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dynamic aperture.

vertical phase advance per cell uV= 56.25° is proposed, which has a larger
crossing an integer value. A new version of the low emittance lattice with a
amplitude are considered with the purpose to avoid the hotizontal tune
misalignment. Various methods to reduce horizontal detuning with
aperture of such a lattice is shown to be very sensitive to quadrupole

horizontal phase advance per cell p.x= l35° is studied. The dynamic
The single particle stability in a low emittance lattice for LEP2 with
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effect [3], therefore the following analysis is confined to the vicinity of the indicated

are forbidden by the coherent beam-beam
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Oxj] 4-th order coupling resonance as well) in the
further away from the integer value (and the

The horizontal tune cannot be pulled
xn acceptance with the physics optics.

`xl °\
only way to obtain adequate energy
which in the present case is practically the
the tunes close to an odd integer in LEP [2],
of reduction in the nonlinear chromaticity for
choice of tunes was determined by the fact
125.23, Qv=75.18 ) is shown in Fig.1. This
diagram chosen for the L-optics (QF

The working point on the tune

Nonlinear Properties of the 135/60 Lattice.

the 135/60 lattice and find possible ways to improve it.
The main objective of the present study is to analyze the stability properties of

mentioned.

The first two circumstances may account for the negative results of the experiment
c) large third order vertical chromaticity of the physics optics ( Q/"=1.8-106).
b) large width of resonances, both systematic and driven by imperfections;

the injected beam onto the horizontal integer resonance;
a) large horizontal detuning with amplitude ( BQX/8Wx=-l.3-l05m·*rad·‘) driving

the betatron motion manifested as :

particular case) and correspondingly large chromaticity lead to a strong nonlinearity of
short experiment at the end of 1993. The large horizontal tune value (Qx=l25.23 in the
concentrated on the optics with uy=60° (called the L-optics), which was tested in a
aperture due to a high BV value at the SD sextupoles. Therefore the effort was
advance per arc cell value uV=45° (see Ref.[l]) revealed its insufticient dynamic
J .P.Koutchouk. The analysis of the optics with a most promising vertical phase

A number of optics versions with p.x=l35° has been synthesized and studied by

at the Wi energy [1].
90° would at least double the luminosity with the same current and number of bunches
31:/4=l35°. Returfing the LEP lattice to this phase advance from its present value of
lattice the emittance reaches its minimum at a horizontal phase advance per cell px
substantial reduction in the natural emittance of the beams is needed [1]. With FODO

For a maximum luminosity at thc LEP2 energy of 90 GeV per beam a



Hereafter W,. and W, stand for the particle Courant-Snyder invariants. OCR Output

Case 3: dy=0.l mm, dx=dpsi=0,
Case 2: dx=0.l mm, dy=dpsi=0;
Case l: dx=dy=O.l mm, dpsi=0.l mrad;

truns) has been performed with quadrupoles misaligned to (in MAD notation):
To detemrine the most damaging type of imperfection a short-term tracking (75

case.

by the inner trajectory and is approximately four times smaller than that in the ideal
testifies to the increased resonance strength. The dynamic aperture in this case is given
integer resonance structure became prevalent. The large width of the resonant islands
both planes. As expected the four-fold symmetry of LEP was broken and the half
0.1 mm and the closed orbit corrected with RMS accuracy of 0.5 mm at pickups in
Fig.2 (right). In this particular case quadrupoles were misaligned to RMS error dx=dy

The effect of imperfections on the horizontal betatron motion is illustrated in

2.2 Dynamic aperture with misalignments.

This indicates an appreciable contribution from the higher order terms in the detuning.
STATIC (which both give practically the same result, see the first row in Table l).
perturbation theory formula incorporated in the MAD routines HARMON and
1.9-l05m·l, noticeably exceeding the value predicted by the Hamiltonian second order

asl 8Qx/8Wx =AQx/WX increases with amplitude in absolute value from -l.6·l05m·l to
The coefficient of horizontal detuning with amplitude estimated from these data
latter is due to reduction in the effective superperiodicity of LEP at large amplitudes).
fourth, fifth and third integer systematic resonances are clearly seen (appearance of the
machine obtained by tracking with the MAD program [3]. Islands corresponding to the

Fig.2 (left) depicts the horizontal phase space pattern in the case of the perfect

2.1 Detuning with amplitude.

Figure 2. Phase space pattem for the perfect (left) and misaligned (right) machines.
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mode [4] very complicated if at all possible. The difficulties are associated with OCR Output
The large horizontal detuning in the 135/60 lattice makes operation in the pretzel

2.3 Excitation of the pretzels.

with 135/60 optics.
especially in presence of momentum errors, may explain the unsuccessful 1993 result

