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1 Introduction.

A general consideration of the beam-cavity interaction can be split into two main parts:

-reaction of the cavity to the perturbations on the beam, which can be described in many
cases using the notion of impedance function and

-response of the beam to the perturbation of the accelerating voltage, which can be
expressed in terms of the beam transfer functions.

Analysis of the stability of the system based on an equivalent circuit model or the Vlasov
equation includes both these parts and leads to the dispersion equation [1]-[3].

When the RE system becomes more complex (multi-harmonics cavities, different loops.
feedback systems) it is convenient to consider the response of the beam separately and then
use 1t in the more complete model of the beam-cavity interaction [4]. One of the possible
ways to analyse the stability of the beam-cavity system is to use matrix formalism. Then
the elements of the beam transfer matrix (BTM) give the amplitude and phase modulation
of harmonics of the beam current as a response to the amplitude and phase modulation of
the external voltage.

Below we present the longitudinal response of the bunched beam to the voltage mod-
ulation in single and double RF systems using beam transfer matrices. We shall consider
short bunches in the accelerating regime and long bunches in the storage regime. These
cases, which correspond to the symmetric potential well, allow a simplification of the general
expressions, so that only even or odd modes of bunch oscillations give contributions to the
matrix elements. No intensity effects are included. ‘

Bunched-beam transfer functions for single RF systems were discussed in [3]-{14]. \Mea-
surements of amplitude and phase of the beam transfer functions at low and high intensities
can give information about the incoherent frequency spread within the bunch, the coherent
frequency shift and the coupling impedance of the machine.

The longitudinal stability of the system in the presence of higher RF harmonics was
considered in [13]-{17]. Double RF systems operating in bunch-lengthening mode (blm) [13]
have recently been used in many accelerators to improve beam stability by increasing the
synchrotron frequency spread or by producing flat bunches. The analytical solution, found
in [18], for nonlinear motion in a quartic potential well is a good approximation for short
bunches. In the present paper an exact analytical solution is found for nonlinear motion in
a double RF system (blm) with frequency ratio equal to 2 (storage regime). This solution
describes the nonmonotonic dependence of the frequency of synchrotron oscillations on their
amplitude which is important for longer bunches. Indeed, it was found in [16] that in a
double RF system, for sufficiently long bunches, the threshold of the coupled bunch mode

instability equals zero. Below we consider the nature of this phenomenon.
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2 Main equations and definitions

The longitudinal motion of particles can be described by the equations:

d_o = ——hw‘onu (1
it~ FE,“ b
du _ qu.'oi, , 5.
e =)

where

q 1s the electrical charge of the particle,

fo = wo/(2x) 1s the revolution frequency,

n=1/v=1/4*

© = p — 0, is the phase deviation of the particle with respect to the synchronous phase
o5 of the main RF system with harmonic number h;

u=FE - FE,, E is the energy of the particle, V, is the voltage seen by the svnchronous
particle with energy E,.

In the general case with more than one RF system, the resulting voltage which affects

the particles can be written in the form:

N

V(6) = 3 Vasin(gad + ga6s) 3)
n=1
Here g, = h,/h, Visin(® + ¢1) represents the main RF voltage, ¢; = o, is its stable phase.
Ve = V(0), hy = h, V, and h,fo are the voltage and frequency applied to the n-th RF
system, @, is stable phase relative to the h,-th harmonic waveform, N being the number of
RF systems involved. We suppose here that harmonics of the higher frequency RF systems
are not necessary an integer multiple of the fundamental.
The Hamiltonian of the system has the form:

h ) ¢ o ’
H =g = 52 [TV(e) - Vi) dol. )

Now let us consider the system with perturbations so that the voltage affecting the
particle is V(¢) + V(¢, t). Then the equation of synchrotron motion is:
2 2

; “s0 — _ “s0 ) :
@ m Vig) -V, = —_Vlcos¢,v(¢)’ (3)

Ot

where wyo is the synchrotron frequency of small oscillations in a single RF system with peak

voltage V4 and synchronous phase ¢,:

2 hwinqVi cos @,
w0 2r32E,

(6)



Note that the system of differential equations (1), (2) which supposes that the RF voltage
is distributed uniformly over the ring, can be used only for the analysis of processes slow
compared with the revolution period. It means that the frequency of modulation Q should
satisfy the condition Q < wy.

