons in the low
energy limit of the nonlinears model. We shall see in the
next section that this behavior persists for all energies up to
the sphaleron energy. Hence, it is already clear that the be
havior of the periodic instantons in the O~3! model is very
different from that of systems with only one quantum-
mechanical degree of freedom such as the simple pendulum
or the Abelian Higgs model. In those modelsb(E)→` as
E→0, and the periodic instanton contributes to the transition
rate as the temperatureb21 goes smoothly to zero. From the
discussion at the end of Sec. II it follows that these periodic
instantons in thes model with period going tozero as
E→0 cannot contribute to the low temperature transition
rate, although they can contribute to, and in fact dominate,
transitions betweennonthermal lowenergystates.

Clearly, this behavior is a direct consequence of the con-
formal invariance of the unbroken model which leads to the
additional scale parameterr in the instanton configuration,
and as it turns out, an additional negative mode direction in
the fluctuations around this configuration. This additional
negative mode is easily checked from the second derivative
of the classical action~4.24!,

]2S

]r2 Ur5r~b!52
8pm2

g2 F312gE12lnSmr

2 D
12F~mb!GU

r5r~b!

52
16p

g2
m2,0, ~4.34!

on the solution with nonzeror(b). Thus, any small change
of r from its critical value,r(b) decreasesthe action of the
configuration and implies the existence of a negative eigen-
value in the second order fluctuation operator around the
nonsingular periodic instanton solution that is quite indepen-
dent of the usual negative mode with fixedr as found by the
standard argument of Sec. II. The origin of this second nega-
tive mode about the nontrivial periodic instanton solution we
have found for lowE should be clear from what has already
been said regarding the balance between the attractive inter
action between nearest-neighbor instantons and anti-
instantons on the one hand, and the self-interaction attracting
each individual ~anti-!instanton towards zero size on the
other. If the precise balance between the two is upset by
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varying r slightly away from its critical value,r(b), then
one or the other of the two interactions dominates andr is
driven further away from its critical value, i.e., there is
negative mode in the direction of varyingr, which is just
what Eq.~4.34! makes explicit.

It is this second negative mode direction due to conform
rescalings that makes the nontrivial periodic instanton co
figuration subdominant at finite temperature, at least in
low energy limit where perturbation theory and the for
~4.29! apply. Correspondingly, the periodic instanton actio
~4.28! is greater than the singular solution withr50. Near
the sphaleron energy the action as a function of the th
relevant variablesj61 andj0 for thes model is illustrated in
Fig. 5.

From the first form of Eq.~4.34! we observe that the zero
size instanton–anti-instanton configuration has no sec
negative mode in ther direction. It has only the expected
single negative mode corresponding to the attractive inter
tion between the pair. Hence, this singular configuration w
fixed finite action per period 2S0 ~shown as the constan
straight line in Fig. 4! can and does contribute to the windin
number transition rate at low temperatureT,Tcr . Notice

FIG. 5. The actionS plotted as a function of the same variable
j61 ~a!, andj0 ~b!, for fixedb,b2 , as in Fig. 3, but for the O~3!
s model. The periodic instanton is again represented by the ring
extrema ofS in ~a! or the two outer extrema in~b!, which merge
with the sphaleron in the center asb approachesb2 . Since the
periodic instanton solution now has two negative modes and hig
action than that of the sphaleron, it is subdominant. The finite te
perature winding number transition goes over the lowest sad
either the sphaleron or ther50 instanton~not shown! depending
on the temperature.
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from Fig. 4 that although the actions 2S0 andEsphb are equal
at b51/Tcr the actual field configurations of the zero size
instanton–anti-instanton pair and the sphaleron are quite dif
ferent and there is no merging of these solutions at
b5bcr .