The observed drastic reduction in dynamic aperture due to misaligrrments,
order to reduce coupling in the detector solenoids.
L—optics with BX*=5.25m, By*=0.2lm at lP2,6 and Bx*=2.5m, Bv*=0.21m at IP4,8 in
planes) lattices are given in the first row of Table 1. The label l21v1 stands for injection
perfect and misaligned (case (1) with added monitor read errors of .2 mm in both
displacement of the quadrupoles. The data obtained with 500-turn tracking for both
the reduction in the horizontal dynamic aperture being determined by the horizontal

As follows from the data the particles are insensitive to the vertical misalignment,
were observed to be lost due to instability of the vertical oscillations.
in many cases particles with a large initial horizontal amplitude and a small vertical one
oscillations at Qx=125 are the only factor limiting horizontal dynamic aperture. In fact

It could have been concluded from these data that resonances of horizontal
fm,. at the same ot are slightly shifted to avoid overlapping.
maximal stable amplitudes fm=(Wm8,.[mrn·nrrad])*/2 at the same Sp. Points representing
amplitude (5D) values are plotted in Fig.3. The solid lines join mean values over seeds of
the random number generator sequence). The tracking data for several synchrotron
defined by the "seed" value in MAD (i.e. by the position of the fnst number taken from
and 1.0 mm in the y-plane. In each case ten different misalignment samples were taken
and the closed orbit corrected with RMS accuracy of better than 0.5 mm in the x-plane

CaS€S2&3 8p=(O’0.005)•
O 0.1 0.2 0.3 0.4 0.5

taken. Case 1: 8p=(0, 0.0025, 0.005);
synchrotron oscillation amplitudes are

case defmed in the text, a few
d=ararr(rv,/xv,) divided by rt. For each

U2

square roots of action variables:
f=(W/nm)vs. the angle in the plane of

1/2

Figure 3. The maximum stable amplitude
3 -5 Case 3
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(Q,_," and Q,_,"' were calculated from the Q,_,' values at 5p=il.2% ) OCR Output

-0.330 I -0.210 I -0.453I 0.250 I 0.343 I 0.717 I 0.213 I 0.183 | 0.007
-0.330 I -0.210 I -0.453 I 0.295 I 0.295 I 0.479 I 0.235 I 0.263 I 0.010
-0.327 I -0.327 I -0.327I 0.295 I 0.295 I 0.454 I 0.241 I 5.246 I 1.820

10) (10) __(l0) (10)(m")
3636KSD1 KSD2 KSD3 KSFI KSF2 | Qx" Q,."’ Qy" Q,’ I II

Table 2. Effect of varying the sextupole families excitation with physics optics.

sextupole families {the third row of Table 2). acceptance is limited then
deviation with optimized excitation of the dynamic aperture. The energy
Figure 5. Tunes vs. fractional momentum without noticeable deterioration of the

chromaticity (see Table 2 second row)
compensation of the nonlinear vertical

Table mma ¤ TUNE
0€LT

-.0150 -.0100 -.0050 0.0 .0050 .0100 ,0150 families excitation [2] permits the
125.15000 75.15KD

the beam lifetime. Variation of the SD
75-1 an

t25.\B500
than :h0.7% which is not sufficient for

75.165m

tZ5.Z2000 squeezed optics turns out to be less
75.17003 families the energy acceptance of the

v25.25500

75.17% SD’s. With equal excitation of the SD

125,29000
75"HOOO in the LEP lattice, two SF’s and three

present there are tive sextupole families
l25J2500 75.18%

strength of both SF and SD families. At
mam

‘”·“°°° leads to an increase in the required
75.19%

l25.$9500 large BV values at SF's (38 m), a high Qx'
75.20% be noted that, because of the relatively

l25.4JO00

75.20499 values are Qx'=-247, Qy'=-188. It should
I25.46500

75.21 mm 1.25m, Bv*= 0.05m the uncorrected

6 ,.._.,,.,.,., ms.,,..,,r.....,,...,......_.... ¤-,25,¥7..,8 ~=/~~=···=~¤···¤¤/¤¤/¤··¤¤—¤> ,.,..,.,6 . . . . . _ . , physics optics is quite high. with Bx
advance per cell the chromaticity of the

Due to the large horizontal phase
2.4 Chromaticity ofthe physics optics.

separation in the midarcs and a larger Q, to provide for the tune depression.
redistributed phase advances in the dispersion suppressors to increase the orbits