[n a co-rotating coordinate system. @ corresponds to the azimuth of the particle measured
in RF radian units of the main RF system, from the position of the synchronous particle.
0 = h(wot — 8). Here 8 is angular azimuth around the ring in the laboratory frame.

Quantities varying in azimuthal coordinate and time can be presented in a circular ma-

chine as wave-like states, so that the perturbation of the voltage in our model can be written

in the form
‘;'(O Z / ¥ —1F¢+1utd ), 'T)
h=—=n0 MW0—=10
where |
fw) = — [ [T Vs, et g ()
471'2 -rJO

Above we used the Fourier transformation in the coordinate ¢ and the Laplace (or one-
sided Fourier) transformation in the time domain. Initial conditions (the perturbation is
absent for t < 0) are satisfied for vanishingly small ¢ > 0.

The deviation of the perturbed distribution function F(u, ¢,t) from its equilibrium

f(u,¢,t)=f(u,¢,t)—.7:'o(u,¢>) (9)
can be connected with the perturbation in voltage through the Vlasov equation
df 0Fs )
E —u_d_u @O)

where full time derivative should be taken along unperturbed phase trajectories (see, for

example [8]). The solution of equation (10) can be written in the form

flus,ty==52 | aa’Z“ (8,t)dt (1)
where the coordinate of the particle ¢, at the moment ¢, is defined by the coordinate o’ at
the moment t', ¢ = ®(¢',t — t'), using the equations of motion.

Integration of (11) over u gives the beam current. Expansion of the beam current in
azimuthal harmonics j,(¢) allows the beam response to the perturbation of the voltage to be
represented as
- / Goult — )Wi(t)dt. (12)
k=—oc0

Using the convolution theorem we can transform expression (12) to the frequency domain:

i o (w) Vi (w), (13)

k=-00

where G, i(w) is the beam transfer function to be defined below.
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3 Beam transfer functions for an arbitrary RF voltage

[n this section to obtain the transfer function of the beam for an arbitrary RF volrage we
shall follow the approach developed in Ref.[2].

Let us introduce new variables. r and v, which correspond respectively to the amplitude
and phase of the synchrotron oscillations. For the cases of single and double RF svsrems

considered later it is convenient to present them in the form

L o 12
= sy + Wlo. 0],
L L
wslr) re do’ .
o= sgn(nu) 5 / (130
250 Jomas \[r2 — W (o, 0,)

wWith Omar = Omar(r). where
. 1 ?
(5, 0,) = ———/ V(o) = Vi] do’ (16)
1 COS O, JO

and w,(r) is the frequency of the nonlinear synchrotron oscillations in the svstem.
In the absence of perturbations the equations of motion (1)-(2) in the new variables have
the form:

F=0, w = wy(r), (17)

and the distribution function in longitudinal phase space is a function only of the Hamiltonian
of the system H or variable r, F = Fy(r).
With a perturbation of the system the first of the equations (17) becomes

: oVi(e.t) .
F= —— (13)
4rV] cos ¢,

In these variables the Vlasov equation can be written in the form

af+,a%+@%= , (19)

at ' or o

[f we take into account that the solution of equation (19) for the Fourier harmonic

flrv,w) = —1— : flr o, t)e ™ dt (20)
27 Jo
should be periodic in ¥:
f(rv U),u—') - Z fm(r)w)e—‘mwa (21)
where .
f(r w) = 5= f(r,z/,v,w)eimwdw, (22)
alm J=r



then we have
20 A ’i}_qp—lmlu

. ) T'm 4r 7 / .
r,yw) = . 2
f( v"') m;‘wd_m“‘s(r) i 3]

Here we used the notation

4

(6, t)e ™Y T dt. (21)

-rJO

Then after substitution of expression (13) for the function 7(¢,¢), we find
l x

P = m———— ) / OVi(w)e ™ Rody, 125

3rrVicoso, Lo J-r

[ntegration of (23) by parts gives

m
B -k_zx, 4rhkcos)cb,h[:"k' 26)
Here k£ # 0.
The function [,,x defined as
Inslr) = o= [ ethotrammegy, (27)

was introduced for the first time in [2]. As can be seen it has the following properties which

we shall use later:

I—mk = [m/cs [m-k = Ir-nk (28)
For a symmetric potential well, so that o(7 — ¥) = —¢(¥), we also have
I = (=1)" Ik (29)

Now using (26) we can write for a perturbation in the distribution function (23)

_wi(n)h dF i Vi(w) i mly e
4rVicos o, dr , k = o w — muw,(r)

=0 m=

f(rvw’w) ==

(30)

Deviations of the distribution function and beam current from their equilibriums are
connected by the relation

_ Nege

6.0) = srgaor [ Srwe)dd 31)

where V, is the total number of particles and R is the average radius of the machine.