The picture we have sketched in this section is based on
the existence of a perturbative instanton–anti-instanton ex
pansion at low energies and knowledge of the sphaleron an
its negative mode at finite energy andb nearbcr . Continuity
of the space of solutions to the classical Euclidean equation
suggests that the periodic instanton solutions merge with the
sphaleron as b approaches bcr from below with
dE/db.0. However, one does not know how the action and
energy of these solutions will vary asb is varied frombcr a
priori . In the absence of analytic methods for finding the
periodic instanton solutions to the Euclidean equations in the
intermediate region betweenE→0 where perturbation
theory holds andE→Esph where the solutions approach the
static sphaleron, one must rely on a numerical approach. It is
to the details and results of this numerical study which jus-
tifies Figs. 4 and 5 that we turn next.

V. NUMERICAL TECHNIQUE AND RESULTS

In this section we present the results of a numerical study
of periodic instanton solutions in the two-dimensional, non-
linear O~3! s model modified by the mass termSm . A pre-
liminary version of these results has been reported earlier in
Ref. @20#. At energies comparable, but not very close to the
sphaleron energy, the periodic instanton solution has to be
found numerically, i.e., one must solve the Euclidean field
equations,

2~]t
21]x

2!na1m2d3
a2ana50, ~5.1!

together with the constraint,

nana51 . ~5.2!

Here, a is a Lagrange multiplier enforcing the constraint,
which is easily found by multiplying Eq.~5.1! by na and
using Eq.~5.2!: namely,

a52na~]t
21]x

2!na1m2n35]mn
a]mn

a1m2n3 . ~5.3!

The periodic instanton solution we seek has vanishing time
derivative at initial timet50, and it evolves to another turn-
ing point at half-periodb/2 where it reflects and then returns
to its initial configuration att5b by simply reversing the
sign of all t derivatives. Thus, we enforce the half-period
boundary conditions,

]na~t50,x!

]t
5

]na~t5b/2,x!

]t
50, ~5.4!

which remove the time translation invariance of the solution.
The other boundary condition we require is that at spatial
infinity the solution approaches the vacuum. Since we shal
work in a finite box of lengthL we require

s

of

her
m-
dle,



t

-

oci-

re

he
ly

the
r

n

f

54 7787WINDING TRANSITIONS AT FINITE ENERGY AND . . .
na~t,x52L/2!5na~t,x5L/2!5n~vac!
a 5~0,0,21! ~5.5!

for mL large but finite.
Geometrically, the periodic instanton solution obeyin

these boundary conditions maps the rectangular region
(t,x) coordinate space pictured in Fig. 6 into the shad
region of the sphere in Fig. 7. From these figures it should
clear that the solution may be chosen to have well-defin
symmetry properties under reflection through the lines b
secting the rectangular region of Fig. 6, so that atx50, n1
vanishes whilen2 andn3 reach extrema, and att5b/4, n2
vanishes whilen1 and n3 reach extrema. Imposing these
symmetries fixes completely the spatial translational inva
ance and rotation invariance around then3 axis of the solu-
tion, as well as reduces the region we must consider to o
one-quarter of the full rectangle in Fig. 6. Hence, we solv
the differential Eq.~5.1! subject to the boundary conditions

FIG. 6. The finite rectangular region (t,x) of coordinate space
that maps onto the shaded region of the sphere in Fig. 7.

FIG. 7. Geometric representation of the periodic instanton ran
on S2.
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x52L/2: n150; n250; n3521;

t50: dn1 /dt5dn2 /dt5dn3 /dt50;

x50: n150; dn2 /dx5dn3 /dx50;

t5b/4: n250; dn1 /dt5dn3 /dt50. ~5.6!

The lattice version of Eq.~5.1! can be obtained by a varia-
tional principle starting from the discretized action. Le
(t i ,xj ), where i50, . . . ,I and j50, . . . ,J, be the coordi-
nates of lattice sites. The lattice version of the actions~3.1!
and ~3.10! read

S5(
i , j

H 12 ~ni11,j
a 2ni j

a !2
dx̃j
dt i

1
1

2
~ni , j11

a 2ni j
a !2

dt̃ i
dxj

1m2~11ni j
3 !dt̃ idx̃j J ~5.7!

where we have used the notationdt i5t i112t i ,
dt̃ i5(1/2)(dt i211dt i) and similarly, fordxj , dx̃j .

