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instability equals zero. Below we consider the nature of this phenomenon. OCR Output

double RF system, for sufficiently long bunches, the threshold of the coupled bunch mode

amplitude which is important for longer bunches. Indeed, it was found in [16] that in a

describes the nonmonotonic dependence of the frequency of synchrotron oscillations on their

a double RF system (blrn) with frequency ratio equal to 2 (storage regime). This solution

bunches. ln the present paper an exact analytical solution is found for nonlinear motion in

in [18], for nonlinear motion in a quartic potential well is a good approximation for short

synchrotron frequency spread or by producing flat bunches. The analytical solution, found

have recently been used in many accelerators to improve beam stability by increasing the

considered in [l5]—[17]. Double RF systems operating in bunch·lengthening mode (blm) [15)

The longitudinal stability of the system in the presence of higher RF harmonics was

frequency shift and the coupling impedance of the machine.

can give information about the incoherent frequency spread within the bunch, the coherent

surements of amplitude and phase of the beam transfer functions at low and high intensities

Bunched-beam transfer functions for single RF systems were discussed in Klea

matrix elements. No intensity effects are included.

expressions, so that only even or odd modes of bunch oscillations give contributions to the

cases, which correspond to the symmetric potential well, allow a simplification of the general

short bunches in the accelerating regime and long bunches in the storage regime. These

ulation in single and double RF systems using beam transfer matrices. \Ve shall consider

Below we present the longitudinal response of the bunched beam to the voltage mod

the external voltage.

of harmonics of the beam current as a response to the amplitude and phase modulation of

the elements of the beam transfer matrix (BTM) give the amplitude and phase modulation

ways to analyse the stability of the beam—cavity system is to use matrix formalism. Then

use it in the more complete model of the beam-cavity interaction One of the possible

feedback systems) it is convenient to consider the response of the beam separately and then

When the RF system becomes more complex (multi-harmonics cavities. different loops.

equation includes both these parts and leads to the dispersion equation [l]—l3).

Analysis of the stability of the system based on an equivalent circuit model or the Ylasov

expressed in terms of the beam transfer functions.

—response of the beam to the perturbation of the accelerating voltage, which can be

cases using the notion of impedance function and

-reaction of the cavity to the perturbations on the beam, which can be described in many

A general consideration of the beam—cavity interaction can be split into two main parts:

1 Introduction.
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voltage ld and synchronous phase q5,:

where tu,0 is the synchrotron frequency of small oscillations in a single RF system with peak

¢+ (5)$·ll/(45) · Vl = ·—l7(¢) YG cos gb, ° V} cos gb, 7i

particle is V(d>) + V(d>, t). Then the equation of synchrotron motion is:

Now let us consider the system with perturbations so that the voltage affecting the

4 l>H= hwtn qwo ¢ . ————2——/V *-mira'. 2/:32Esu 2,, Ol <<¤>> 1

The Hamiltonian of the system has the form:

are not necessary an integer multiple of the fundamental.

RF systems involved. We suppose here that harmonics of the higher frequency RF systems

system, én is stable phase relative to the h,,—th harmonic waveform, N being the number of

VQ 5. l/(O), hl E /1, Vn and hnfo are the voltage and frequency applied to the n—th RF

Here gn = hn/h, W sin(<15 -+- 01) represents the main RF voltage, (bl E O, is its stable phase.

n.=l

M3)Vfo) = Vu sin(g,,q5+g,,¢,,).

the particles can be written in the form:

In the general case with more than one RF system, the resulting voltage which affects

particle with energy E,.

u = E — E,, E is the energy of the particle, K is the voltage seen by the synchronous

os of the main RF system with harmonic number h;

O = ,9 —— C5, is the phase deviation of the particle with respect to the synchronous phase

rz =1/#-1/vg,

fg = a.·O/(2rr) is the revolution frequency,

q is the electrical charge of the particle.

where

.3.f Z A/' 1 li, ’
du qaso

at 32E,
— = ——¤· lll
do /"Lu.‘OT]

The longitudinal motion of particles can be described by the equations:

2 Main equations and definitions



where G,,k(w) is the beam transfer function to be defined below.

1::-aa

U3) OCR OutputMw) = Z Gpk(~)Vk(w)»

Using the convolution theorem we can transform expression (I2) to the frequency domain:

(I2)j,,(t) = Z Gpk(t—t’)Vk(t’)dt'./ k=_OO 0
represented as

azimuthal harmonics jp(t) allows the beam response to the perturbation of the voltage to be

Integration of (11) over u gives the beam current. Expansion of the beam current in

the moment t', ¢ = <I>(¢',t — t'), using the equations of motion.

where the coordinate of the particle rgb, at the moment t, is defined by the coordinate o' at

(U)
t

f(¤»¢»¢)=··%§A%@V(¢,¢')di/»
example The solution of equation (10) can be written in the form

where full time derivative should be taken along unperturbed phase trajectories (see. for

= -11, (l0)% %
can be connected with the perturbation in voltage through the Vlasov equation

f(u,q>,t)=.7:(u,¢,t)—.7:0(u,¢)