The normalisation factor S is defined as

o fm Folr rdr' )

Here we used the fact that dédé = [4w?, /w,(r)|rdrdy.
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Expansion of the beam current perturbation in azimuthal harmonics gives

o) = Z jpt@)e"%. P

=-20

——
o

Then for the p-th azimuthal harmonic of the perturbation in beam current we get

4

O O
/ ————)——rdrdu. RS
Q

<

(-

JP(“’.):.} J - .u(r)

where [y = N.qc/(27 R) is the average beam current in the machine.

After substitution of the expression (30) into (34) we have as a result {2]:

ST Gorlw)Vi(w). i

K=—20

[
(1}

The elements of this beam transfer matrices are defined as

[0 h > /’mz dFo I, (r)].,(r)dr
—_— m
'S kVicoso, 52, Jo

Go(w) = (36)

dr w —1i0 — mw,(r)’
where the integration contour in (36) is chosen to satisfy the initial conditions.

Using one of the properties (238) of the function /,,;, we can also transform the expression

above to another form:

Gou(w) = =

ii /rm,.: dFo I, (r)In (r)w,(r)dr‘ 37
‘25kV1 coso,m = (w—10)? = m2?i(r) Y

This expression for the beam transfer function obtained for a single bunch can be gen-
eralised to the system of .M bunches (see [13]), so that an additional summation over all
bunches appears. However, for the case of equidistant and identical bunches, we can use
for the BTF the same expression with M times higher intensity, also remembering that
Go(w)#0onlyif p=k+nM, wheren =0,1...

For a single bunch or nonidentical bunches voltage modulation leads to perturbations of
the beam current at all multiples of the revolution frequency. Below we consider the beam
response at the azimuthal harmonics which correspond to the frequencies of RE systems
involved in acceleration. These harmonics are important for the analysis of the beam-loading
problems. We shall use the general expression for the BTF to obtain the dependence of
phase and amplitude of the beam current modulation on the voltage amplitude and phase
modulation. Functions I,nk(r) are defined by the type of potential well considered and should

be calculated for particular cases.

4 Beam current modulation

The beam current distribution in the system without perturbations



can be expanded in a series of azimuthal harmonics
- e
[(0) = Z e '"e, (39}
p==2

where the amplitude of the p-th azimuthal harmonic of the unperturbed beam current is

defined by the expression

I - Iy /’mar ™ Fo(r)e ke rdrdy
P 275 Jo /;7\' .

ws(T)

(10)

For symmetric potential wells, [, = I_, and ImJ, = 0. Then with modulation of the

voltage. phase or amplitude. applied, the beam current becomes

[o)+j(o.t) = 3 [L+ip(t)]e™% = 5 /I, + Rjp(t)]? + [Syp(t)2e7 Remw) (41
p==-2 p==00
where o
STp i
tany, = ———m. (42)
P L+ Ry,

The response of the beam to a modulation in amplitude or phase of the voltage can
be described as a change in amplitude and phase of the azimuthal harmonics of the beam

current:
o0

[(6)+j(6,t) = 3 [+ AL(t)]e  k(@=0sma%), (43)

p=-20

where for | j, |« I, from (41) and (42) we get

AL(t) = Rj,(t),  Ad(t) = ﬁg’;(t) (44)
p P
in the time domain and
1. . B [5,(w) = j-p(c )
ALw) = s[p@) + @), Adk(w) = ;[J (vu)mJ p(w)] (15)
K4 =4<p

in the frequency domain.
To find the amplitude and phase modulation of the beam current let us consider the sum
over k in expression (37). Using the properties (28) of the function I,x and the fact that for

the symmetric potential well I3, = (=1)™ Ik, we get

= Viw)ln, & Imk[f/k(—l)'"—v_k].

= (4
k=z—:oo k k=1 k
For the expression in square brackets we have
. . —(Vie + Vi), ifm- odd -
(=) — 7] = 4 Vet V=), (47)
(Ve = V_g), ifm-even.



