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Many quotations remind us of Dirac's ideas about the beauty of fundamental physical laws.

For example, on a blackboard at the University of Moscow where visitors are asked to write a

short statement for posterity, Dirac wrote: \A physical law must possess mathematical beauty."

Elsewhere he wrote: \A great deal of my work is just playing with equations and seeing what

they give.". And �nally there is the famous statement: \It is more important for our equations

to be beautiful than to have them �t experiment." This last statement is more extreme than I

can accept. Nevertheless, as theoretical physicists we have been privileged to encounter in our

education and in our research equations which have simplicity and beauty and also the power

to describe the real world. It is this privilege that makes scienti�c life worth living, and it is

this and its close association with Dirac that suggested the title for this talk.

Yet it is a title which requires some quali�cation at the start. First, I deliberately chose to

write \SOME beautiful equations ..." in full knowledge that it is only a small subset of such

equations that I will discuss, chosen because of my own particular experiences. Other theorists

could well choose an equally valid and interesting subset. In fact it is not a bad idea that
every theorist \d'un certain âge" be required to give a lecture with the same title. This would
be more creative and palatable than the alternative suggestion which is that every theorist be
required to renew his/her professional license by retaking the Ph.D. qualifying exams.

Second, I do not wish to be held accountable for any precise de�nition of terms such as
mathematical beauty, simplicity, naturalness, etc. I use these terms in a completely subjective
way which is a product of the way I have looked at physics for the nearly 30 years of my

professional life. I believe that equations speak louder than words, and that equations bring
feelings for which the words above are roughly appropriate.

Finally, I want to dispel the notion that I have chosen a presentation for my own evil

purposes. Some listeners probably anticipate that they will see equations from the work of
Dirac, Einstein and other true giants. The equations of supergravity will then appear, and the
audience will be left to draw its own conclusions. I assure you that I have no such delusions
of grandeur. My career has been a mix of good years and bad years. If the good years teach
good physics, then the bad years teach humility. Both are valuable.

The technical theme of this talk is that the ideas of spin, symmetry, and gauge symmetry,

in particular determine the �eld equations of elementary particles. There are only three gauge

principles which are theoretically consistent. The �rst of these is the spin-1 gauge principle

which is part of Maxwell's equations and the heart and soul of the standard model. The second

is the spin-2 gauge principle as embodied in general relativity. Both theories are con�rmed by
experiment. Between these is the now largely known theoretical structure of supersymmetry

and the associated spin-3/2 gauge principle of supergravity. Does Nature know about this?
Here, you can draw your own conclusions.

This viewpoint is what led me to work on supergravity in 1976. It is view of the uni�cation

of forces before the uni�cation program was profoundly a�ected by string theory. However, I

confess that I myself think far less about uni�cation now than I used to. Instead I think and

worry about the survival of our profession and our quest to understand the laws of elementary

particle physics. I hope that it is not a delusion to think that this presentation may contribute
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in a small positive way to the survival of that quest.

Let us start with the general idea that a particle is a unit of matter of de�nite mass m and

spin s. There are two classes of particles, the bosons with integer spin 0,1,2 : : : and the fermions

with half-integer spin 1/2, 3/2 : : :. We now know that whether a particle is \elementary" is

not an absolute question. It depends on whether the experiments used to probe it can achieve a

small enough spatial scale to detect an internal structure of smaller units. It is in this way that

we have been led in the 20th century from atoms to nuclei to quarks. I will simplify that issue

by saying that a particle is elementary if one can associate with it a wave equation and a local

interaction Lagrangian and use these to account for experimental results within a certain range

of scales. Those wave equations are restricted by Lorentz invariance and other symmetries.

Underlying this is the beautiful mathematical structure which I will outline.

A spin-0 particle is described by a real scalar �eld. If massless it satis�es a very simple wave

equation,

� �

 
@2

@t2
�r2

!
� (x; t) = 0 (1)

which is the equation D'Alembert invented to describe acoustic waves in 1747. If it has a mass
then there is another term, and one has the Klein-Gordon equation from the 1920's

(+m2)� = 0 : (2)

The particle physics of this equation is also very simple. The equation is second order in
time. As initial data one must specify both �(x; 0) and @t�(x; 0) at t = 0. These two pieces
of classical initial data correspond to a single quantum degree of freedom; for each possible

momentum p, there is a one-particle state, usually denoted by the \ket" jp >, in a fertile
notation we owe to Dirac.