The equations which follow from the action~5.7! can be
written in the form

@Ba2na~Bbnb!# i j50, ~5.8!

where

Bi j
a[2

ni11,j
a

dt̃ idt i
2

ni21,j
a

dt̃ idt i21
2

ni , j11
a

dx̃jdxj
2

ni , j21
a

dx̃jdxj21

1m2da3 .

~5.9!

Equation~5.8! actually contains only two independent equa
tions since its projection onto the vectorni j

a is identically
zero. Together with the constraint equation~5.2!, these com-
prise a complete set of three independent equations ass
ated with each lattice site. From Eqs.~5.8! and ~5.9! it is
clear thatBa must be antiparallel tona at each point (i , j ).
Sincena is normalized to unity, the Eqs.~5.8! and~5.9! can
be rewritten in the equivalent, symmetric form,

naABcBc1Ba50, ~5.10!

for every (i , j ), and where the negative sign of the squa
root has to be taken becausenaB

a,0. This form is most
convenient for numerical calculations.

To obtain a numerical solution of Eq.~5.10! we use New-
ton’s method@21#. That is, we~1! choose an initial field
configuration as a first guess,~2! linearize the equation~5.10!
in the background of the initial field,~3! solve the linearized
equation to obtain an improved configuration, and~4! iterate
until the procedure converges.

The third step above also involves a renormalization: t
improved configuration after every Newton step is local
scaled to ensure that at every lattice point the constraint~5.2!
is satisfied. This procedure speeds up the convergence to
final solution. The numerical solutions were found fo
m515g.

The choice of initial configuration is guided by the know
behavior of the periodic instanton solution nearE50 and
E5Esph. Consideration of the zero mode in the vicinity o

ge
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the sphaleron whenb approachesb2 indicates that we
should look for nontrivial periodic solutions of the field
equations in the neighborhood of the sphaleron by perturb
the known static solution along the zero mode direction, v

n~sph!
a ~x!→n~sph!

a ~x!1dcos~ uv2ut!u2
a ~x!, ~5.11!

where d is a small parameter which goes to zero
b5b2 . Since the classical action function on this solutio
is identical to Hamilton’s principal function, the energy o
the solution is given by

dS~b!

db
5E, ~5.12!

which must agree with the sphaleron energyEsph at
b5b2 . ForE just belowEsphan initial configuration of the
form ~5.11! with d;0.5 works well. The convergence of th
Newton scheme is quadratic, and depending on the ini
starting point, the desired accuracy~an error tolerance of
10210 or better! is typically reached in several iterations
Error tolerance limits were set to limit both the maximu
violation of the equations of motion at a given lattice site
well as the global error obtained by summing the absol
value of, and then averaging, the errors on all lattice sit
Once the solution has been found at a givenb, we step down
~or up! in b and use the previous solution as the initial tri
configuration for Newton’s method at the next value ofb. If
the step size inb is not too large this procedure enables us
efficiently generate periodic instanton solutions over a fin
range ofb.

The solution of the linearized equations in step~3! of the
algorithm can be performed by a direct inversion of the m
trix of small fluctuations about the trial configuration.~This
was the method used in our earlier work on this problem@20#
and is described briefly below.! Negative eigenvalues of this
matrix are treated on the same footing as positive eigenv
ues, and pose no special problem for Newton’s meth
which is important for the present application. Because
the boundary conditions which fix the translational and ro
tional symmetries there are no zero eigenvalues of the ma
near the desired solution, which otherwise would be dis
trous for this method.