Now we can rewrite {33) in the form

Jplw) =~

Z Z AL { (—‘("L;c +~,V—k‘)’ lfm odd Ty

hcoaosk 1 Vi—=V.i), ifm-even
where .
’ V(L) m2h  prmaes dF, Lo (7)) L (7 )eos (1) dr "
. w ) = — . 1)
T EE L I e —mialn) |
Taking into account the fact that
MR H(w) = (=1 ME () (301

we obtain expressions

S Iy bl ko AU T ‘ .

Jo(w) + jop(w) = zvlcowsgmzﬂm (WL + (=)™ Velw) = Vou(w)] (31
and ; o

Jolw) = =plw) = iz C; = :;1 mZ_ MPF)[L = (=1)™[Vilw) + Voi(w)]s (52)

which define with the help of relations (43) the beam current amplitude and phase modula-
tion.
Now we should consider the values of Vi and V_; in the case of amplitude or phase

modulation of RF voltage.

"5 RF voltage amplitude and phase modulation

To define the elements of the beam transfer matrix we should have as input the amplitude
and phase modulation of the voltage in a multi-harmonic RF system.
For small enough amplitudes of modulation AV, and A¢, (so that we need take into

account only linear terms) we can present the perturbation in the voltage as
N
t) = 2_{[AVa(t)sin(ga(0 + 6n)] + Adn(t)gnVa cos[ga(6 + 0n)l}, (53)

where g, = h,/h.
According to the definition (8) of Vi(w) we get

. 1 -
Vk 5 Z 51: hn€ ~igndn [IAV + A‘bn(w)gnvn], (")‘L)
where |
AVi(w) = ;;/0 AVi(t)e~™dt, (55)
Abn(w) = — / Adn(t)e™ " dt (56)

9



and &x , is Kronecker's symbol.

Then
Vilw) + Vgl Zéu AV () 8in(gndn) + Ao (w)gn Vi cos(gnon )] (3
and

Vilw) = Vosl) = lzék ha [ AV () €05(gn0n) = A0n(w)gn Vi sin(gnon)]. 133)

6 Beam transfer matrices for a symmetric potential

well

After substitution of the expressions (37) and (38) found above, into (31) and (532) the

amplitude and phase modulation of p-th harmonic of beam current may be written as:

—XO;(W) P/; V1 vy kgl \[pk W)Gm Z 8k hn [AVa(w) Sin(gndn) + APa(w)gn V5 cos(gr04)]
(39)
Alyfw) = g Z AP ()b T 81 n[AVa(0) cO5(906a) = Aba(w)ga Vi sin( g0 )
1COS @y 4 -
160)
where coefficients 1y 14 (=1)m]
amz—;:z——', bsz‘ (61)

Expressions (39) and (60) give the bunched beam transfer functions for symmetric po-
tential well. In the general case of an accelerating beam or of phase shift between the two
RF systems for a non-accelerating beam, so that the accelerating bucket is not symmetric
in @, both odd and even m-modes will contribute to the modulation of the beam current
amplitude and phase.

Matrix element MP*(w) defined by (49) is proportional to the dispersion integral and
contains information about the amplitude and phase of the beam response (beam current
phase and amplitude modulation) with respect to the excitation (modulation of the RF
voltage amplitude or phase). Indeed the dispersion integral can be split into its principal

value (P) and the residue at the pole according to the Dirac formula

lim L R ’3%] Find(z). (62)

o=+t 0

To apply this identity we shall exp:...d the synchrotron frequency using the Taylor series

around the point of resonance r = ry, where w = mw,(ro):

1

5 W (ro)(r —ro)* + ... (63)

ws(r) = ws(ro) + w,(ro)(r —ro) + 5

10



For positive w and a dependence «s(r) inside the bunch, such that &!(ry) = 0 onlv it

dFy/dr =0, we can write

mzh . /rm‘”’ dfo [mk(r)[mp(r)*/s(r)dr . T dfO [mk(rD)["z'p( rO)]
o .

M) = =[P - ‘1
w () 25k dr <t —m2uir) 2m? dr Ir=rs I (ro)l )
[n ref.[16] from the fact that second term in expression (64) equals infinity when . (rg) = 0,

it was concluded that the threshold intensity for instability of the bunch with nonmonotonic
behaviour of the synchrotron frequency goes to zero. However, if wi(rg) = 0. then to evalnate
the dispersion integral we should use the first nonzero term in the expansion (63). The case
when «}(ro) = 0 and w)(ro) # 0 can appear in the double RF system and will be considered
later.

Matrix element MP*(.:) is defined when function I.x(r) is known. Below we calculate

this function for the single and double RF systems.