The deviation of the perturbed distribution function .7:(u, d>, t) from its equilibrium

absent for t < 0) are satisfied for vanishingly small 0 > O.

sided Fourier) transformation in the time domain. Initial conditions (the perturbation is

Above we used the Fourier transformation in the coordinate gb and the Laplace (or one

7r-» 0
irq,) 2 /V(¢,¢)a€¢·*~*dad¢ 4Z

°°

where

ifiW¢¤l<="”d¤·*·'°$+'“”VW ll I Z (
in the form

chine as wave—lil<e states, so that the perturbation of the voltage in our model can be written

Quantities varying in azimuthal coordinate and time can be presented in a circular ma

0 = h(...·0t - 9). Here 6* is angular azimuth around the ring in the laboratory frame.

in RF radian units of the main RF system, from the position of the synchronous particle.

In a co-rotating coordinate system. cv corresponds to the azimuth of the particle measured

satisfy the condition Q << .u0.

compared with the revolution period. It means that the frequency of modulation Q should

is distributed uniformly over the ring, can be used only for the analysis of processes slow

Note that the system of differential equations (I), (2) which supposes that the RF voltage



(Y?) OCR Outputfm(r-w) = f(r,¢/».w)¢‘""”dw,l ;/
where

YTL=*X

onf(r, rm = Z xmtauiewr,

should be periodic in tb:

tl7 FQ} i -7 7 it _tuJt flrw) f(r¤b)€l gfx)

lf we take into account that the solution of equation (19) for the Fourier harmonic

a¢a»—au
; v — Z O. +"+'“’ ;l9 'i l

Of ,3.7:0 · df

ln these variables the Vlasov equation can be written in the form

4rlQ cos 0,
r' : — N l_ lb)

¤l>V(<D~ tl

\Vith a perturbation of the system the first of the equations (li') becomes

of the system H or variable r, F = .7·`O(r).

and the distribution function in longitudinal phase space is a function only of the Hamiltonian

r = 0~ w = wah`),

the form:

ln the absence of perturbations the equations of motion (l)-(2) in the new variables have

and tu,(r) is the frequency of the nonlinear synchrotron oscillations in the system.

~ · (LO)i 4 ’ On ( I i V ’ V O,O3)— /(Ll (O)- sl

with Omg, = 0maI(r), where

)_ _ ( ·-M·*sO */Wmaz \/F2 —
tw = 59¤(v¤J1

Zslrl ["’ d<1>'

\/§2J$O
Z _‘... tV *r (_Z + (0.03)] ,/2

l 02

considered later it is convenient to present them in the form

and phase of the synchrotron oscillations. For the cases of single and double RP sysrenis

Let us introduce new variables. r and cx which correspond respectively to the amplitude

shall follow the approach developed in Ref.(2l.

ln this section to obtain the transfer function of the beam for an arbitrary RF voltage we

3 Beam transfer functions for an arbitrary RF voltage



Here we used the fact that dédqb = [hugo/w,(r)]rdrdzb.

/0 w,(r)T'm¤3 f'O(7`)T`dT`

The norrnalisation factor S is defined as

where Nc is the total number of particles and R is the average radius of the machine.

_ ( >OCR Output. Neqc fm · J(¢»w) BTRSWEO _®f(m(¤,¤) dn

connected by the relation

Deviations of the distribution function and beam current from their equilibriurns are

rG cos ab, r km mww — ma:,(r)
_ 30 ( ), w,(r)h df}, °° lGc(w) °° mI' ke‘*""” 7 , = -. -- -— -—- —L’1----_ f(r lf W) Z4ldgk g

Now using (26) we can write for a perturbation in the distribution function (23)

(29)[gtk = (——l)m1`mk.

For a symmetric potential well, so that o(7r — 1,0) = —q5(z,/1), we also have

[—mk : Im/cs Im-}: =

we shall use later:

was introduced for the Hrst time in As can be seen it has the following properties which

..77 -1r
(27)J . [m¤¤(*”) = 7/ €’f'°("")"""°d

1 it .

The function Imk defined as

Here lc ¢ O.

kfxg Jrrl/Q/ccos cb,
m = —· ii ( ,26 i )[. mk

aa ' tu $(r)Vt( lmh ( `

Integration of (25) by parts gives

=_OO

rm = · (20

i

·—·l—·····§ f<i$l7k(w)6‘mw`lfY°dlQ SrrrV} cos o, kMr
Then after substitution of expression (18) for the function 1*(o, t), we find

rm = ,24)/7r /¤<> iw, Ueimw-1o¢di¢,dt_ —vr O

Here we used the notation

(Qi ‘ 3*( m(‘ JJ = J —————' . f(”°’ ( [§,Q»—m»·3<r>
:0 r1%'-_g_€—zmw

then we have



: (38) OCR OutputL/m —lSw30 -t>¤
The beam current distribution in the system without perturbations

4 Beam current modulation

be calculated for particular cases.