·mode should be designed with
Scpammr voltage na special optics for operat1on1n the pretzel
Figure 4_HOriZOma1mn€ VS. Dremel aperture (Table l secondrow). Therefore

noticeable reduction in the dynamic
124195

depressed to Qx =l25.l8 leadmg to a
(kv) of 3.4 mm) the horizontal Itune is
VZX closed orbit displacement in the midarcs125*05

pretzel amplitude of 6.2 mm (and the
mm

Fig.4. At VZX=45 kV which provides
mus voltage (VZX); the latter being shown in

and overall tunes on the separators123*
advance between the pretzel separators
OCR Outputthc dependence of the horizontal phase



In this section various methods to reduce detuning are considered. OCR Output
2) cancellation of the betatron resonances limiting the dynamic aperture.
1) reduction of the horizontal detuning with amplitude;

needed. The solution to the problem can be sought for in two ways:
injection and sufficient beam lifetime some optics with a larger dynamic aperture is
injected beam, especially in the presence of momentum errors. To ensure reproducible
the case of a poorly corrected closed orbit might be insuHicient to accommodate the

As follows from the above analysis the dynamic aperture of the 135-60 lattice in

Possible Methods to Reduce Detuning

Operation of the 135-60 lattice in the pretzel mode poses serious problems.
chromaticity of the horizontal focusing.
varying the excitation of the SD families; the energy acceptance being limited by
The nonlinear vertical chromaticity of the squeezed optics can be easily corrected by

horizontal quadrupole misalignment being the most detrimental one.
Particle stability in the 135-60 lattice is highly sensitive to imperfections; the

2.5 Conclusions.

bound to be close to odd integers.
compensation of the nonlinear chromaticity is already quite large, so the tunes are really

As seen from these data the variation in sextupole strengths needed for
corresponds to the squeezed X-optics which will be discussed in Section 4.
to the sextupole families excitation as given in the Table 2 second and third rows, plot 3
accuracy of 0.3 mm in the x-plane and 0.6 mm in the y-plane. Plots 1 and 2 correspond
misalignments as in the subsection 2.2 case (1) and the closed orbit correction RMS
synchrotron amplitude obtained at EO=46 GeV by 300 tum tracking with the
aperture. Fig.6 shows the maximal stable horizontal amplitude dependence on the
2 third row, see also Fig.5) but at the expense of the on-momentum horizontal dynamic
at 5,,=-0.016. It can be somewhat corrected by varying the SF families excitation (Table
by the chromatic dependence of the horizontal tune which reaches an integer value

O O.m.40.@.8 1 1.21.4

with optimized SF families excitation.
KSF’s; (2) and (3) lO5vl and xO5v6
squeezed optics: (1) l05v1 with equal
oscillation amplitude 5,, [%] with the
fx=(Wx[um])vs. synchrotron

"2

Figure 6. Maximal stable amplitude(3)
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account the higherorder terms should be developed to actually reduce detuning by this
appears even larger than it was in the L-optics. Therefore an analytical tool taking into
from the tracking data that 82Qx/8Wx2==2-10¤m·2 so that the detuning at Wx~l mm·mrad
large contribution of the higher order terms in the normalized Hamiltonian. It can be deduced
with l08° being close to one of the minima. The most striking feature of the Y-optics is a
maxima for p.x>l20° whereas for px<l20° both these values can be kept small simultaneously,
Fig.8 shows that there is a strict correlation between the |8Qx/BWXI minima and the IRBOOO
driving terms.

misalignments, which could have been predicted from the increased third-order resonance
extremely small even in absence of

gdvgncg andtha tune; horizontal dynamic aperture appeared to be
detuning coefficient on the arc cell phase €€l¤iV¥1l€¤t Y0 @056 0f [hi? L·0PU€$· Th€
Figure 7. Dependence of the horizontal Q,.=}21·23» Qy=75-18 3-YC Uwdulus 4

fourth row). The chosen tune values
_ , synthesized and examined. (see the Table l__; 125 Uxidcgl

130
=6l.45° (chosen to zero BQ}/GWX) has been12* 135

140 labelled as Y—optics with this nx and ir
124 . 7 there is a steep crest at nx=l29.53°. An optics

125 _4OO to the L-optics working point. On the plot
nearest SF being fixed. The dot corresponds

125 ° 2
-20c and phase advance between an odd IP and the

tune Qx with the SF strength, Bx at the SF's
phase advance per cell tix and the horizontal

BQX / Wx as a function of the horizontal
plot in Fig.7 shows the detuning coefficient
second order perturbation theory. The surface
has been written (see Appendix 2) based on

X103 phase advance a Mathematica [5] notebook
QQX/Qwx and resonance driving terms on the arc cell

To study the dependence of detunings

be considered.

sought for. As such variation of the arc cell phase advance and the SF families excitation can
large number of the arc sextupoles. Therefore a method of distributed correction should be
localized correction when a few correctors should compensate for the coherent effect of a