Now we come to one of Dirac's major achievements, the wave equation he invented in 1927

to describe the spin-1/2 electron in a way consistent with the laws of special relativity. He
postulated a �rst-order equation for a four-component complex �eld  �(x; t). The equation
requires a set of four matrices, now called  matrices, �, satisfying the anti-commutation

relations
f�; �g = 2��� ; (3)

where ��� = (+;�;�;�) is the Minkowski metric of space-time. The Dirac equation can then

be written in the massless and massive cases as

i@= � i�
@

@x�
 (x; t) = 0

(i@=�m) = 0 : (4)

It would require too long a digression to tell the full story of the physics contained in this

equation, and I will just list a few things:

1. an accurate account of the spectrum of hydrogen;
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2. prediction of the magnetic moment of the electron;

3. negative-energy states and anti-particles;

4. when applied to other spin-1/2 particles, namely the muon, proton and neutron, the

Dirac equation and the system of -matrices provided the framework which established

the form of the weak interactions in a very exciting chapter of 20th century physics;

5. the equation is one of the foundations of today's standard model of particle physics. It

describes quarks, electrons, muons, and neutrinos, and their strong, electromagnetic, and

weak interactions.

Despite this broad physical scope the basic particle physics of the Dirac equation is straight-

forward. It is a �rst-order equation so one must specify the four components of  (x; 0) as initial

data. There are four quantum degrees of freedom, namely for each momentum p, a particle and
antiparticle, each with two possible spins: jp;�1=2 > and j�p;�1=2 >. This is really the same
ratio, namely 2/1, of independent classical data to particle states, because the four complex
components of  contain eight pieces of real information.

Following this approach one might think that a spin-1 particle should be described by a
vector �eld A�(x; t) and the wave equation

massless A� = 0 (5)

massive (�m2)A� = 0 : (6)

However trouble looms because there is a mismatch between the eight independent data for the
classical initial value problem and the particle count required by Poincar�e invariance, namely
two particle states of helicity � 1 in the massless case and three states of helicity � 1,0 in the
massive case. Things get even worse because the extra components of the vector �eld give a

quantum theory with negative probabilities, hence unacceptable.

It is here that the principle of gauge invariance comes to the rescue, with important con-

sequences both for the linear wave equations of free �eld theory and the nonlinear equations

which describe interactions. Gauge invariance is the idea that part of the information contained
in the �eld A� is unphysical and unmeasurable, yet it is di�cult and ill-advised to remove it

entirely. It is a bit like writing a triangle on a piece of paper. The essential information about

the triangle is contained in just three numbers, the side lengths, but for many purposes, such
as to describe its relation to another �gure on the paper it is useful to introduce a coordinate
system and specify the coordinates (x1; y1); (x2; y2) and (x3; y3) of the three vertices.

What is postulated is that the physical information in A� is speci�ed by its \curl"

F�� = @�A� � @�A� ; (7)

and this information is unchanged if A� is changed by the \gradient" of an arbitrary scalar

function �(x), viz.

A� ! A0

� = A� + @�� (8)
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This is called a gauge transformation of A�. The simplest wave equation which is invariant

under this gauge transformation is

@�F�� = 0

@�(@�A� � @�A�) = 0

A� � @�@ �A = 0 : (9)

These are all equivalent forms, and the last form shows that the new equation di�ers from the

na��ve one (4) by the fairly simple second term. Yet this change is su�cient to solve previous

problems, resulting in

1. a classical initial value problem with four independent initial data (this is usually shown

using a gauge-�xing procedure not discussed here);

2. the quantum theory contains two polarization states jp;�1 > of a massless spin-1 particle;
and the gauge property can be used to show that these states transform properly under

Lorentz transformations;

3. probabilities are positive.

We introduced gauge invariance to describe the photon, but there is a new and richer aspect,

related to symmetry properties of the Dirac �eld. Let us look at the massive Dirac equation

i@= �m = 0 : (10)

We make a transformation to a new spinor variable

 �(x)!  0

�(x) = ei� �(x) ; (11)

which is just a change of the complex phase of  (x). It is obvious that

(i@=�m) 0(x) = ei�(i@=�m) (x) = 0 ; (12)

so  0(x) satis�es the Dirac equation if  (x) does.

This is a symmetry { a transformation of a set of �elds which takes one solution of the �eld

equations into another. The phase angle � is called the symmetry parameter. In this case we

have a global or rigid symmetry because � is a constant, independent of ~x.

However, we are reminded, if only for alphabetic reasons, of our description of the electro-

magnetic �eld. There we saw that the gauge transformation (8) with an arbitrary function �(x)

is a symmetry. What happens if we try to generalize the previous phase symmetry to

 �(x)!  0

�(x) = ei�(x) �(x) ? (13)

We must again test whether  0(x) satis�es the same �eld equation, and we �nd

(i@=�m) 0(x) = ei�(x)(i@=� �@�� �m)  (x) = �ei��@�� : (14)
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So symmetry fails unless @��(x) = 0, and we are back to a global symmetry.