modulation. Functions Imk(r) are defined by the type of potential well considered and should

phase and amplitude of the beam current modulation on the voltage amplitude and phase

problems. We shall use the general expression for the BTF to obtain the dependence of

involved in acceleration. These harmonics are important for the analysis of the beam-loading

response at the azimuthal harmonics which correspond to the frequencies of RF systems

the beam current at all multiples of the revolution frequency. Below we consider the beam

For a single bunch or nonidentical bunches voltage modulation leads to perturbations of

Gpk(a;) ¢ 0 only ifp = k + nhl, where n = 0,1..

for the BTP the same expression with NI times higher intensity, also remembering that

bunches appears. However. for the case of equidistant and identical bunches, we can use

eralised to the system of JI bunches (see [13]), so that an additional summation over all

This expression for the beam transfer function obtained for a single bunch can be gen

Gatvi : -t f. . . ...5 kV} cos ap, m=1 jo dr (w — za)2 — m2w§(r)°ll i ’‘”°°’ri1=l"l[vl')”r"`l""

above to another form:

Using one of the properties (28) of the function Imk, we can also transform the expression

where the integration contour in (36) is chosen to satisfy the initial conditions.

g r V H ’ lb (ch cos 0, m=_gO Jo dr to — to — m.a:3(r) MmGMU;) : _Z
[O/2 i [W-! d.7·`0 IZ,.t(¢‘)[mp(F)dt‘

The elements of this beam transfer matrices are defined as

W5-?)jp(~‘J = Z Gpk(w)€(L(~¤)·

After substitution of the expression into (34) we have as a result

where [O : _\'..qc/(EHR) is the average beam current in the machine.

(3-1)T`CfT'dL’,]pf·-Il Z A
TMGI

Then for the p—th azimuthal harmonic of the perturbation in beam current we get

P:-OO

writj(O,».:) == E ]p(Q)e`lfi°.

Expansion of the beam current perturbation in azimuthal harmonics gives



(Vi, - V.k), if m — even.
_ <+·>OCR Output~ m ~ —-l7—l-V. , `fm-odd lVk(-1) —v.ki=l ~‘ " ~ kl T

For the expression in square brackets we have

LJ k {-J k=-oo k=1
Vk(w)[§,t {2-°— ImklW¤(—1)"` · V-kl

the symmetric potential well Ifnk = (-1)"‘I,,,k, we get

over lc in expression (37). Using the properties (28) of the function [mk and the fact that for

To find the amplitude and phase modulation ofthe beam current let us consider the sum

in the frequency domain.

P —p
MPM) = 1 . . h ` - i- ’ ) ;lJp(~) +1-p(~)l» $¢>Z(w) = ZI

in the time domain and

P z>
(44)r hC‘-I t ¢\[p(#) = ?RJp(f)» 5-<i>Z(f) = $2

where for |j,, ]< I,, from (41) and (42) we get

p=—¤<>

H3)[W) + J(¢» f) = Z Up + $·Ip(f)l¢`i}&(°"‘°"°d°?’)»
current:

be described as a change in amplitude and phase of the azimuthal harmonics of the beam

The response of the beam to a modulation in amplitude or phase of the voltage can

_ 1,, + ?R3,,
tany = -22 P

where

[(0) +J(<>~t) = Z lip +Jp(t)l€`l€°° = Z i/lip + ?RJp(¢)l2 + l°?*Jp(¢)l2€` l(E°`""l· M

voltage. phase or amplitude. applied, the beam current becomes

For symmetric potential wells, [,, = I_,, and ImI,, = O. Then with modulation of the

HO)Ip : Q //-rrr> 0 -»r a;,(r)’*¤¤= ” ,F`O(r)e‘i¤i‘°(T·‘“lrdrd2D

defined by the expression

where the amplitude of the p-th azimuthal harmonic of the unperturbed beam current is

p:—O0

(:31))[(0) : [,,e"'»?",

can be expanded in a series of azimuthal harmonics



Ad>,L(w) : A¢n(t)e`“"°dt (56) OCR Output

2vr 0
(55).;\l@(w) = AVn(t)e"°’tdt,

where

_ (04). WW) = 3 Z 6k.h,.€"g”°"li&V¤(w) + &¢¤(w)9¤Vnl»
- 1

According to the definition (8) of Vk(w) we get

where gn = hn/h.

n.=1

Vw, f) = Z{[A%(¢) si¤[gn(<z5 + dm] + Ad>n(t)gnVn €0$l9n(¢ + c5n)]}, (53)

account only linear terms) we can present the perturbation in the voltage as

For small enough amplitudes of modulation AM, and Aon (so that we need take into

and phase modulation of the voltage in a multi·harmonic RF system.

To define the elements of the beam transfer matrix we should have as input the amplitude

5 RF voltage amplitude and phase modulation

modulation of RF voltage.