6.1 Calculation of functions [,(r)

For an arbitrary potential well the functions /,x(r), defined by expression (27). can also be
calculated numerically using the following formula:
lk dmaz

Ini(r) = — |, e'%? sin m(r, 8) do, (65)

where the function v = w(r.¢) is given by (13) and dmin = Pmin(r)s Omaz = Omaz(r) are the
solutions of equation (14) for 6=0.

For a potential well symmetric in ¢ we can rewrite expression (27) in the form:

Lk = b IS +1am {166)
where | i
s (r) = —/ sin 7 6(1, ) cos m du, (67)
T Jo
. Lok »
() = = [T cos Z6(p, ) cos mw dw, (63)
T Jo h

and a,, and b, were defined by (61).
There are a few important cases when an analytical expression for the function [,(r)
can be obtained as well. These are, for example, cases of short bunches in the single RF

systern and in the double RF system (blm).

6.1.1 Single RF system

As is well known, the analytical solution of the system of equations (14)-(13) for nonlinear
motion in a single RF system exists only for a non-accelerating beam and can be expressed

in terms of elliptic functions:

sin—g = rcd(y|my), (69)

&
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where cd(y) = cn(y)/dn(y), cn(y) and dn(y) are Jacobian elliptic functions with paramerer
my = r* and argument y = [,0/ws(r)]w; the value of r varies from 0 to 1 inside the bucker.
Then function /¢ can be evaluated numerically from expressions (66) - (68). For k/h =1
function [+ can be calculated after substitution of (69) into the trigonometric formulas for
double argument.

The frequency of svnchrotron oscillations is defined by

i (7‘) - TWs0 ,
s 2K(m1)7 k

()

where K(m;) is the complete elliptic integral of the first kind with parameter m; = r-.
The case of an accelerating beam can be treated analytically only for short bunches when
the potential well can be considered as quadratic: W ~ ¢?. Then the solution of the equatic.

(15), which we also can get as an approximation for small r from (69), is
® = 2rcos . (715

This allows function I,(r) to be calculated analytically:

k
[ri(r) = 0" Jm(2T), (i2)

where J,(z) is the Bessel function of order m.
In Fig.1 we show results of the numerical calculation of I,x(r) using the exact analytical
solution (69) valid for non-accelerating beam, together with the approximate solution (72)

which can be applied for short bunches both in accelerating and storage regimes.

6.1.2 Bunch-lengthening mode in double RF system

To produce the bunch lengthening mode the parameters of the double RF system should
satisfy the conditions [18]

V; -
€08 &y = —— g2 c0s(g2d2), (73)
Vi
. Va 5. -
sin ¢, = —T/Zggsm(ggqbg). (T4)
1
For short bunches the potential well is quartic and we have from (14)
1, 6% | (g2=1)8") )
r= 5[%02 + B 1= (73)

Below, as an example, we consider the double RF system with the often used ratio of
radio frequencies g, = hy/h = 2. Then for a non-accelerating beam, the potential well has a

form W ~ sin*(¢/2) and a nonlinear solution of equation (15) can be written in the form:

sin & = _yren(zima) (76)
2 \/1 - rsn2(z|m2)’

12



where the parameter of the Jacobian elliptic functions

r+1 .
mQ: u) l’ll“

varies from 1/2 to | inside the bucket (0 < r <1), and the argument

»

w 2K(m
il S 2);;. (TR

<5(7) w

The frequency w,y is defined by expression (6).

Then function [k, as for the case of the nonlinear motion in the single RF svsrem.
can again be evaluated numerically from expressions (76) and (66) - (63). The results for
k/h = 1.2 are shown in Figs.2.3.

The frequency of synchrotron oscillations

T&s0 r -
oy(r) = —2 [ (79)
(r) [\(mg)/; e

as a function of r is shown in Fig.4 together with the frequency w,(r) found in [13] for the
case of a quartic potential well. This approximate solution can be obtained from {79) in the
limit r — 0 so that m; = (r +1)/2 ~ 1/2 and K(m;) ~ K(1/2) = 1.85407.

For small r expression (76) gives the solution

2K(3)

T

1 .
o = 2/ren( wlg) 30,

found in [18] for a quartic potential well. Then using the first term of the expansion into

series
2K o , e
cn(=—v) = Y cmcos((2m + 1)¢], (31)
T m=0

where coeflicients
227 e T(m+1/2)

o = TR 1 5 e-rzme)

I
o
£o
=

with
Cog = 0955, = 0043,

we obtain for function I,x(r) in the case of short bunches the following approximation

, k
nk(r) = szm(EQCO\/;)- (

08}
(W]
~—

This solution is also shown (dashed line) in Figs.2,3 for comparison.