The negative effect of the MSX sextupoles on particle stability is quite typical for a

3.2 Variation of the arc cell phase advances .

MAD STATIC routine output at 5p¢0 in the present case BZQX/8WX85D=—3·l07m·l
and strong dependence of detuning on the momentum: as it can be deduced from the
highly detrimental one (see the Table l third row) due to excitation of nonlinear resonances
eliminate it almost completely. But the net effect on the dynamic aperture proves to be a
excitation. The SD.QL9's have a larger effect on the horizontal detuning and with k2=2.2 m·3
also (when powered symmetrically) be employed to control detuning and resonance

The MSX sextupoles installed in the odd pits for e‘/e+ tune split correction [4] may



(Table l last row). OCR Output

a minor reduction in dynamic aperture of the misaligned machine due to the octupoles
amplitude by half at the maximal excitation (K3=17.28 m·" at 20 CeV). Tracking shows
octupoles is as high as 300 m which permits to cut the horizontal detuning with

With Bx"=2.5 m and KQS2.2,6=.02 m·2, KQS2.4,8=.025 m·2 the Bx value at the
with the X-optics which will be described in the next section.
QS2’s rather than QSl’s for the horizontal focusing. Such an attempt has been made
(about 150m). This value can be increased by squeezing Bx at the even IP’s and using
these octupoles to the detuning is relatively small due to a low BX value at their location
the normally idle QS2 quadmpoles. In the standard injection optics contribution from
aperture it is instructive to examine the effect of the insertion octupoles located close to

Though the localized correction of the detuning hardly can improve the dynamic

3.4 Correction with the insertion octupoles.

explanation of the observed reduction in the horizontal dynamic aperture.
confirmed by the MAD HARMON routine (see Table 1). This provides a possible

resonance should be expected, which is
On the d€mnmg_ 61t) a drastic enhancement of the 4th integer
Figure 9. Effect Of varying KSF’s SF S€XtL1pOl€S. With |J.x=37I/2 (i.e with 4p.x=

doubling the phase advances between acting
of varying KSF’s can be understood as

.75 (0.1 m0) is substantially reduced the effect
Since the strength of the SSF2 family

being given in the Table l fifth row.
02 00 04 / both the perfect and misaligned machines

is also some reduction, the tracking data forKSF1
25 at the lower value. At the upper value there

reduction in the horizotal dynamic aperture
GQX/GWXXIO KSF1 values. Trackin indicates a drastic g
coefficient as a function of SSFl sextupoles strength. It tums out to be zero at two
the detuning with amplitude. Fig.9 shows the horizontal detuning with amplitude
chromaticity (Qx'=Qv'=2) one can change not only the nonlinear chromaticity but also
the strength of one family and adjusting the other so as to retain the desired linear

At present there are two SF families in the LEP lattice (SSFI and SSF2). Varying

3.3 Variation of the SF families excitation.

functions of the horizontal phase advance per cell ux with all the other parameters fixed.
Figure 8. Horizontal detuning and resonance coefficients (GQX/8Wx><l0’ and R3000) as
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in presense of misalignments has been observed in both cases. OCR Output
eighth rows. Only slight improvement for the perfect machine and no improvement at all

The data obtained in these two cases is presented in the Table 1 seventh and
approximately 1.4 times higher than that of the SSF2’s.
compensate for a lower Bx value at QLl7 the additional sextupole strength should be
inserted in DISL, the phase advance between it and the SF.QFl9 being about 0.711:. To
in the dispersion suppressors. The error in [LX is smaller when the additional SF is
second case the cancellation is not exact since the betatron functions behave differently
varies slowly around QF’s, but the arrangement on the whole loses its regularity. In the

In the first case almost exact cancellation of horizontal kicks is obtained since px
of the CH.QF49 corrector or in one of the two dispersion suppressors.
extra SF sextupole in each octant is needed. It can be placed either in the midarc instead
are. With |.l.x=37I'/4 a horizontally non-aberrant group comprises 8 sextupoles, so one

intrinsic cancellation of their kicks cannot be achieved whatever the cell phase advances
The two SF families in LEP (SSFl and SSF2) have in total 31 sextupoles, so the

4.1 Effect of additional SF sextupoles.

superperiodicity.
c) adjusting horizontal phase advances so as to double the lattice effective
b) changing vertical phase advance per cell to reduce nonlinear coupling;
a) adding SF sextupoles;

being odd multiples of rc [6]. In this respect the following was considered:
(1)px, 3 px, px t 2 uy

combinations of phase advances between them
substantially reduced when all the sextupoles are arranged in pairs with the

therefore some measures should be taken to weaken the resonance excitation. It is
detuning and avoid crossing the resonant value Qx=l25 at large horizontal amplitudes,