For anI3J spacetime grid the matrix to be inverted ha
I 2J2 elements. In general, it takes of orderI 3J3 operations to
invert such a matrix. However, the sparseness of the ma
makes it more efficient to follow a procedure of forwar
elimination and back substitution along either thex or t
directions instead. That is, starting with one edge of the
gion in Fig. 6, such ast50, we can solve for eacht slice of
the grid in terms of the successive twot slices until the edge
t5b/4 is reached, where the boundary condition determin
the unknown quantities. Then we reverse direction and so
for the unknowns on the previoust slices successively. This
allows for the matrix to be inverted in orderIJ3 operations
~or I 3J operations if thex direction is chosen!, and speeds up
the algorithm considerably. In practice, a grid size of ord
1003100 can be handled on a typical work station, whi
provides reasonable accuracy for configurations not too
from the sphaleron. However, this method rapidly becom
inefficient when large grids are required.
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The strategy adopted in this paper is to solve the linear
ized equations using direct matrix methods such as conjuga
gradient. The present code allows for the use of several suc
solvers~all capable of dealing with nonsymmetric, complex
matrices!. The results reported here were obtained using ei
ther the quasiminimized version of Sonneveld’s conjugate
gradient squared~CGS! algorithm @22# or Van der Vorst’s
biconjugate gradient with stabilization~BICG-STAB! @23#.
The advantage of these methods over matrix inversion is
much less stringent memory requirement@down by a factor
of I ~or J) compared to matrix inversion# and while of the
same order algorithmically, typically the prefactor is much
smaller. Moreover, the efficient use of a parallel supercom
puter becomes possible.

Global grid refinement was used to speed up the metho
even further, as well as to effectively increase the order o
the discretization error. The technique used was to begi
with a certain grid size, find the periodic instanton, and then
to double the grid size~keeping the physical volume con-
stant! and use an interpolated version of the solution on the
smaller grid as the initial guess solution for the bigger lattice
This procedure works as a sort of preconditioner for the ma
trix solver and since one has the results from the coarse
lattice, Richardson extrapolation@24# can be used to reduce
the discretization error, effectively improving the second or-
der finite differencing error to third order~Fig. 8!. A good
check of the error control achieved by the code is energy
conservation. Energy error is maximum neart;b/4 where
the solution is far from the vacuum and varying rapidly in
both time and space. An example of the improvement in
energy error as a function of grid size~before Richardson
extrapolation! is shown in Fig. 9.

In practice, the number of~matrix solver! iterations hardly
ever went beyond tens of thousands even for grids as big a
of order 100031000 and acceptable accuracies~error toler-
ances of order 10210) were reached in less than four dou-
bling steps starting with configurations of order 1003100.

FIG. 8. Action of the periodic instanton as a function ofb
illustrating the improvement due to extrapolation. The two crosses
at eachb are the numerical results from the largest and next-to-
largest lattice at thatb ~top and bottom, respectively!. The square is
the extrapolated point. Accuracy of the extrapolation was checke
by extrapolating up from a still coarser, i.e., next-to-next-to-larges
lattice and comparing with the actual result at the largest lattice
there was very good agreement in all cases.
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When doing runs for different values ofb, the solution for
the previousb on the biggest grid was sampled to produce
guess solution for the newb on the smallest grid. This al-
lowed efficient scanning of the desired range ofb values. As
will be seen below the numerical results are extremely acc
rate all the way down to small values ofb where the pertur-
bative results of the previous section begin to apply.

Without any further optimizations, the new method is a
ready efficient and accurate, yielding a real periodic insta
ton solution for energies in the range of 0.3 to 8 in units
m/g2. Smaller energies require finer lattices to obtain th
same accuracy, since the instanton size becomes smaller
idly with decreasingb. Adaptive gridding using either non-
uniform grids or selective refinement is possible within th
method but was not used as a meaningful comparison w
perturbation theory was already possible with the largest g
sizes that were used.~A selective refinement algorithm has
been implemented for application to future, more demandi
problems.!