Now comes the powerful step. Suppose that we introduce a new interaction between A�(x)

and  (x), using the covariant derivative

D� � (@� � ieA�) (x) (15)

and the modi�ed Dirac equation

i�D� �m = 0 : (16)

It is easy to see that this equation is invariant under the simultaneous transformation

 (x)!  0(x) = ei�(x) (x)

A�(x)! A0

� = A�(x) + i@��(x) : (17)

So we now have a nonlinear �eld equation with local symmetry.

The �nal step is to require that the combined Dirac and Maxwell equations be obtained

from a gauge invariant Lagrangian, which turns out to be

L = �
1

4
F 2
�� + i � (�D� �m) (18)

The � � variation of L produces the gauge-invariant Dirac equation, while the �A� variation
produces the modi�ed Maxwell equation

@�(@�A� � @�A�) = e � � (19)

in which the \current" J� = e � � is the source. If we take the divergence of both sides of the
equation, then the left side vanishes identically because of �� antisymmetry, so J� must satisfy

the equation of continuity

@�J� =
@

@t
J0 � ~r � ~J = 0 : (20)

In turn, one can verify that this current conservation equation is satis�ed because of (16) and
its complex conjugate. So gauge invariance produces a system of �eld equations linked by
subtle consistency conditions. Of course one must not forget to mention that what we have

obtained in this way are the �eld equations of quantum electrodynamics, which have been

veri�ed experimentally with high precision. Indeed it is this theory and its coupling constant

e2=4��hc = 1=137 that controls, in Dirac's words, \all of chemistry and much of physics."

It is worth summarizing what we have done because the same strategy has worked at least

twice more in this century:

1. we promoted the rigid phase symmetry of  (x) to a local symmetry by coupling to the

gauge �eld A�(x) using covariant derivatives;

2. in the resulting gauge invariant theory, the conserved current of the matter �eld  becomes

a source of the gauge �eld;
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3. a fundamental force of Nature is described in this way.

Let us introduce an aesthetic subtheme in this talk, namely the occurence of the equations

of physics in public art and design. A millenium ago, 1964 to be exact, I was a postdoctoral

fellow at Imperial College in London. I noticed then, and on subsequent visits, the frieze over

the main door of the physics building, where some important equations and facts are carved

in black marble. I was lucky enough to get (with the considerable help of Dr. K. Stelle of

Imperial College), some transparencies showing this frieze. There is a full view showing four

blocks of mathematical material interspersed with graphics. And there is an enlargement of the

mathematical blocks. The third block is devoted to electromagnetism, with Maxwell's equations

in full 19th century form very prominent. In the �rst block there is quantum mechanics with

the Dirac equation in the upper-right corner. The second block is a mix of special relativity,

Newtonian gravity (why not general relativity?) and thermodynamics. I call your attention

only to the numerical relation
e2

GmemP

= 2:27 � 1039 (21)

which gives the ratio of strength of electric and gravitational forces between the electron and
proton. From this one can easily compute that if there were no electromagnetism, the Bohr
radius of gravitationally bound hydrogen would be 1032 cm � 1015 light years. Reciprocally
one can see that it is only on an energy scale of 1019 GeV that quantum gravitational e�ects
among elementary particles become important.

Because of its importance in the modern picture of particle interactions, I must describe
the non-Abelian generalization of gauge theory obtained by Yang and Mills in 1954. The
mathematical background is a Lie group G of dimension N , with the matrices T a

ij of an n-

dimensional irreducible representation, structure constants fabc, and commutators

[T a; T a] = ifabcT c : (22)

At the global level one has N symmetry parameters, �a, a set of n fermion �elds  i�(x) and
in�nitesimal transformation rule

� i = i�aT a
ij j : (23)

To achieve local invariance one needs a set of N gauge potentials Aa
�(x). It is then straightfor-

ward to \covariantize" equations for  i using the non-Abelian covariant derivative

D� i � @� i � igAa
�T

a
ij j : (24)

The new feature here is that the gauge �eld is in part its own source. This is reected in its

transformation rule

�Aa
� = @��

a + g fabcAb
��

a (25)

in which there is both a gradient term similar to the electromagnetic case (8) plus a \rotation"
term which survives for constant �a. The non-Abelian �eld strength is nonlinear,

F a
�� = @�A

a
� � @�A

a
� + g fabcAb

�A
c
� ; (26)

6



and so is the Yang-Mills �eld equation

D�F a
�� � @�F a

�� + g fabcAb
�F

c
�� = g � i�T

a
ij j : (27)

One can show that F a
�� and D�F a

�� transform homogeneously, e.g.,

�F a
�� = g fabcF b

���
c (28)

which means that they are covariant under non-Abelian gauge transformations.

Non-Abelian gauge invariance is the fundamental principle underlying the standard model

of elementary particles, and there is strong experimental evidence that this model, with gauge

group SU(3)� SU(2) � U(1), describes the strong, electromagnetic, and weak forces.