As follows from the above analysis at present there is no viable method to reduce

Intrinsic Cancellation of Geometric Aberrations.

needed.

an analytical tool implementing a higher order Hamiltonian perturbation theory is
To realize the possibility of reducing detuning by varying the phase advance per cell
attempts lead to a strong deterioration of the dynamic aperture.
stability by reducing the horizontal detuning with amplitude. On the contrary all such
With the existing multipole correctors it is impossible to improve the single particle

3.6 Conclusions.

improving the particle stability by reducing the horizontal deiuning with amplitude.
dynamic aperture of the misaligned machine confirming in principle the possibility of

As can be easily seen this method of correction provides by far the largest
sixth row presents data obtained with the corrector integrated strength K3L=1.5 m·
from the adjacent correctors cancel, so a good stability should be expected. The Table 1
phase advance under consideration (4uX=31:) contributions to the 4th integer resonance
examined with thin octupole coirectors near each QF quadrupole. With the horizontal
spoiling the particle stability. To elucidate the point a hypothetical lattice has been

It can be argued whether at all it is possible to eliminate the detuning without
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correction of the horizontal nonlinear chromaticity proved to be a more difficult
phase, varying the SD’s excitation is just as effective as in the uy=60° case, whereas
space [6]. Though the kicks from sextupoles belonging to one family are not exactly in
SD sextupoles kicks on an off-momentum particle in the vertical chromatic functions
the second octant is given in the Table 4. The diagram in Fig 11 shows direction of the
the SD—farnilies around midarcs is needed, the resultant grouping SD’s in an instance of
acceptance is :l:1%. To further increase the energy acceptance a minor rearrangement of
chromaticity of the squeezed optics (see Table 3). Without SD-varying the energy

Another important feature of the X-optics is a smaller third order vertical
the second one).
(QW" and Q,,,’" were calculated from the Q,_,' values at 5p=tl% in the first row case and 5P=il .2% in
-0.320 I -0.230 I -0.401 I 0.220 I 0.263 I 0.575 I 0.152 I 0.113 I 0.098

-0.317 I -0.317 I -0.317 I 0.298 I 0.298 I 1.010 I 0.164 I 1.210 I 0.890
10) <10) (10) (10)(m") 3°36KSD1 KSD2 KSD3 KSF1 KSF2 | Qx" Q,"' Q," Qy’ I I I

Table 3. Nonlinear chromaticitv of the physics X—optics.

amplitude in presence of misalignments.
shows maximal stable amplitudes f,._,=(W,_y [micr0n])as fu¤Cti0¤S of tht? SYH€hf0lif0¤

I/2

larger than that of the L- optics. Fig. 10apcnum
gyFigure 10. The injection X-optics dynamic horizontal acceptance is Sinmcand

the Table 1 the injection X-optics
8p[%] effective superperiodicity. As seen from

0.0 O.2 0.4 0.6 0.8 1.0 and the adjacent IP’s doubling the lattice
between the midarc sextupoles SF.QF49
equalization of horizontal phase advances

O.5 with the injection configuration was
optics and proved to be quite efficient

1.0 measure which was implemented in this
given in the Table 1 ninth row. Another! *L °

51t/16 optics (called X-optics) areLBL: E
The data obtained with ux=3rt/4

octant).
2·O|`: •

one SF sextupole is missed in each
pairs making an (approximately) non-aberrant group of 16 sextupoles (so again only
value of py=51t/16 ux and ux at 2uy become odd multiples of 1: for different sextupole
the increase in BV at the sextupoles rendering the net effect negative [1]. With a nearby to rt/3
same sextupole pair thus ensuring exact cancellation of its kicks. But this is overcome by
cell value ;.LV=1t/4, in which case all combinations (1) become odd multiples of 1: for the

The obvious solution would have been to choose the vertical phase advance per
adding one extra SF sextupole per octant does not improve the situation.
px=3at/4, py=rt/3 a non-aberrant in both planes group comprises 24 sextupoles, so
oscillations which canbe attributed to the uncompensated nonlinear coupling. With
horizontal amplitude were observed to be lost due to instability of the vertical

It has been mentioned earlier that in many cases particles with large initial
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acti0nP1aneAng1es=[0.,.25,.5}; nAngles=Length[ acti0nP1aneAng1es ];
deltaps=.001 {0,2.5,5}; nDe1ts=Length[ deltaps ];

root of the sum of action variables taken in (1t)·mm·mrad).

angle=0.5 - to purely vertical motion), and the maximal stable amplitude f (the square
action variables (divided by TE so that angle=0 corresponds to purely horizontal and
momentum deviation deltap, angle in the plane of (the square roots of) the transverse
coordinates are chosen: the synchrotron oscillation amplitude in the form of fractional