Now we should consider the values of Vic and V.): in the case of amplitude or phase

tion.

which define with the help of relations (45) the beam current amplitude and phase modula

Il

. . il pkt —— m Q U'; fm (~J)ll ( 1) llldcle) + V kl Jl <.>’)
~ ~

. . . 0 .4; — - uz = i-- Jpl ) J pl ) im COS @3 gg
I X) DC

and

~ ~, _ 2 Z -lfLL’°(~J)l1+(—1)“lll’k<~)— V-¤¢(-‘)l Wl). . . Jplw) +J—p(~) = *%-ICOS @3 k=l 171:2
I °°' °°

we obtain expressions

(BO}.\[,;"“(u.·):(-1)"*i\[,’fl"(.u)

Taking into account the fact that

y;· Eb}; Jo dr (uu — z0‘)2 — mztujlr) {N)gwiw) ZZ _ g p km/2 [tw-: d.7:O lmp(r)[,,)k(r)0;5(r)dr
where

. ~ li€0$O$)1 (lwL—l/Lk), ifm—even
Val?). . ·~` Z ·· hi > l

—(l)L+V.·), ifrn— odd kN[0 K E·l[;l~’ ~ §gll

Now we can rewrite (35) in the form
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(63) OCR Outputw,(1‘) = w,(r0) + w;(rO)(r - ro) +%w;'(r0)(1‘— v‘O)2 +.

around the point of resonance r = ro, where w : mw,(rO):

To apply this identity we shall exp;..;d the synchrotron frequency using the Taylor series

¤-·+~?· U fa ic r
1 *"";* Z ,""" . l`m ""]q2i7r6(x) ... (69)

I 1

value ('P) and the residue at the pole according to the Dirac formula

voltage amplitude or phase). Indeed the dispersion integral can be split into its principal

phase and amplitude modulation) with respect to the excitation (modulation of the RF

contains information about the amplitude and phase of the beam response (beam current

Matrix element M§L"(w) defined by (49) is proportional to the dispersion integral and

amplitude and phase.

in tb, both odd and even m-modes will contribute to the modulation of the beam current

RF systems for a non-accelerating beam, so that the accelerating bucket is not symmetric

tential well. ln the general case of an accelerating beam or of phase shift between the two

Expressions (59) and (60) give the bunched beam transfer functions for symmetric po—

T.U (A U 1 [1 ( 1) ] _ \`_ ml _- _+_ ___ TTI. am=————bm—;j
where coefficients

i60)

Q YQ cos o, kmzl
A[p(tn) = M§,’°(<.u)b,,, Z ¢$;,_;,n[A.V,,(oJ)cos(g,,<15,,) — Ad>,,(w)g,,l/Q, sin(g,,o.,)l ‘

($9)

_§o(n;) : p \1"k(u;)a 2:6;,), [Al/(<.·:)sin(g d> )-+-Ao (w)g V cos(g o )] 77], T7`7. ,y` 71 TI. Tl Tl 7`L TL T7. 77.
bh [0

amplitude and phase modulation of p—th harmonic of beam current may be written as:

After substitution of the expressions (57) and (58) found above, into (51) and (52) the

well

6 Beam transfer matrices for a symmetric potential

Vim-·) — Vltlw) = éX6t,».n[3-Vl.(·=)c0S(9n¤>n) — A@..(-‘)g..Vk Si¤(ynO¤Jl- ti?)

and

liL(-’) + VZ1¤(~‘) = 2 6k.n,,l$lZ(~·-‘) Slflfgnén) + &On(w)9nV}t €0S(gnOn,)l (57)

Then

and (Sim is l{ronecl<er`s symbol.
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sin = rcd(y(m1), (69) OCR Output

in terms of elliptic functions:

motion in a single RF system exists only for a non-accelerating beam and can be expressed

As is well known, the analytical solution of the system of equations (14)-(15) for nonlinear

6.1.1 Single RF system

system and in the double RF system (blm).

can be obtained as well. These are, for example, cases of short bunches in the single RF

There are a few important cases when an analytical expression for the function [mk(r)

and am and bm were defined by (61).

;l( 0C ( Imk(r) = cos —o(1b,r)cos mwdib,
1 it k

¢r 0

_ (6i)S _ , I Imk(r) = -/ sin Eqb(w,r)cosm1L· dw,
1 r k

where

[mk = bmlfnk +2¢1m[;.k, @6)

For a potential well symmetric in G5 we can rewrite expression (27) in the form:

solutions of equation (14) for cb = O.

where the function zu = ip(r. o) is given by (15) and <;5.,,,,, = <15,,,m(r), omu = om_,,(r) are the

[mk(r) = rrm am (65)e'1§°° sin mzl>(r, 05) do,
Gmc: .

calculated numerically using the following formula:

For an arbitrary potential well the functions [,,,;,(r), defined by expression (27). can also be

6.1 Calculation of functions 1'mk(r)

this function for the single and double RF systems.

Matrix element .\[§L’f(u;) is defined when function Im;,(r) is known. Below we calculate

later.

when u.·;(rO) = O and u;;’(rO) 55 O can appear in the double RF system and will be considered

the dispersion integral we should use the Hrst nonzero term in the expansion (633). The case

behaviour of the synchrotron frequency goes to zero. However, ifo;;(rO) : O, then to evaluate

it was concluded that the threshold intensity for instability of the bunch with nonrnonotonic

ln ref.ll6] from the fact} that second term in expression (64) equals infinity when .c·;(rO) ; O.