13



6.2 BTM for a single RF system

In the case of short bunches in a single RF system, after substitution of the calculated
function Inx(r) (72) into (59) and (60) we have for the first harmonic of the beam current

perturbation

Al

[1Aol = [o[— T tan oy + Ao]Sy, i 31)
AV

A]l = [O[‘TI - AOI tand) ]52, 185)

where -
x
51 = Z AmSm, Z mSm 156)
m=1 m=2

o m? rmesdFy  J3(2r)ws(r)dr -
T s o dr (w—10)? — m2wi(r) (=)

and the normalisation factor S is defined by expression (32). The value of r,; is related to

the half bunch length ¢4, expressed in radians of first RF system, by rm.z = sin(om../2).

We can rewrite expressions (84) and (83) in the matrix form:

AL -5, Sy tan @, AW/
LA Sy tan @, S AV

For a non-accelerating beam with ¢, = 0 matrix (88) becomes diagonal.

(38)

In Fig.5 the amplitude and phase of the elements of beam transfer matrix s, and s,
calculated from the real and imaginary parts of the dispersion integral (64) for two different
distribution functions are shown for a bunch with r,,; = 0.3, so that the half bunch length
Omar = 2Tmar = 0.61 (rad).

We consider the binomial family of distribution functions:

2

[02]

), 1 < Tmaz, (

9)

with ¢ > 1. (For u < 1, dFo/dr is infinite at the beam edge r = rn,;). For large u this
distribution is close to the Gaussian.

With increasing bunch length and hence synchrotron frequency spread the amplitude of
the element s; of the BTM decreases. This means that the system becomes less sensitive
to perturbations and therefore more stable. The dependence of the peak amplitude of s,
and s, on bunch length is shown in Figs.6(a,b). For long bunches to evaluate the dispersion
integral we used values of I,,k(r) calculated numerically (see Fig.1).

For bunches with small synchrotron frequency spread Aw,, changing the modulation fre-
quency can excite different multipoles inside the bunch separately. Simultaneous excitation
of two different multipoles by a fixed modulation frequency is possible only for quite high

frequencies which excite multipoles with

L“s(rmar)
—_—— (90
m > N, \ )

14



However excitation becomes less efficient for large m due to the factor .i(ril.,iri in ~he
dispersion integral. For example. for a bunch with rn.; = 0.6 and 6., = 1.3, the peak
amplitude of the element 53 i1s ~ 1000 times less than of s;.

[t 1s possible to simplify the expressions for the transfer matrix for modulation frequencies
outside the synchrotrop frequency band. Then we get
~ mz.’uf

Sm POl

wi—mi2t ™
Here the factor £, depends only on the stationary particle distribution in longitudinal phase
space

Jomes %@J&(‘Zr)dr
e Jomes Fo(r)rdr
and differs by the factor 2 from the ‘reduced form factor’ defined in Ref.[19].

Fr =

1923

[t can be shown by using the first term in the series expansion of the Bessel function

Ji(r), and then integration by parts. that in the short bunch limit
F1 ~1

and doesn't depend on the form of the stationary distribution function. This gives

d?

S “JT—-’“)_SZ [93)
However F3, and therefore s,, is already a function of the form of the distribution and the
bunch length /5. From (91) for s, we have
1w} ;
Sy X~ mFg(Zb), {94)
Let us consider a few examples of the distribution functions:
(l) ]:0(7') & (1 - ﬂrz—)v r < Trmaz, where Tmaz = ¢maz/2 = lbh/(4R)7
F2 ~ r?na.r/67

2
[

(2) Fo(r) < e s,
Fp~rt /4.

Note that the approximate formulae (93) and (94) don’t work for frequencies inside the
synchrotron frequency band, where the dependence of the BTF on bunch length can be
completely different. Indeed, as shown in Fig.6, the peak amplitude of s, strongly depends
on bunch length whereas that of s, stays almost constant.

Keeping only the first term in the series over m in expressions (86), so that S; ~ s; and
S2 2 39, we can present the transfer matrix in the form:

AL o { —32 Sgtan ¢, [AVl/Vl :l ' (95)

IlAgb‘}{ sy tan ¢, S1 Aoy

This expression can be compared, for example, with the transfer matrix obtained in

Ref.[14] for a single RF system by a different approach.
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6.3 BTM for a double RF system

We consider bunches accelerated in the symmetric potential well created by the double RF
svstem with hy/h =2 (blm).