3D dynamic aperture [8] can be represented as a surface in action space. For

I Variables and Units

xesults=StxiugJ0in[ j0bname,".0ut"]
j0bname="1ep2"; machine=StxingJ0in[ jobname,".latt"];

stored in the file ‘j0bname’.out.
be provided by the user, an example can be seen below as an input echo. Output is

Both files are assumed to reside in the working directory, The lattice file should
track.prot0 formulating the tracking task for MAD.

the user, and

correction procedure to be studied, where the ‘jobname’ stands for a name chosen by
‘jobname’.latt specifying the lattice, misalignments type and closed orbit

The program requires two auxiliary files for MAD input preparation:

I Auxiliary Files

seeds=Table[ 10000*i,[i,10}]; nSeeds=Length[ seeds ];

compensation (if any) of their kicks and substantially reduce the dynamic aperture.
small variation in phase advances between sextupoles due to imperfections destroy
emittance (hence highly nonlinear) lattices of the electron (positron) storage rings since
seed ) should be taken to obtain reliable results. lt is particularly important for low
number of possible error distributions (determined in MAD by the random generator

Since the real imperfections can be determined with but a limited accuracy a

I Tracking with misalignments

properties.

Mathematica and MAD for statistical analysis of a misaligrred accelerator stability
Hereafter an example is given of establishing unstructured communication between
for MAD, preparing input for it, analyzing the output and representing the fmal result.

This inconvenience can be circumvented by using Mathematica [5] as a guide
[3] does not support nested DO loops and conditionals.
search of the stability boundary (dynamic aperture) - for instance the MAD program
codes have a limited flexibility not permitting to implement algorithms for purposeful
accelerators tracking still remains the most reliable tool. Unfortunately the tracking

Though many analytical methods exist for analysis of particle stability in circular

I Introduction

Running MAD via Mathematica for Dynamic Aperture Calculation
Appendix 1.
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Switch on RF and radiation

correct,ncorr=32,iter=2,error=error.y,plane=y
correct,ncorr=32,iter=2,error=error.x,plane=x
set,KSF2 KSF2O

set,KSF1 KSFIO

Set,KSD3 KsD30

set,KSD2 KSDZO

set,KSD1 KSDlO

Switch on the sextupoles
correct,ncorr=32,iter=2,error=error.y,plane=y
correct,ncorr=32,iter=2,error=error.x,plane=x
error.y=.OO1

error.x=.OO05

call,'/users/alexahin/lep2/error.defs'

EOPT,seed=&

l- Specify imperfections and orbit correction
use,lep

ksf2=O

ksfl=O

ksd3=0

ksd2=O

ksdl=O

set,KSF2O KSF2

set,KSFlO KSFI

set,KSD3O KSD3

set,KSD2O KSD2

set,KSDlO KSDl

Switch off sextupoles for primary orbit correction
beam,energy=2O

call,'/users/alexahin/madtools/track/colli.wdn'
call,'/users/slath/machines/135-56/md135·56vl.config'
call,'/users/slath/machines/lep94/lep944.seq'

Load the machine configuration
option,-warn,-ECHO,-info

mach=ColumnForm[ ReadList[ machine, Record]]
ncalls=2; nphase=3; namp1=l9;

number of calls ncalls with a decreasing step.
step rendering the desired accuracy. Therefore the search could be done in a larger
large a nampl (and so the CPU time) to cover the possible range of amplitudes with a
TRACK routine). But with a wide scatter due to imperfections this may require too
from the first call (especially with the fastest METHOD= TILANSPORT in the MAD

When a good guess can be made on the dynamic aperture size it can be found
mistaking stable resonant islands for the dynamic aperture.
the START commands in the track.proto {ile. It is set presently to 3 to avoid
same amplitude (but different betatron phases) nphase corresponds to the number of
amplitudes incremented by step from the initial value f(). Number of particles with the

At each of the latter calls MAD tracks nampl·nphase particles with nampl
number of amplitudes nampl, the initial amplitude f0 and step.

to perform tracking with specified by the Mathematica values of deltap, angle,
value of seed, saving the configuration on the tile pooldump;

to assemble the lattice, assign imperfections and correct closed orbit for each
Fig. Al. The MAD program is called:

Algorithm for fmding dynamic aperture is illustrated by the flow diagram in the

I Algorithm for finding dynamic aperture
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Exit[]

[iseed,nSeeds}];
[idelt,nDelts}],

{iang,nAngles}],
Write[rest,[ seed, deltap, angle, f0}]; C1ose[ rest],
zest=0pe¤Appe¤d[xesu1ts];

f0=fO+¤amp1*step], {nca11s}]; (* f found *)
(f0=fO+F1oor[ (Miu[losp]-1)/nphase]*step; step/=namp1+1),