The results of the calculations are summarized belo
They were obtained on grids as large as;120032400 in
spatial boxes with sizes varying fromL58 toL516 in units
of m21 ~for configurations nearer to the sphaleron small
grids provided sufficient accuracy!. For b.b2 , as dis-
cussed in the previous section, a real solution does not e
and the solution becomes complex. This complex soluti
was also found without difficulty by our numerical method
Numerically, the crossover from the real to complex solutio
occurred betweenb53.62 ~real! and b53.63 ~complex!
consistent withb253.628 ~Fig. 4!. The action of the com-
plex solution rises steeply atb'4 and it becomes difficult to
track this numerical solution for largerb ~possible in prin-
ciple, but not worth the computer time!. The numerical re-
sults for action and energy vsb, andW as a function ofE
are given in Fig. 10. On the scale of the plots, the numeric
error estimates are insignificant and are not shown. Comp
son with the perturbative results of the previous secti
shows very good agreement at low values ofb as expected.

FIG. 9. Energy of the periodic instanton as a function of th
time slice atb52.3. A small range oft is shown to illustrate the
improvement in energy conservation as the grid is refined~over four
doublings of the grid in this case!. Extrapolation improves the result
one step further~not shown!.
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This is also illustrated in Fig. 10 by plottingS, E, andW
over a restricted range within which perturbation theory is
supposed to become accurate.

From Figs. 10 and 11, it is apparent that the periodic
instanton solutions interpolate smoothly between the pertur-
bative region and the sphaleron~see also Fig. 12!. In particu-
lar, the energy monotonically increases withb for the entire
range ofb, @0,b2# in accordance with Eq.~1.1!.

The numerically evaluated periodic instanton configura-
tions are displayed in Fig. 13 atb52.8. These configurations
go over to the vacuum solution at the boundaryx52L/2 and
are strongly nonvacuum neart5b/4, x50. Asb is lowered,
the periodic instanton size goes rapidly to zero~exponen-
tially in the perturbative regime!. At lower values ofb, the
configurations remain qualitatively similar, but become ever
more localized as functions of time and space.

The numerically computed periodic instantons can be
compared to the perturbative solution~3.21! with the instan-
ton sizer given by Eq.~4.27!. Since direct comparison is
unwieldy and difficult to visualize, we chose to compare the
numerical and perturbative values foruwu as a function of
t atx50. This comparison atb52.2 is shown in Fig. 14. As
is to be expected, the overall agreement at this low value of

e

FIG. 10. ~a! The action of the periodic instanton as a function of
b. Agreement between the numerics and the perturbation theory
@Eq. ~4.28!, dashed curve# of Sec. IV is excellent in the expected
range.~b! The same as~a! but with a more restricted range forb in
order to better display the comparison with the low energy pertur-
bative expansion~dashed curve! of Eq. ~4.28!.
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b is good. Evidently, perturbation theory underestimates th
interactions in the dilute gas chain: the numerical solutio
has a longer tail and is less sharp than the perturbative co
figuration neart5b/4.

VI. SUMMARY AND DISCUSSION

The main conclusion of our study of periodic instanto
solutions in the quantum pendulum and the O~3! s model is
that two qualitatively and quantitatively different behavior
are possible for these solutions, with correspondingly diffe
ent physical consequences for finite energy and temperat
transitions.

In the first case~I! of which the pendulum is the proto-
type, the period b decreases with increasing energy
Esph/T2,2S0, the periodic instanton solutions contribute to
the finite temperature winding number transition rate, and t
crossover from quantum tunneling to thermal activation
smooth:

dE

db
,0 ;

Esph

T2
,2S0 . case ~ I! ~6.1!