After substitution of the function I,£(r) defined by (83) into expression (64). we get for
the amplitude and phase modulation of the first and second harmonics of the beam current

{with respect to the fundamental one) the results which can be written in the matrix form:

Al _DI'  Dl'tano, D/2  —DPtanoy,2 | [ AtV
Loy | I Di'tan o, DH —D}?tan o,/4 - D}? Aoy
AL | %) —2Dp2 2DMtane, D% ~D¥tan ¢, ATy 1S
LA D* tan o, D% —D% tan ¢,/4 ~D# Ao,
(96)
where we used definitions similar to the case of one RF system:
D" =3 andy, Dy =S bndy. (97)
=1 m=2
Here n = h,/h and coefficients d'* = d'"(w) are defined as
g = m? /rmax dFo Jm(2lco/T)Im(2ncoy/T)ws(r)dr 93]
™ 2Sin Jo dr (w—10)? — m2Wi(r) ’ o

where rmar = $in*(0maz/2). To get matrix (96) the relations (73) and (74) were also used.
Note, that D!* = D7 and the series over m contain only odd terms in D{* and even in DY’
due to the definition (61) of the coefficients a,, and by,.

Keeping only the first term in the series (97) will lead to a matrix equivalent to (96), with
all capital D replaced by small d as was done for the case of single RF system. However in
contrast to the single RF system, even for very short bunches a fixed modulation frequency
excites simultaneously an infinite number of different multipoles due to the fact that the
synchrotron frequency equals zero at the centre of the bunch (see Fig.4). Of course, the
contribution from the higher multipoles is significantly reduced by the factors Ini(r), [ma(r)
and the fact that dFy/dr = 0 at the centre of the bunch.

Amplitude and phase of the matrix elements d}', d3' and d}? are shown in the Figs.7, 8
for different values of bunch length. For long bunches we consider only the case of a non-
accelerating beam. Then in the matrix (96) matrix elements proportional to tan o, go to
zZero.

Outside the synchrotron frequency band (w > mw,(rmaz)) we have an asymptotic formula

similar to (91) as found for the case of a single RF system:

‘21(nl)m'lcg"‘ wszo

8[(m - )17 w? (99)

in
dr ~
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For m =1 and m =2 it gives

9

dr =~ :—0 dy ~ 0.044ofmrnl%§°. (100

The dependence of peak amplitude of the elements d}'. d}' and d}? as a function of bunch
length is shown In Figs”.G(a,b) and Fig.9, in the first case together with functions calculated
for single RF system. As can be seen in the graphs, in contrast to the single RF svstem.
increasing the synchrotron frequency spread beyond some value does not improve stabilitv
of the system.

Fig.4 shows that for a bunch length more than some critical value, 0,,; > 0. =
2.035(rad). (rpmaz > rer = sin’(6.,/2) = 0.724), the dependence of the synchrotron frequency
ws(r) is no longer monotonic. Therefore for a fixed modulation frequency the resonant con-
dition w = muw,(r) is satisfied at two points, ry and ry, simultaneously. Then the imaginarv
part of the dispersion integral contains a second term - a contribution from the pole at r = r;
instead of the only one term written in (64). Both these poles and the corresponding contour
of integration are shown in Fig.10.

Note that, for the accelerating regime, the critical value of bunch length can be calculated
numerically [16] and it can be significantly smaller than in the storage regime. The critical
bunch length decreases also with increasing frequency ratio g, in the double RF system.

[f the modulation frequency is such that the resonant condition w = mws(r.,) 1s satisfied.
then to calculate the contribution from the pole [w — mw,(r.,)] we should use the next term

in the expansion (63) and consider the integral

rmaz d Fq Lok (7)) Lnp(r)dr )
/ —. (101)
0 dr mw!(re:)(r —re)? + 10
This expression has two poles
r= ek [ee— (1 44). (102)

2mjwi(re )|

The contour of integration defined by the initial conditions doesn’t allow the singularity to be
avoided when o — +0 (this can be seen from Fig.10 for the case when the two poles coincide).
As a result the amplitude of the matrix element in frequency domain at w = mw,(r..) is

infinite. Below we consider this case in more detail.