`\[5LK(JJ) Z 1 ip/+i lrzm ]· rgb Bok 0 dr J2 — m2u.·§(r) 2m? dr §u,·g(r0)(mih’~=¤= @[mx(r)1mp(rllw`;(V)dF TT dfnfmt(¢‘0if-¤plm)

dfii/dr : 0, we can write

For positive ..2 and a dependence .~‘3(r‘) inside the bunch, such that u.·;(n)) : O only
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3 —· (/1- rsn2(z\m2)
sin = — ( * 6) OCR Output

<z5 »/?¤¤(Zlmz)

form W ~ sin4(<;5/2) and a nonlinear solution of equation (15) can be written in the form:

radio frequencies gz = hz/h = 2. Then for a non-accelerating beam, the potential well has a

Below, as an example, we consider the double RF system with the often used ratio of

Tit-? + *-**-1 2 .4.*,0
1 ¢’ (Q? ·1)¢>") in

For short bunches the potential well is quartic and we have from (14)

(T4)sind, = -;·g§sin(g2q>2).

(73)COS és = '%g2 COS(g2¢'Z)v

satisfy the conditions [18]

To produce the bunch lengthening mode the parameters of the double RF system should

6.1.2 Bunch-lengthening mode in double RF system

which can be applied for short bunches both in accelerating and storage regimes.

solution (69) valid for non-accelerating beam, together with the approximate solution (T2)

ln Fig.1 we show results of the numerical calculation of [mk(t‘) using the exact analytical

where Jm(x) is the Bessel function of order m.

[m),(r) : i"‘J,,,(2%r),

This allows function [,,,k(r) to be calculated analytically:

d>=2rcostl». (T1)

(15), which we also can get as an approximation for small r from (69), is

the potential well can be considered as quadratic: VV ~ @2. Then the solution of the equatit·

The case of an accelerating beam can be treated analytically only for short bunches when

where l{(m1) is the complete elliptic integral of the first kind with parameter ml : rz

2i<<mi>
- [ (O ` lcds ?—` —·•·*·""", lf)

Ti-wsO

The frequency of synchrotron oscillations is defined by

double argument.

function [mk can be calculated after substitution of (69) into the trigonometric formulas for

Then function [mk can be evaluated numerically from expressions (66) - (68). For fc//fl : 1

ml : rz and argument y : (,;,0/.u,(r))z;; the value of r varies from O to 1 inside the bucket.

where cd(y) = cn(y)/dn(y), cn(y) and dn(y) are Jacobian elliptic functions with parameter
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This solution is also shown (dashed line) in Figs.2,3 for comparison.

(S3) OCR Output_[mk(r) 2 imJm(%2c0\/ii).

we obtain for function Imk(r) in the case of short bunches the following approximation

C0 2 C12

with

Cm = —-———-—-, K 1 + C-¤(2m+1) (S2)
2\/QR. C-tr(m+1/2)

where coefficients

Tr m=O
r . (a1)A cn(—-tb) = E cm cos[(‘2m +1)zp),

2K °°
series

found in [18] for a quartic potential well. Then using the first term of the expansion into

Tr 2
QO * i= 2 —-L - o x/?cn( wI)

‘2K(¥) i l

For small r expression (T6) gives the solution

limit r -» O so that mz = (r +1)/2 ~1/2 and K(m2) ~ K(1/2):1.85407.

case of a quartic potential well. This approximate solution can be obtained from (T9) in the

as a function of r is shown in Fig.4 together with the frequency wgfr) found in for the

[_ “J3 Z (rl 7T'LJsg T` ·T—* · ii(m2)\/T

The frequency of synchrotron oscillations

is//2 = 1.2 are shown in Figs.2.3.

can again be evaluated numerically from expressions (T6) and (66) - (68). The results for

Then function [mk, as for the case of the nonlinear motion in the single RF system.

The frequency ..;.0 is dehned by expression (6).

.1;.lr) rr
; v2r)U == c>.xs 2K = ——O ———Ll

varies from 1/2 to 1 inside the bucket (O { r § 1), and the argument

H12 Z

r + 1

where the parameter ofthe Jacobian elliptic functions
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Aw,
m > (00) OCR Output

Mrmas)

frequencies which excite multipoles with

of two different multipoles by a fixed modulation frequency is possible only for quite high

quency can excite different multipoles inside the bunch separately. Simultaneous excitation

For bunches with small synchrotron frequency spread Aw,, changing the modulation fre

integral we used values of Im;.(r) calculated numerically (see Fig.l).

and sl on bunch length is shown in Figs.6(a,b). For long bunches to evaluate the dispersion

to perturbations and therefore more stable. The dependence of the peak amplitude of sl

the element sl of the BTM decreases. This means that the system becomes less sensitive

With increasing bunch length and hence synchrotron frequency spread the amplitude of

distribution is close to the Gaussian.

with li 2 l. (For li < l, d.7-`O/dr is infinite at the beam edge r = rma,). For large ii this

"ma;
($9).7*00) <><(1— ?)". r S rms,

We consider the binomial family of distribution functions:

omg; 2 Zrmw : 0.6l (rad).

distribution functions are shown for a bunch with rmm, = 0.3, so that the half bunch length

calculated from the real and imaginary parts of the dispersion integral (64) for two different

In Fig.5 the amplitude and phase of the elements of beam transfer matrix sl and sl

For a non-accelerating beam with Q5, = 0 matrix (88) becomes diagonal.