In addition to the periodic pendulum which we have dis
cussed here in some detail, the symmetric double-well pote
tial,

FIG. 11. ~a! The energy of the periodic instanton as a functio
of b. The dashed curve is the perturbative result, Eq.~4.29!. ~b! The
same as~a! but over a more restricted range ofb.
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V~q!5
v2

8
~q221!2 ~6.2!

belongs in this class, as may be easily checked from
Esph5V(0)5v2/8, T25uV9(0)u1/2/2p5v/2A2p, and the
kink actionS052v/3. Hence,

Esph

T2
5

pA2
4

v,2S05
4

3
v, ~6.3!

and indeed the periodic instanton solutions with the expected
behavior are easily found analytically in this example as
well.

In two dimensions the most well-studied model possess-
ing both instanton and sphaleron solutions is the Abelian
Higgs model, viz.,

S5E d2xH 14Fmn
2 1uDmFu21lS uFu22

1

2
v2D 2J . ~6.4!

It is well known that the instanton solution of this model is
an Abrikosov-Nielsen-Olesen vortex of the form@25#,

n

FIG. 12. ~a! 2W as a function of the energyE. The change of
sign inW occurs atE5Esph58. ~b! The same as~a! but over a
more restricted range ofb in order to display the comparison with
the perturbative result~dashed line!.
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FIG. 13. A typical numerically obtained periodic instanton solution~here atb52.8, L512). Shown in the three figures are the Cartesian
components of the unit vectorn1, n2, andn3 as functions oft and x on a 733153 grid (t3x). As one can see, at the turning point
t50 the field configuration is nonvacuum, and the components of the vectorna cover the shaded patch of the sphere in Fig. 7.
Am5
1

g
emn

xn

r 2
A~r !,

F5veifH~r !. ~6.5!

In the special case thatMH
2 52lv2 is taken equal to

MW
2 5g2v2, the vortex may be found analytically, and ha

the action,S05pv2. For other values of the ratioMH /MW
the vortex solution has to be found numerically@26#. The
sphaleron and its negative frequency mode are both kno
analytically for arbitrary values of this ratio@27#, viz.,

Esph5
2

3
A2lv3

and
s

wn

e2
2 52

lv2

4 SA11
8g2

l
11D . ~6.6!

Hence, at least in the caseg252l, we find

Esph

T2
5

8pA2
3~A1711!

v2,2S052pv2 ~6.7!

and the two-dimensional Abelian Higgs model also falls into
case~I!. The periodic instanton solutions have been found
numerically in this model forMW5MH @28#, and they do
satisfy Eq.~6.1!. In accordance with the intuition gained by
our study of thes model, this behavior is the result of the
absence of any conformal invariance or scale parameter akin
to r in the instanton solutions of the Abelian Higgs model,
and we would expect this model to behave in the same way
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for all finite values of the ratioMH /MW . The numerical
results for the vortex action in the literature are consiste
with Eq. ~6.7! for all values of this ratio.

The O~3! s model is the only example studied so far i
any detail which behaves differently: i.e.,

dE

db
.0 ; Esph/T2.2S0 . case ~ II ! ~6.8!

In this second case~II !, the periodic instanton solutions con
tribute to the finiteenergy~but not to the finite temperature!
winding number transition rate, and the crossover from qua
tum tunneling to thermal activation is sharp, taking place
Tcr.T2 . As we have seen, the key physical differences b
tween cases~I! and ~II ! appear to be conformal invariance
and the scale parameterr of the instanton configurations.