[i,lnpl}]; Clear[mess]; If[ NumberQ[Min[losp]],
If[ NumberQ[fw], AppendTo[ 1osp,fw], Coutiuue[]],
StringToStream[mess[[npl[[i]]+2]] ],Word]]];
fw-ToExpression[ First[ ReadList[
Do[ (* store lost particles numbers in losp *)

1np1=Length[¤pl]; l0sp=[};
npl=F1atten[Position[Map[inQ,mess],True]];
Clearltaskl; mess=ReadList["pri¤t", Record];
"f"->f0, "s"—>step, "n"->nampl]]; task>>"!mad";
Do[ task=OutputForm[track/. ["a"->ang1e, "d"->deltap,

Do[ angle=actio¤PlaneAngles[[iang]]; step=.2; fO=0.;
Do[ deltap=de1taps[[ idelt ]];

1att=OutputForm[ mach/. "s"—>seed]; latt>>"1mad"; Clear[latt];
Do[ seed=seeds[[ iseed ]];

inQ[x_String]:=StringMatchQ[x,"*Partic1e(s) lost*"];

stop

endtrack

run,turns=500

enddo

start,ft=ftO,fx=fx0,fy=fy0,phix=5/l2,phiy=O.125
start,ft=ftO,fx=fxO,fy=fyO,phix=O.125,phiy=5/12
start,ft=ftO,fx=fxO,fy=fyO
set,fyO,f*sn

set,fx0,f*cs

set,f,f+step

do,times=&
set,ft0,delt/beam[sige]
track,rfcavity=aas,damp
set,sn,sin(angle*pi)
set,cs,cos(angle*pi)

set,f,fO

delt=&

angle=&

step=&

f0=&

Insert start data

poolload
opti0n,—warn,-echo

track=ColumnForm[ ReadList[ “track.proto", Record]]

stop

pooldump
beam,ex=1.e—6,ey=l.e-6,et=l.e—6

emit

beam,bunched,radiate
call,'/users/jowett/lep2/RF/rfO.lep'
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k2ll“2*bxl*byL*(-bxl*tx[l,phil,nsl]+.5*byl*
dqlde2:=-(

)/64/Pi*nsuper;
2*k21l*k212*bxl2“3*(txs[4]+3*txs[l])
k212*2*bx2“3*(t:[4,phi2,us2]+3*tr[l,phi2,ns2])+
k21l“2*bx1“3*(tr[4,phi1,us1]+3*tx[1,phil,ns1])+

dqlde1:=—(

Detuning coefficients:

Sin[pmq[i]]/(1-C0s[mm[i]])+usl/Sin[.5 mm[i]];
C0s[pmq[i]—2m[i].phil-(nsl-1.5) mm[i]]*(1-C0s[nsl mm[i]]))/

txs[i_]:=(-C0s[pmq[i]-(ns1+.5) mm[i]]+C0s[pmq[i]-.5 mm[i]]+
and between sextupoles of the different families:

Slnlpmqllll>/(1-Coslmmlilll;
tqoslpmqlill+C¤s[pmq[i]—2m[il·phi-(ns-1) mmli]1)/

tr[i_,phi_,ns_]:=(ns Siu[mm[i]]—Sin[us mm[i]]+(l-C0s[¤s mm[i]])*
Trigonometric sums for correlation between sextupoles of the same family:

I Detuning with amplitude

pmq[i_]:=P1 m[i].q; mm[i_]:=m[i].mu;
m[l]=[l,0l; m[2l={l,2l: ¤¤[3]={l, -2}; ¤¤[4l={3»0}:

Mode numbers:

nsl=3l; ns2=nsl+l;

Number of sextupoles:

k21l=.2765*.4; k212=-.2585*.76;

Integrated sextupole strength [m"-2]

bxl2=Sqrt[bxl*bx2]; byl2=Sqxt[byl*by2];
bxl=l69; byl=38; bx2=ll; by2=167;

Betatron functions [m] at the Sl and S2 sextupoles:

phi1=[2.276*2*Pi, l.945*2*Pi]; phi2:=phi1-.5 mu;

Phase advances from IP to the first S 1-sextupole [rad] :

mudeg:=[mux,muY}; mu:=mudeg*Pi/180; muy=60;

Phase advances per cell [deg]&[rad] :

q:=[qx,75.l8]/nsupex;

Betatron tunes per a superperiod :

nsupex=4;

Number of superperiods:

I Variables and units

belonging to different families are half those between sextupoles of the same family.
point theta=Pi. It is assumed that the phase advances between two adjacent sextupoles
nsl and ns2=ns1+l sextupoles per half the superperiod reflected w.r.t. the symmetry

The arrangement consists of two interleaved sextupole families (S1 and S2) of
sextupole strength resonance driving terms.
second order in the sextupole strength. detuning coefficients and the linear in the
in the form suggested by L.Michelotti [9]. At present the consideration is limted to the
nonlinear betatron oscillations. It is based on the Hori·Deprit normalization procedure

The purpose of this notebook is to provide an analytical tool for studying

Families Sextupole Arrangement
Hamiltonian Second Order Perturbation Theory Formulae for a Two
OCR OutputAppendix 2.
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Exit[];

Ticks->[[l00,l05,ll0,ll5}, Automaticl];
Plotstyle->[Thickuess[.O03],Dashinq[[.05,.025]]},
p1t2=Plot[fdqldel/1000,13000},[mux,1O0,1l5),
Ticks->[[l25,l30,l35,140}, Automaticl];
Plotstyle->[Thickness[.003],Dashing[[.05,.025]]},
pltl=P1ot[[dqldel/l000,r3000},[mux,l25,l40},
qx=l25.23;

k212*bx2s*by2*c0nt[l,phi2,thet2,ns2])*2;
xl0ll: =cs[3]*(k2ll*bxls*byl*c0nt[l,phil,thetl,¤sl]+

k2l2*bx2s“3*c0¤t[l,phi2,thet2,¤s2])*3;
x2lO0: =cs[4]*(k2ll*bxls“3*c0nt[l,phil,thetl,nsl]+

k212*bx2s*by2*c0nt[3,phi2,thet2,ns2]);
:1002: =cs[3]*(k211*bxls*byl*c0nt[3,phil,thet1,nsl]+

k212*bx2s*by2*c0nt[2,phi2,thet2,ns2]);
xl020: =cs[2]*(k21l*bxls*byl*c0nt[2,phil,thetl,nsl]+

k2l2*bx2s“3*c0ut[4,phi2,thet2,ns2]);
r3000: =cs[4]*(k21l*bxls*3*c0nt[4,phil,thetl,nsl]+

cs[2]= -1/2.; cs[3]=-1/2.; cs[4]=l/6.; bxls=Sqrt[bxl]; bx2s=Sqxt[bx2];

Cos[m[i].phi+(u0-m[i].q)*thet+(ns-1)*alf[i]/2]/4*Sqxt[2]/Pi*nsuper;
cont[i_,phi_,thet_,us_]:=Si¤[a1f[1]/2*ns]/Sin[alf[i]/2]*
alf[i_]:=mm[i]+(n0—m[i].q)*the11;

First order (in the sextupole strength) resonance driving terms.

thet2=2*Pi*ls2/lsuper;
thell=2*Pi*lce11/lsupex; thet1=2*Pi*1s1/lsupex;
Corresponding angular values:

ls1=482.46; 1s2=ls1—1ce11/2;

distance from the IP to the first sextupoles in the families [m]:
lsuper=6664.72; 1ce11=79.;

superperiod and cell lengths [m]:
For performing the Fourier analysis some geometry parameters are needed:

action variables.

where m={i—j,k-1}, delta is a list of angle variables (see Ref.[9]), Ix and Iy are the
Cos[m.delta-nO*theta—Pi/2*Apply[P1us,m]]*Ix’*((i+j)/2)*Iy"((k+l)/2),
be represented as a product of numerical coefficient rijkl and

The term in the Hamiltonian, exciting the (i-j)*qx+(k—1)*qy=nO resonance, may

I Resonance excitation

B0xRati0s—>{1,1,1], P10tP0i¤ts->3O];
gx=P1ot3D[ dqldel/1000, [mux,l24,l41},[qx,l24.3,125.3},

)/16/Pi*nsupex;
2*k211*k212*bx12*by1*by2*(txs[1]+(txs[2]+txs[3])/4)
(tr[2,phi2,ns2]+tx[3,phi2,ns2])/4)+
k212A2*bx2*by2A2*(tr[l,phi2,ns2]+
(tx[2,phil,¤sl]+tx[3,phi1,nsl])/4)+
k211”2*bx1*by1A2*(tx[1,phi1,ns1]+

dq2de2:=-(
)/16/Pi*nsupex;
byl*by2*(txs[2]-txs[3]))

k211*k212*bx12*(—(bx1*by2+bx2*by1)*txs[1]+
(tx[2,phi2,¤s2]-tx[3,phi2,ns2]))+

k212“2*bx2*by2*(-bx2*t:[1,ph12,ns2]+.5*by2*
(tx[2,phil,¤sl]-tx[3,phi1,nsl]))+