[ at ( ( -S2 Sztanm] (ma/wl = IO [1$¢i S1 Wm db Si $$1
\Ve can rewrite expressions (84) and (85) in the matrix form:

the half bunch length owl. expressed in radians of first RF system, by rm; = sin(omI/2).

and the normalisation factor S is defined by expression (32). The value of rmax is related to

ES Jo dr (oJ—t0)2—m2w§(r)
Sm Z T __\ (bij

mf [TMI d./TO J;,(2r)w,(r)dr
mzi m=2

Sl I >idmSm, S2: >jbm.Sm,

where

($5)$[1: Jef-? ·—>·O1tan¢slS2a

nl)[lAo? : [0l$t&I10, +A<:>l]Sl,
perturbation

function Iml,(r) (T2) into (59) and (60) we have for the first harmonic of the beam current

ln the case of short bunches in a single RF system, after substitution of the calculated

6.2 BTM for a single RF system
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Ref.[14] for a single RF system by a different approach.

This expression can be compared, for example, with the transfer matrix obtained in

(95)Aflb : IO ·—s2 S2 tan Q5, ATG/Vl l [1A¢l Sl lZ8.I`1 Q5, S1
S2 2 s2, we can present the transfer matrix in the form:

Keeping only the first term in the series over rn in expressions (86), so that Sl 2 sl and

on bunch length whereas that of s2 stays almost constant.

completely different. Indeed, as shown in Fig.6, the peak amplitude of sl strongly depends

synchrotron frequency band, where the dependence of the BTF on bunch length can be

Note that the approximate formulae (93) and (94) don’t work for frequencies inside the

F2 Z 7`;_m1./4.

fz(2) .7:`O(r) o< efffu,

F2 2 rfnax/6v

(1) .7:O(r) o< (1 — r $ rmu, where rma, 2 omg,/2 = lbh/(4R),

Let us consider a few examples of the distribution functions:

.

4uJ2

bunch length ll. From (91) for s2 we have

However F2, and therefore s2, is already a function of the form of the distribution and the

dSl Z j

and doesn`t depend on the form of the stationary distribution function. This gives

Fl 2 1

.]l(r). and then integration by parts. that in the short bunch limit

lt can be shown by using the first term in the series expansion of the Bessel function

and differs by the factor 2 from the reduced form factor` defined in Ref.[19l.

2 [J"‘°‘ }`O(r)r dr
NB;"V`m¤J: - Fm : _)O Qfh/`3,(2r)dr

space

Here the factor Fm depends only on the stationary particle distribution in longitudinal phase

.4./2 * 7'TZ2LJ?

aS N mx? m _
outside the synchrotron frequency band. Then we get

lt is possible to simplify the expressions for the transfer matrix for modulation frequencies

amplitude of the element sg is ~ 1000 times less than of sl.

dispersion integral. For example. for a bunch with rmx = 0.6 and om, : 1.3. the peak

However excitation becomes less efficient for large m due to the factor I,,lr(r,¤[.w(ri in Vile
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similar to (91) as found for the case of a single RF system:

Outside the synchrotron frequency band (4..: > mw,(1·m,,x)) we have an asymptotic formula

zero.

accelerating beam. Then in the matrix (96) matrix elements proportional to tan 0, go to

for different values of bunch length. For long bunches we consider only the case of a non

Amplitude and phase of the matrix elements dfl, dy and di;) are shown in the Figs]. S

and the fact that ci.7-`0/dr = 0 at the centre of the bunch.

contribution from the higher multipoles is significantly reduced by the factors I,,,I(r), I,,,,,(r)

synchrotron frequency equals zero at the centre of the bunch (see Fig.4). Of course, the

excites simultaneously an infinite number of different multipoles due to the fact that the

contrast to the single RF system, even for very short bunches a fixed modulation frequency

all capital D replaced by small d as was done for the case of single RF system. However in

Keeping only the first term in the series (97) will lead to a matrix equivalent to (96), with

due to the definition (61) of the coefficients am and bm.

Note, that DQ = DQI and the series over im contain only odd terms in DI" and even in DQ"
where rm, = sin2(0m,,/2). To get matrix (96) the relations (73) and (74) were also used.