These same features are shared by the O~3! s model and
four-dimensional gauge theories with spontaneous~and con-
formal! symmetry breaking arising from the Higgs secto
Indeed, it is interesting to compare the numerical results
the sphaleron energy and negative frequency eigenva
@29#,

MH

MW

Esph

MW /aW

2v2

MW
2

EsphaW

T2

0.0 3.0405 1.318 16.64

0.1 3.1384 1.486 16.18

1.0 3.6417 2.460 14.59

2.0 3.9532 3.257 13.76

3.0 4.1633 3.967 13.13

4.0 4.3179 4.667 12.59

5.0 4.4375 5.405 11.99

7.0 4.6115 7.176 10.82

10.0 4.7805 11.21 8.97 ~6.9!

to twice the zero energy instanton action 2S0 of the pure
SU~2!-Higgs doublet model in four dimensions~which is the

FIG. 14. Comparison of the perturbative~solid line! and numeri-
cal results~dots! for uwu as a function oft at x50, b52.2. Only a
small piece of the lattice nearb/450.55 is shown for clarity.
nt

n

-

n-
at
e-

r.
for
lue

standard electroweak model withuW50 and no fermions!.
Since 2S0aW54p512.566 . . . , we observe from the last
column of the table above thatEsph/T2.2S0 for all
MH /MW,4.0 but that the inequality is reversed for all
MW greater than a value slightly larger than 4MW . Hence,
we conclude that the four-dimensional SU~2!-Higgs doublet
model falls under case~II ! for MH,4MW .

Based on our study of instanton solutions in this paper w
are led to suspect that the four-dimensional gauge theory
similar to the O~3! model, for not too large Higgs self-
coupling. Indeed, since SU~2! pure gauge theory is confor-
mally invariant, there is an instanton scale parameterr,
which is driven to zero by the addition of the Higgs secto
with its conformal-breaking expectation valuev. Hence the
instanton or anti-instanton solution no longer exists in isola
tion for a nonzero Higgs boson massMH5A2lv. However,
the interaction between instantons and anti-instantons
again attractive, so that at finite periodicityb there is an
opposing interaction, and it is possible to balance the tw
interactions at a definite value ofr(b), just as in the O~3!
model considered in this paper. As in thes model, in the
spontaneously broken SU~2! gauge theory the period of the
periodic instanton increases with energy at low energie
where perturbation theory is applicable@7#. Thus, we con-
clude that the four-dimensional SU~2!-Higgs gauge theory
falls into case~II ! for not too strong Higgs self-coupling, and
has a sharp crossover atTcr.T2 from quantum tunneling to
thermal activation in its winding number transition rate.

Apparently, the behavior changes at largeMH /MW , as
the model becomes more ‘‘Higgs-like’’ and the instanton
solutions resemble the scale-invariant SU~2! instantons less
and less. At Higgs self-couplingl>8paW ~approximately!,
the SU~2!-Higgs doublet model would appear to lie in case
~I!. At higher values ofl additional static sphaleron solu-
tions bifurcate from the simplest spherically symmetric one
and the semiclassical approximation which requiresl!1
eventually ceases to be valid@29#. These results have been
obtained at zero U~1! mixing angleuW . Although sphaleron
solutions have been constructed at nonzerouW @30#, the
negative eigenmode and eigenvalue have not been given
the literature to our knowledge and therefore, we are not y
able to draw any firm quantitative conclusions in the case
nonzerouW . However, the behavior of the bosonic sector o
the standard model withuW near its physical value is not
expected to be very different from the behavior at zer
uW . In any case, we expect that the physical electrowea
theory behaves such as the O~3! model for low to moderate
MH /MW in case~II ! but the situation with the additional
Higgs couplingl in 311 dimensions is more complicated
and deserving of detailed investigation.

To conclude, the classical solution space of even rel
tively simple models such as the O~3! model we have studied
in this paper appears to be very rich, and the more intrica
details of the periodic solutions to four-dimensional sponta
neously broken Yang-Mills theories remain to be invest
gated. Both the analytic and numerical approaches appli
here to the O~3! model will extend to the electroweak theory
in a straightforward way, and we believe that this program
worth carrying through to completion. In addition to the in-
trinsic interest of new solutions of the Euler-Lagrange equ
tions of a physical gauge theory, this study, possibly ex
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tended into the complex domain, appears to be the o
viable method at our disposal to investigate anomalo
baryon-number violation at finite energy in the standa
model.
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