Our profession is a di�cult one. To �nd the right �eld equations is only part of the job. It

is far more di�cult to solve those equations in the context of quantum dynamics where each
�eld variable is an operator in Hilbert space. Our knowledge of gauge �eld dynamics comes

from a combination of experiment and theoretical insight. It is fortunate in many ways that
there is a weak coupling regime in which perturbation theory is valid, and precise calculations
using Feynman diagrams can be performed.

The only aspect of this dynamics that I will discuss here is the question of spontaneous
symmetry breaking. This is the phenomenon that when �eld equations are invariant under a
large transformation group G, only a subgroup, H � G, need be realized directly in the mass
spectrum and scattering amplitudes which would be observed experimentally. For example,
realization of the full symmetry group G means that all observed particles can be organized
in multiplets which are representations of G with the same mass for all particles in a given

multiplet. If the symmetry is broken, then only a subgroup H is realized in this way, but there
are other observable signals of the larger group G. The situation for broken global symmetry
is covered by the Goldstone theorem, which states that if G has dimension N , and H has
dimensionM , then there must be N �M massless scalar particles whose scattering amplitudes
have characteristic properties at low energies. For broken gauge symmetry, one has instead

the Higgs mechanism. The gauge �elds reorganize into M massless �elds of the subgroup H,
plus N �M �elds which appear as massive spin-1 particles. It is quantum dynamics that must

tell us whether symmetry is broken or not. This depends on whether wave functions invariant

under G or H have lower energy.

It is time for another aesthetic interlude, this time fromWashington D.C. Near the National
Academy of Sciences building, and completely accessible to the public, is a full size statue of

Albert Einstein. He holds a tablet on which the enduring part of his life's work is summarized
in these three equations

R�� �
1

2
g��R = �T��

eV = h� �A

E = mc2 (29)

7



from general relativity, the photo electric e�ect, and special relativity. Underneath the equations

is his signature. This is a powerful artistic statement, which makes one proud to be a physicist.

(I thank my MIT colleague Prof. A. Toomre for obtaining slides of this statue for me.)

I want to discuss general relativity very briey from the viewpoint of gauging spacetime

symmetry. The theoretical principle of special relativity is that physical �eld equations should

be invariant under translations and Lorentz transformations of space-time. These are transfor-

mations between two coordinate systems x� and x0� related by

x0� = ��
�x

� + a� : (30)

In a special relativity, this is a global symmetry. There are four translation parameters a�,

while ��
� is a matrix of the group 0(3,1) containing six parameters which describe the relative

angular orientation and velocities of the two coordinate systems. There is a great deal to say

about the often counterintuitive e�ects of the mixing of space and time in special relativity,
but for the purposes of today's talk, I speak only about two formal consequences:

1. particles are classi�ed by their mass m and spin s; technically these numbers specify a

representation of the group;

2. there is a conserved symmetric stress tensor T �� whose integrals P � = f d3xT 0� are the

energy and momentum of a system of �elds or particles.

For the electromagnetic �eld this stress tensor is

T �� = F ��F �
� �

1

4
���(F��)

2 :

If you look carefully you can �nd the conservation equation on the Imperial College frieze.

The gauging of this space-time symmetry is a fairly complicated process, but the elements

are similar to those of the spin-1 gauge principle. I must oversimplify and state that one seeks

a set of equations which are invariant under general coordinate transformations, in which two
sets of space-time coordinates x� and x0� are related in a completely arbitrary way:

x0� = a�(x�)

� x� + ��(x) : (31)

where the last form holds for in�nitesimal transformations. The gauge parameter is the vector
��(x), and the gauge �eld is a symmetric tensor g�� (x) with the transformation rule

�g��(x) = @��
�g�� + @��

�g�� � ��@�g��

= D��� +D��� : (32)

In the �rst line one sees a mix of gradient terms plus a translation term, indicating that the

resulting theory is self-sourced. This is a funny way to say that the gravitational �eld itself
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carries energy and momentum. In the second line I just want to indicate that things can be

organized into covariant derivatives which also simplify the coupling of g�� to matter �elds.

Finally the analogue of the �eld strength F�� is the curvature tensor R
�
��� , from which one

forms the Ricci tensor R�� = R�
��� and the Riemann scalar R = g��R�� . These are the elements

of the Einstein �eld equation

R�� �
1

2
g��R = � T �� (33)

in which the source of the curvature is the energy-momentum tensor of the matter �elds in the

system.

In a single general lecture one can give neither an adequate technical account of general

relativity nor an adequate discussion of the ideas it embodies as a theory of gravity. I will make

three brief comments.

1. On the formal side, gauge invariance guarantees that the particle content of the �eld g�� is

the massless spin-2 graviton with two helicity states j~k;�2 >, with positive probabilities
and interactions which maintain these properties.