2SZn Jo dr (tu — icr)2 — m2tuf(r)
dZ _ m {OS) `
in mz frmaz df`0 J,,,(2l4;0\/F)Jm(2nc0\/F)w,(r)dr

Here n = hn/h and coefficients diff = dfQ(u») are defined as

m=i m=2

,
temDr Z Z amdfgby = Z 1).,,4;;.

where we used definitions similar to the case of one RF system:

(96)

.\0;[2302 D? tan 0, D? —D$2 tan 0,/4 —Df2

AI; 2D§l 2D§1 tan 0, D3? —D§2tan 0, I I Al"}/Xi}
I [O`

A01I1A.0{ DI1 tan 0, D}1 -D}2 tan 0,/4 —D}2

All Dall D§‘ tan 0, DQ?/2 —D§2 tan 0,/2 I I .\l}/1*}

(with respect to the fundamental one) the results which can be written in the matrix form:

the amplitude and phase modulation of the first and second harmonics of the beam current

After substitution of the function [mi,(r) defined by (83) into expression (64). we get for

system with hg/h = 2 (blm).

We consider bunches accelerated in the symmetric potential well created by the double RF

6.3 BTM for at double RF system
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has zero derivative inside the bunch but outside the bunch centre.

persion integral (101) when the synchrotron frequency as a function of oscillation amplitude

In this section we shall try to understand why the unintegrable singularity appears in the dis

of synchrotron frequency

6.4 Landau damping in a system with nonmonotonic behaviour

infinite. Below we consider this case in more detail.

As a result the amplitude of the matrix element in frequency domain at tu = mw,(rC,) is

avoided when 0* ——> +0 (this can be seen from Fig.10 for the case when the two poles coincide).

The contour of integration defined by the initial conditions doesn’t allow the singularity to be

ml“;("¤r)
(102)r=r,.;l; ———i—(1+i). C l/2,l

This expression has two poles

0 dr mw;'(r·C,.)(r — rc,)2 + ia.
"rvmx dfo [mk(7`)Imp(T`)d7`

in the expansion (63) and consider the integral

then to calculate the contribution from the pole [uz — mw,(1·C,)] we should use the next term

lf the modulation frequency is such that the resonant condition uu = mwS(rC,) is satisfied.

bunch length decreases also with increasing frequency ratio gz in the double RF system.

numerically (16] and it can be significantly smaller than in the storage regime. The critical

Note that, for the accelerating regime, the critical value of bunch length can be calculated

of integration are shown in Fig.l0.

instead of the only one term written in (64). Both these poles and the corresponding contour

part of the dispersion integral contains a second term - a contribution from the pole at r : rl

dition .u = mu;,(r) is satisfied at two points, rO and rl, simultaneously. Then the imaginary

.o,(r) is no longer monotonic. Therefore for a fixed modulation frequency the resonant con~

2.035(rad), (rm, > rc,. = sin2(oC,/2) = 0.724), the dependence of the synchrotron frequency

Fig.4 shows that for a bunch length more than some critical value, om, > oi. =

of the svstem.

increasing the synchrotron frequency spread beyond some value does not improve stability

for single RF system. As can be seen in the graphs, in contrast to the single RF system.

length is shown in l·`igs.6(a,b) and Fig.9, in the first case together with functions calculated

The dependence of peak amplitude of the elements dll. dy and d}2 as a function of bunch

n 2 dl 2 dg 2 0.044omun!In *50 l 4wZO 5

For m :1 and m : 2 it gives
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beam current modulation doesn’t grow with time.

This means that the interval of resonant amplitudes decreases ~ 1/t. This ensures that the

[ ¢l=¤,(r¤)Im
r - r0[ < (110)

when wQ(r0) yé 0 and instead of (107) we get

Now we have two different situations. First, corresponding to the normal Landau damping,

(109)w,(r) — Q/m = w;(r0)(r — 1*0) + %w;’(r0)(r — r0)2 +.

at resonance

over r in (105) it is important to consider the interval of resonant amplitudes lr- rO|. Indeed,

time, shrinks with time according to the condition (107). However, due to the integration

now that the band of resonance frequencies, for which we have a solution (108) growing with

Following the explanation of the nature of the Landau damping given in Ref.[9] we should say

_ z[mw,(r) — Q]
2 t. 1 ( l

i(mw,(r)—1`2)t _

we can expand the exponent in the square brackets and write

(107)mw,(r) — Ql <

resonance, where

Far from resonance, for lmw,(r) — Ulf > 1 we have an oscillating solution. Close to the

Vigo 0 ¤1m~»(r) — 01
(106 ` lC1 . Too Tmcx _ [€i(mw,(r)-O)t _ 1 ie ~ / 12,,, ="·~·<*>*-T-—-— ( l gwe

After integration over t' we obtain

(105)I(zt) ~ 2 / [ ,,,=_OO 0 0DO t Tmuz I _ I R,,,(»~)€··m~·<*><*·* >€1‘" diva.