6.4 Landau damping in a system with nonmonotonic behaviour

of synchrotron frequency

In this section we shall try to understand why the unintegrable singularity appears in the dis-
persion integral (101) when the synchrotron frequency as a function of oscillation amplitude

has zero derivative inside the bunch but outside the bunch centre.
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First, let's perform the back transformation of the transfer function to the time domain

and consider the integral proportional to the element of the beam transfer matrix

Tmaz R lwt d‘_‘) d Tmazx
/ / T - -,,/ R (r)e™ ™91y dr, (103
0

w = mws(r) -7

where Rn(r) = dfo/dr[,nk (r)Imp(r) (we don't specify values for k and p) and #(¢) is the unit
step function. A
The response of the beam to the modulation of the voltage according to (12) has a term

proportional to the integral

t 2 .
I(t) = /0 Yo gm(t =YV (t)dt. (104)
m==20 )
For a modulation voltage V(t) ~ e~*% we have
Z / / mas —zmw,(r)(t—t’)eiﬂt' dt' dr. ( 105)
m=—=2x
After integration over t' we obtain
Tma.r 1(m"“”( —_
Z / —-tmw,(r)t[e. l] dr. (106)
e z[mw,( Q]

Far from resonance, for {mw,(r) — Q|t > 1 we have an oscillating solution. Close to the
resonance, where
mey(r) - 0] < 1 (107)
we can expand the exponent in the square brackets and write
eilmus(r) =)t _ |

mwy(r) = Q] —

~t. (103)

Following the explanation of the nature of the Landau damping given in Ref.[9] we should say
now that the band of resonance frequencies, for which we have a solution (108) growing with
time, shrinks with time according to the condition (107). However, due to the integration
over r in (105) it is important to consider the interval of resonant amplitudes |r —ry|. Indeed,
at resonance

, 1
ws(r) = Q/m = wi(ro)(r —ro) + = 5 W (ro)(r —10)* + ... (109)
Now we have two different situations. First, corresponding to the normal Landau damping,
when wi(ro) # 0 and instead of (107) we get
1

Ir=rol < T

(110)

This means that the interval of resonant amplitudes decreases ~ 1/t. This ensures that the

beam current modulation doesn’t grow with time.
l=)
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The situation is different if, at the point of resonance, wi(rg) = 0, but w”(rq) # 0 and

R..(ro) # 0. Then condition (107) defines the width of the resonant region as

1
Ir = ro] € ——=—=—=. (111)
tlw';/(foﬂm

i

This interval of resonant amplitudes shrinks with time only as 1/4/f. As a result the am-
plitude of the modulation in the beam grows ~ v/#. It is quite a slow instability compared
to the usual exponential growth, but nevertheless Landau damping in the system with zero
derivative of synchrotron frequency inside the bunch (but outside the bunch centre) is lost.
One of the possible ways this instability can develop is by an evolution of the particle dis-
tribution in the longitudinal phase space which leads to a stationary distribution with zero
derivative of the distribution function dFg/dr around the point r = ry. “Strange” behaviour
of long bunches in the double RF system has been observed experimentally [20]. [21].

The previous analysis can also be extended to a system with a point where both first
and second derivatives of the synchrotron frequency equal zero, so that dependence of the
synchrotron frequency on amplitude is nevertheless monotonic inside the bunch. In this case
we can get a modulation growing with time as t/3.

It is interesting to note that nonmonotonic dependence of synchrotron frequency on
amplitude inside the bunch was also found in a single RF system, [12], when intensity effects
were included. The double hump in the amplitude of the dipole beam transfer function was
observed during measurements for high intensities.

[t seems that this phenomenon should also be taken into account for the calculation of the
thresholds of transverse mode coupling instability for long bunches in a double RF system.

where similar dispersion integrals appear in the presence of synchrotron frequency spread
(22].

7 Conclusions

Expressions for bunched beam transfer matrices were obtained in the case of a symmetric
potential well. These results were applied to short bunches in an accelerating bucket and to
long bunches in the storage regime, both for single and double RF systems.

An exact analytical solution was found for nonlinear motion in the bunch-lengthening
mode created by double RF system with ratio of radio frequencies equals 2 (non-accelerating
beam).

We have shown that Landau damping in a system with zero derivative of synchrotron
frequency inside the bunch (but outside the bunch centre) is lost and that beam current mod-
ulation grows with time as /. One of the examples of such a system is bunch-lengthening

mode in a double RF system for bunch lengths more than some critical value.
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