2. On the side of ideas is the remarkable fact that g��(x) is the metric tensor of space-time.
So the theory of gravity is a theory of space-time geometry, a fact that has captivated
many physicists.

3. Best of all is the experimental side. The theory is right in the classical domain. Several
subtle e�ects which distinguish Einstein gravity from alternative theories (e.g., Newton's)
have been observed. A fairly recent example is the accurate measurement of the decay

of the orbit of the binary pulsar at the rate expected from quadrupole gravitational
radiation.

It is a straightforward matter to take the standard model and couple it to gravity by the

procedure I have hinted at above. This is completely described in several textbooks. But one

learns little because the direct quantum e�ects of gravity are negligible at the energy of any
conceivable particle accelerator. So for practical purposes one can drop the gravitational terms
and concentrate on the dynamics of particle physics. Here there are many interesting unsolved

problems, and for the last three years I have been working on some of them.

However, most physicists agree that one must eventually understand gravity at the quantum

level perhaps only as an intellectual question (but perhaps more). One can be fairly certain
that there is \new physics" at the quantum gravity or Planck scale of 1019 GeV, because

theories obtained by the straightforward coupling of matter contain uncontrollable in�nities.

They are non-renormalizable in roughly the same way that the e�ective Fermi theory of the
weak interactions is unrenormalizable.

The Weinberg-Salam-Glashow model of the electroweak interactions was put forward in
1968. It contained new ideas and was renormalizable. It predicted weak neutral currents which

were found in 1972 at the scale of accelerator experiments realizable at that time. The W and
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Z bosons which were the key to the modi�cation of the Fermi theory were found a decade later

with masses just below 100 GeV which was close to the weak scale of 300 GeV at which the

Fermi theory necessarily broke down. Analogously one can hope that new ideas about quantum

gravity could have somewhat indirect consequences well below 1019 GeV and perhaps answer

some of the questions left open by the standard model. These could include the following. Does

the group of the standard model appear as a subgroup H (unbroken at the weak scale) of a

larger uni�cation group G? Are there some restrictions among the free parameters of the model,

most of them from the poorly understood sector of non-gauge fermion couplings? This is the

pragmatic component of the motivation for supersymmetry and supergravity and also string

theory. There is also an aesthetic motivation, namely the search for beauty and symmetry in

physical laws, which I think would have pleased Dirac.

Supersymmetry is a symmetry of relativistic �eld theories connecting �elds of di�erent spin.

There are transformation rules containing a spinor parameter which rotate a bosonic �eld into

a fermionic superpartner and vice versa. That such a symmetry is theoretically consistent was
a surprise because earlier work, especially the Coleman-Mandula theorem, had indicated that
the invariance groups permitted in quantum �eld theory were limited to the Poincar�e group
of space-time symmetries and a Lie group G for internal symmetries as described above in

connection with non-Abelian gauge theories. Neither contains spin-changing symmetry oper-
ators. However, in 1971, Golfand and Liktman [1] sought to go beyond the limitations of the
Coleman-Mandula theorem. They wrote down the algebraic relations of an extension of the
Poincar�e algebra containing spinor generators, and an interacting �eld theory which is invariant.
The mathematical structure is that of a Lie superalgebra, which was not considered in earlier

work. In 1972, Volkov and Akulov [2] obtained another invariant �eld theory with a di�erent
and pretty structure; it described a spontaneously broken form of supersymmetry. Finally
in 1973 Wess and Zumino [3] discovered supersymmetry in four-dimensional �eld theories by
generalizing a structure found in early work on superstring theory. Their paper contained the
basic supersymmetric theories, with their o�-shell multiplet structure, and systematic rules for

constructing invariant interacting Lagrangians. The paper of Wess and Zumino was the spring-
board for the work of many physicists who contributed to the formal and phenomenological
development of the subject.

Let us look at the example of supersymmetric Yang Mills theory, �rst obtained by Ferrara

and Zumino [4] and Salam and Strathdee [5], which is the simplest interacting theory where

you can see both that supersymmetry works and that it has some depth. It is important to
look at an interacting theory because there are many possible symmetries of a free theory which
are spurious, because one cannot introduce interactions. So I will present the full theory, and

a guide to the manipulations needed to show that it is invariant.