For a modulation voltage V(t) ~ e“*Q‘ we have

(101)1(¢) =g,,,(¢ - ¢’)V(t’)dt’./ O 7TI.=")O

proportional to the integral

The response of the beam to the modulation of the voltage according to (12) has a term

step function.

where R,,,(r) = d.7:O/drI,,,k(r)I,,,,,(r) (we don`t specify values for k and p) and 9(vf) is the unit

gmw : 90 7`ma: Hm 1'm¤.z·’ / Z -,/ Rm(r)€·im~~<*>’0(;)dr_ (10:;; -1se 0 cd - mu.·,(r) — zo' 0 ‘
awt dr;} d

and consider the integral proportional to the element of the beam transfer matrix

First, let`s perform the bacl< transformation of the transfer function to the time domain
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mode in a double RF system for bunch lengths more than some critical value.

ulation grows with time as One of the examples of such a system is bunch-lengthening

frequency inside the bunch (but outside the bunch centre) is lost and that beam current mod

We have shown that Landau damping in a system with zero derivative of synchrotron

beam).

mode created by double RF system with ratio of radio frequencies equals 2 (non-accelerating

An exact analytical solution was found for nonlinear motion in the bunch-lengthening

long bunches in the storage regime, both for single and double RF systems.

potential well. These results were applied to short bunches in an accelerating bucket and to

Expressions for bunched beam transfer matrices were obtained in the case of a symmetric

7 Conclusions

[22].

where similar dispersion integrals appear in the presence of synchrotron frequency spread

thresholds of transverse mode coupling instability for long bunches in a double RF system.

lt seemsthat this phenomenon should also be taken into account for the calculation of the

observed during measurements for high intensities.

were included. The double hump in the amplitude of the dipole beam transfer function was

amplitude inside the bunch was also found in a single RF system, [12], when intensity effects

It is interesting to note that nonmonotonic dependence of synchrotron frequency on

we can get a modulation growing with time as Z 2/3

synchrotron frequency on amplitude is nevertheless monotonic inside the bunch. In this case

and second derivatives of the synchrotron frequency equal zero, so that dependence of the

The previous analysis can also be extended to a system with a point where both first

of long bunches in the double RF system has been observed experimentally [20).

derivative of the distribution function cl.7`0/dr around the point r : ro. "Strange" behaviour

tribution in the longitudinal phase space which leads to a stationary distribution with zero

One of the possible ways this instability can develop is by an evolution of the particle dis

derivative of synchrotron frequency inside the bunch (but outside the bunch centre) is lost.

to the usual exponential growth, but nevertheless Landau damping in the system with zero

plitude of the modulation in the beam grows ~ lt is quite a slow instability compared

This interval of resonant amplitudes shrinks with time only as As a result the am

llwé/frollm
l 111)ir — rg) <

Rm(rO) ¢ 0. Then condition (107) defines the width of the resonant region as

The situation is different if. at the point of resonance, sugfrg) : O, but u.·;’(rG) ¢ O and
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(dashed line) for parameters m = 1,2 and k/h = 1.

solution for non-accelerating beam (solid line) and approximate solution for short bunches

Figure 2: Function Im;,(r)/im calculated for a double RF system (blm, gg = 2) using exact
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found for quartic potential well (dashed line).

gn = 2): exact solution for non-accelerating beam (solid line) and approximate solution
Figure 4: The frequency of synchrotron oscillations w,(v·) in a double RF system (blm,
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Figure 3: Function Imk(r)/im calculated for a double RF system (blm) using exact (solid
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with p = 2, 5) and half bunch length ¢yna_t = 0.6 (rad).

system calculated for two types of particle distribution in longitudinal phase space (binomial

Figure 5: Amplitude and phase of the elements of the BTM s,,,(<.u) (m = 1, 2) in a single RF
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double RF systems (blm) for a bunch with distribution function with p = 2.

length (in radians) calculated for modes m = 1 (a) and m = 2 (b) and k/h = 1 in single and

Figure 6: Dependence of the peak value of the amplitude of the BTM elements on half bunch

gmqx (rnd)

0Tz 0.4 0.6 0.a 1 1.2 1.4 1.6 1.8 2 2.2

0.5

Single RF system

1.5

2*5 Double RF syslem

3.5

;4=2

m=2

n:]
4 5

V’e¤kAmpl1mde

wmcx (rnd)

0.2 O.4 OE D.5 1 1.2 1.4 1.5 1.8 2 2.2

Ocuuhe RV system

20

\_ $mq¤e QV system

e · \
-2 I “` 1

rn:}

J5 ·1=i

\·\ \ \ \ . X
` + \

V`@¤¤ *~·¤~m::·;•





27 OCR Output

gg = 2) calculated for different bunch lengths.

Figure 8: Amplitude and phase of the BTM elements d{2(w) in a double RF system (blm,

u/(mon)~/<·-¤¤)
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of synchrotron frequency on amplitude.

Figure 10: Integration contour for dispersion integral in the case of noumonotonic dependence

IC, rl

,u = 2.

bunch length (in radians) in a double RF system (blm, g2 = 2) for distribution function with

Figure 9: Dependence of the peak value of the amplitude of the BTM elements dl? on half

prncx (rod)

02 OA as as i iz it is is 2 2.2

05

P}0~.Tv‘e QV Syikem

25

»#=2

rv:} I
C \

nr,. ,xm¤.•m!