The �elds of the theory are the N gauge bosons Aa
�(x) and their superpartners, a set of

N -gauginos �a(x) which are Majorana spinors. A Majorana spinor satis�es a linear condition
which means that only four independent real functions are required as initial data. It describes

a spin-1/2 particle which is its own anti-particle. The minimal Lagrangian which is gauge

invariant, namely

L = �
1

4
(F a

��)
2 +

i

2
��a� (D��)

a (34)
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also possesses global supersymmetry. It is invariant under the following transformations which

mix bosons and fermions

�Aa
� = i�� ��

a

��a = ���F a
��� (35)

where

��� =
1

4
[�; � ]

D��
a = @��

a + g fabcAb
��

c

F�� = @�A
a
� � @�A

a
� + g fabcAb

�A
c
� : (36)

To show supersymmetry in a simpli�ed way, let us establish the invariance of the free equations

of motion. We need to show that if � and A� satisfy the Dirac and Maxwell equations

i�@�� = 0

@�F�� = 0 (37)

then so do their variations �� and �A�. For the Maxwell equation, we need

�F�� = @��A� � @��A�

= i��(�@� � �@�)� : (38)

Then
@��F�� = i��(@=@��� � �) : (39)

Both terms vanish separately if @=� = 0. The Dirac equation is a little more involved and more
instructive

�@��� = ����@�F��� : (40)

We substitute the standard Dirac matrix identity

���� =
1

2
[�; ���] +

1

2
f�; ���g

=
1

2
(���� � ����) +

1

2
i�����5� : (41)

in (40) and �nd

�@��� =
1

2
f(���� � ����)@�F�� + i5��

����@�F��g� : (42)

The �rst two terms vanish by the Maxwell equation above, and the last vanishes if one substi-

tutes F�� = @�A� � @�A� and uses the fact that ����� is totally antisymmetric.

In the interacting non-Abelian theory things are a little more complicated. The Ricci and
Bianchi identities of Yang-Mills theory are required

[D�;D� ]�
a = g fabcF b

���
c

�����D�F
a
�� = 0 (43)
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and one then �nds that the term (in �L)

g fabc ����a��b��
c (44)

must vanish as the �nal test of invariance. It can be shown to vanish as a consequence of the

Fierz rearrangement identity for the  matrices and the crucial fact that the spinor quantities

�a(x) and � must anticommute because of the Pauli exclusion principle.

It is worthwhile to summarize the ingredients of the proof:

a. the Ricci and Bianchi identities which are fundamental to the non-Abelian gauge invari-

ance;

b. properties of the  matrix algebra used in the relativistic treatment of spin;

c. anti-commutativity of fermionic quantities required by the connection of particle spin and
statistics.

If the discussion above does not convince you that supersymmetry is a principle of great
depth, then let me describe one more fact. This is the relation of supersymmetry to the space-
time transformations of the Poincar�e group. For any physical �eld �(x) of a supersymmetric

theory one can make repeated supersymmetry variations, with spinor parameters, �1 and �2.
The commutator of two transformations is

(��1��2 � ��2��1)�(x) = i��1
��2 @��(x) : (45)

Thus the commutator is an in�nitesimal translation in space-time with displacement parameter
�a� = i��1

��2. So supersymmetry is a \square root" of translations in much the same way that
the Dirac equation is said to be the \square root" of the scalar wave equation. This is already
enough to see that the local form of supersymmetry must involve gravity, and we will return

to this shortly.

In a theory with a non-Abelian gauge group G, we have seen that the �elds are organized in

representations of G. In a supersymmetric theory there is the analogous Poincar�e super-algebra,

including translations, Lorentz and SUSY transformations. Fields are organized in multiplets

of this algebra, the basic ones contain �elds of spins

12



chiral multiplet (1=2; 0+; 0�)

gauge multiplet (1; 1=2)

(3=2; 1) N � 2 supergravity

N = 1 supergravity (2; 3=2)

(5=2; 2)

(s; s� 1=2) (46)

A �eld theory with local supersymmetry is called a supergravity theory. Let us see what

is required for such a theory by applying what we have learned about the spin-1 and spin-2

gauge principles. We want invariance with respect to transformations with an arbitrary spinor

function ��(x), so we should expect to require a gauge �eld with an additional vector index, a

vector-spinor �eld  ��(x). A free �eld theory for  ��(x) had been formulated in 1941 by Rarita
and Schwinger, describing a spin-3/2 particle. For a Majorana �eld, their Lagrangian is

L = �
1

2
����� � �5� @� � : (47)

One can easily see that it is invariant under the gauge transformation � � = @��. So the spin-

3/2 �eld is the natural candidate for the gravitino, the superpartner of the graviton, and we
should expect that the particle content of the basic supergravity theory should be given by the
(2, 3/2) supermultiplet above.

However it was not clear that the theory could be mathematically consistent because of
the infamous history of attempts to add interactions to the Rarita-Schwinger theory. All such
attempts had led to inconsistencies. For example if  � is coupled to an electromagnetic �eld
using the covariant derivative, D� � = (@� � ieA�) �, the resulting theory, although formally
relativistic, has propagation of signals at velocities faster than light. We now know that such

problems arise when the interactions fail to incorporate the gauge invariance of the free theory.

Our approach [6] to the construction of supergravity was to start with the minimal elements

required in a gravitational Lagrangian with fermions. These were:

vierbein ea�

spin connection
�

!�ab =
1

2
[e�a(@�eb� � @�eb�) + e�ae

�
b (@�ec�)e

c
� � (a$ b)]

curvature tensor R��ab = @�
�

!�ab +
�

!
c

�a

�

!�cb �(�$ �)

Lorentz covariant derivative D� � = (@� +
1

2

�

!�ab �
ab) � : (48)

From these we formed the Lagrangian

L = L2 + L3=2

� �
det e

4�2
ea�eb�R��ab �

1

2
����� � �5 e

a
�aD� � (49)
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where � is the gravitational coupling constant. The �rst term is the standard pure gravity action

in vierbein form, and the second the Rarita-Schwinger Lagrangian with minimal gravitational

coupling. This Lagrangian is acceptable from the viewpoint of the spin-2 gauge principle, and

the next question is whether it is locally supersymmetric.

For this one needs transformation rules. It was natural to postulate

� � =
1

�
D�� =

1

�
(@��+

1

2

�

!�ab �
ab�) (50)

because this is both gravitationally covariant and contains the expected mix of gradient plus

Bose-Fermi mixing terms. The vierbein variation

� ea� = �i ���a � (51)

is almost uniquely determined by invariance arguments.

I will present the �rst steps in the proof of local supersymmetry which shows that terms of
order ��1�� vanish in the variation of the action. In conventional vierbein gravity the variation
of L2 for any �e

a
� is

�S2 =
1

2�2

Z
d4xdet e(Ra� �

1

2
ea�R)�ea� : (52)

It is the Einstein tensor in frame form that multiplies �ea�. We now compute the � variation of
L3=2, getting a factor of two by varying � � and  � according to the rules for Majorana spinors,

�1S3=2 = �
1

�

Z
d4x ����� � �5�D�D��

= �
1

4�

Z
d4x ����� � �5�R��bc�

bc� (53)

where we have used the gravitational Ricci identity in the last line. We now use (41) in the
form

��
bc =

1

2
(eb�

c � ec�
b) +

1

2
iea��

abcd5d (54)

When this is inserted in (53) the �rst two terms give contractions

�����R���b = 0 (55)

which vanish due to the �rst Bianchi identity for the curvature tensor.

After use of � �d� = ���d �, which holds for anti-commuting Majorana spinors, we are left

with

�1S3=2 =
1

8�
i

Z
d4x������abcdea�R��bc��d � : (56)

It is less fun, but straightforward, to compute the contraction of the � tensors

������abcdea�R��bc = 2det e(eb�ec�edr + ec�ed�eb� + ed�eb�ec�)R��bc

= 4det e(Rd� �
1

2
ed�R) : (57)
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When this is inserted in (56) and (51) is inserted in (52) we �nd an exact cancellation!

The situation is similar to that of supersymmetric gauge theories. The cancellation is due

to the combined e�ects of the gravitational Ricci and Bianchi identities and the Dirac -matrix

algebra. This lowest order cancellation showed that we were on the right track, but there was

more work to be done because there is a non-vanishing variation �3S3=2 of order ��� 
3.

Here we struggled for many weeks because it was hard to perceive a pattern in quantities

with so many indices. Finally we devised a systematic approach involving:

a) a general ansatz for a modi�ed gravitino transformation of order �0 = ��� 2;

b) an analogous general ansatz for a contact Lagrangian of order L4 = �2( �  )2.

The �0 variation of L3=2 and the � variation of L4 give additional order �� 3 terms and
we were able to �nd unique choices for �0 and L4 to make the total variation vanish. Fierz
rearrangement was required here.

Unfortunately new and complicated terms of order �3�� 5 are generated by �e and �0 

variations of L4. One could show easily that no further modi�cation of the framework could
be made, and these terms had to vanish or the theory failed. We were able to show that they

vanished by a computer calculation in FORTRAN language with explicit input of the -matrices
and a program to implement the anti-symmetrization implicit for fermionic variables.

Soon thereafter an important simpli�cation of the resulting theory was obtained by Deser

and Zumino [7], with a further simplifying step [8] somewhat later. This involved the idea that
the gravitino modi�es the space-time geometry by including torsion. The net result is that the

Riemannian spin connection
�

!�ab is replaced by

!�ab =
�

!�ab +
1

2
i�2 ( � �a b � � �b a � � a� b) (58)

in the Lagrangian (49) and transformation rule (50). This grouping of terms gives a complete
and succint de�nition of the theory, and a simpler proof of invariance.

The subsequent development of supergravity included:

1. coupling supergravity to the chiral and gauge multiplets of global supersymmetry; these

couplings involve conserved supercurrents and super-covariant derivatives; there are now

relatively simple tensor methods to obtain the most general form of these theories;

2. developing extended supergravity with N � 8 gravitinos; the maximal N = 8 theory was
once thought to be the best candidate for a uni�ed �eld theory.

3. Higher dimensional supergravity culminating in the 10 and 11 dimensional theories. The

10 dimensional version is important both historically and practically for superstrings.

15



Earlier we said that the only theoretically consistent gauge principles are those of spin-1,

spin-2, and spin-3/2. This information comes from a set of theorems, due to Coleman and

Mandula and Haag, Lopuszanski and Sohnius, which limit the symmetries permitted in an

interacting theory. These theorems hold under certain assumptions which must be examined

critically. But it appears that they are essentially correct. For example, one can write free �eld

theories for a spin-5/2 �eld, but attempts to include interactions have all failed.

There is time to describe only very briey what now appears to be the most plausible

scenario for experimental veri�cation of these ideas. This is the global supersymmetric extension

of the standard model with �elds grouped in chiral and gauge multiplets. The known quark,

lepton, gauge, and Higgs �elds all have superpartners. One then couples this large set of matter

�elds to supergravity. Observed supersymmetry requires that a particle and its superpartner

must have the same mass. This is decidedly false, so one must expect supersymmetry breaking,

and superpartners are predicted with masses between 100 GeV and 1 TeV.

Without the supergravity couplings explicit mechanisms for the symmetry breaking have
not been found. There could be a subtle dynamical breaking mechanism, but in any case

the spontaneous global supersymmetry breaking would give a Goldstino, a massless spin-1/2
particle that is excluded experimentally. So the role of supergravity in these models is to break
supersymmetry such that the gravitino becomes massive by a super-Higgs mechanism, without
generating a cosmological constant.

The �rst model which correctly described this super-Higgs mechanism was obtained by
Polonyi [9]. General studies of the conditions for the super-Higgs e�ect by Cremmer, Julia,
Scherk, Ferrara, Girardello and van Nieuwenhuizen [10] and by Cremmer, Ferrara, Girardello
and Van Proeyen [11] also contain the most general N = 1 supergravity actions. It is this work

which has been widely applied to supersymmetric extensions of the standard model. A very
early discussion [12] of the super-Higgs e�ect for N spin-3/2 �elds and N Goldstone fermions
is incorrect both for general N and in the special case N = 1.

Discovery of the superpartners is the key requirement to con�rm the picture of broken
supersymmetry, but there is also a less direct set of predictions related to the uni�cation scale of

gauge coupling of the standard model, the rate of proton decay and the masses expected for the
top quark and Higgs bosons. There is now favorable experimental evidence on the uni�cation
scale and the observed lower limit on the proton lifetime. These facts appear quite naturally

in the supergravity models but not in the simplest forms of theories without supersymmetry.

In this lecture I have not done justice to string theory and the beautiful ideas it contains.
Therefore I must clearly state that the N = 1 supersymmetry/supergravity framework I have

discussed cannot give a complete theory. There are non-renormalizable in�nities which require
new physics at the Planck scale. A more fundamental superstring theory could well be correct

and there are well studied scenarios by which such a theory can lead, for energies less than
1019 GeV, to an e�ective N = 1 supergravity theory.

I have not had the time to discuss some of the pragmatic features of supersymmetry/
supergravity theories which make them attactive as a candidate for physics beyond the standard
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model. There are review articles to consult about this very active subject of research. Instead

what I have tried to say is that these theories are based on the only theoretically consistent

symmetry principle not so far con�rmed in Nature. This suggests that it is historically inevitable

for supersymmetry to play a role. Of course this could be as dangerous as the prediction that

\capitalism contains within itself the seeds of its own destruction." Experiment is the ultimate

test of theoretical speculation. New experiments are needed together with theorists who are

willing to devote a good part of their e�ort to support the experimental enterprise.
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Note

We can include explicit reference only to a few of the original papers on supersymmetry and

supergravity. Many important papers are omitted, and it is fortunate that they are reprinted

and reviewed in the following collections which are also a very good way to learn the subject.

a. \Supersymmetry and Supergravity", ed. M. Jacob, North Holland, Amsterdam (1986), a

collection of Physics Reports by J.Ellis, P. Fayet and S. Ferrara, H. Haber and G. Kane,

C. Llewellyn Smith, D. Nanopoulos, P. van Nieuwenhuizen, H. Nilles, A. Savoy-Navarro

and M. Sohnius.

b. \Supersymmetry", 2 Vols., ed. S. Ferrara, North Holland, Amsterdam (1987).

c. \Supergravities in Diverse Dimensions", 2 Vols., eds. A. Salam and E. Sezgin, North

Holland/World Scienti�c (1989).
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