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Abstract

Or: “How to generate an ensemble in a single event?” Following re-

cent work on entropy in strong interactions, I explain the concept of

environment-induced quantum decoherence in elementary quantum me-

chanics. The classically chaotic inverted oscillator becomes partially de-

coherent already in the environment of a single other oscillator perform-

ing only vacuum fluctuations. One finds exponential entropy growth

in the subsystem with a Lyapunov exponent, which approaches the

classical one for weak coupling.
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Recently the long-standing “entropy puzzle” of high-multiplicity events in strong

interactions at ultra-relativistic energies has been analysed from a new point of view

[1]. This is related to the concepts of an open quantum system and environment-

induced quantum decoherence. The problem dates back to Fermi and Landau and is

intimately connected to understanding the rapid thermalization of high energy density

(≫ 1 GeV/fm3) matter [2]. Why do thermal models work so well in reproducing

global features of hadronic multiparticle final states? Why do they work at all?

Or, Why does high-energy scattering of pure initial states lend itself to a statisti-

cal description characterized by a large apparent entropy from a mixed-state density

matrix describing intermediate stages in a space-time picture of parton evolution?

Effectively, unitary time evolution of the observable part of the system breaks down

in the transition from a quantum mechanically pure initial state to a highly impure

(more or less thermal) high-multiplicity final state. Note that the unitary time evolu-

tion operator, exp(−iĤt), always transforms a pure state into a pure state, according

to the Schrödinger equation, which cannot produce entropy under any circumstances

(cf. below). This was discussed in detail in Refs. [1], where more references concern-

ing formal aspects of this work can be found. Based on analogies with studies of the

quantum measurement process (“collapse of the wave function”) [3] and motivated

by related problems in quantum cosmology and by non-unitary non-equilibrium evo-

lution resulting in string theory [4], I argued that environment-induced quantum

decoherence solves the entropy puzzle of strong interactions.

A complex pure-state quantum system can show a quasi-classical behaviour, i.e.

an impure density (sub)matrix together with decoherence of the associated pointer

states in an observable subsystem [1, 3, 4]. I will demonstrate in the following that

the decoherence process is uniquely correlated with entropy production. Considering

strong interactions, in particular, there is a natural Momentum Space Mode Separa-

tion due to confinement, which is defined in the frame of initial conditions for the

time evolution and for the physical (gauge) field degrees of freedom. Thus, almost
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constant QCD field configurations form an unobservable environment, which inter-

acts with the observable subsystem composed of partons. The environment modes

are unobservable, since they can neither hadronize nor initiate hard scattering among

themselves, whereas the partons are observable in the sense of parton-hadron duality

or deep-inelastic scattering; equivalently, low-energy coloured vacuum fluctuations

cannot propagate into asymptotic states.

Previously, I studied the induced quantum decoherence and entropy production

in a non-relativistic single-particle model resembling an electron coupled to the quan-

tized electromagnetic field, however, with a deliberately enhanced oscillator spectral

density in the infrared. The Feynman-Vernon influence functional technique for quan-

tum Brownian motion provided the remarkable result that in the short-time strong-

coupling limit the model parton behaves like a classical particle [1]: Gaussian parton

wave packets experience friction and localization, i.e. no quantum mechanical spread-

ing, and their coherent superpositions decohere. The decoherence process has been

shown to lead to entropy production in this oversimplified parton model.

It seems somewhat more realistic to consider two coupled scalar fields represent-

ing partons and their non-perturbative environment, respectively. In the functional

Schrödinger picture employing Dirac’s time-dependent variational principle, i.e. a

non-perturbative method, I derived a Cornwall-Jackiw-Tomboulis (CJT) type effec-

tive action and the equations of motion for renormalizable interactions [1]. Thus,

analysis of the entropy puzzle in strong interactions leads to study an observable field

(open subsystem) interacting with a dynamically hidden one (unobservable environ-

ment), i.e. quantum field Brownian motion.

Summarizing, my point of view is that partons feel an unobservable (gluonic)

environment, which manifests its strong non-perturbative interactions on a short time

scale (≪ 1 fm/c) through decoherence of suitable partonic pointer states 3, their

3In general, these are not single-particle states but rather coherent (Gaussian) wave functionals,

as constructed in the second of Refs. [1].
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quasi-classical behaviour, and entropy production. If confirmed in QCD, this will have

important consequences for parton-model applications to complex hadronic or nuclear

reactions. The emergence of structure functions from initial-state wave functions can

and will be further studied in this approach.

Instead of representing the formalism and more technical results from Refs. [1],

I want to demonstrate here in simple quantum mechanical examples the basic Why

and How of the solution to the entropy puzzle.

Consider a system that can be described in terms of two normalized discrete

basisstates, |1〉 and |2〉. Forming a pure state, |ψ〉 ≡ a1|1〉 + a2|2〉, by a coherent

superposition with amplitudes a1 ≡ p1/2 and a2 ≡ (1 − p)1/2, the corresponding

density matrix, ρ̂ ≡ |ψ〉〈ψ|, is

ρij =







a 2
1 a1a2

a1a2 a 2
2





 −→ ρ D
ij =







1 0

0 0





 , (1)

where ρ̂D is obtained by diagonalization. Note the off-diagonal interference terms in

ρij . Furthermore, observe that ρ̂D has only one non-vanishing eigenvalue. Introducing

the von Neumann or statistical entropy,

S[ρ̂] ≡ − Tr ρ̂ ln ρ̂ , (2)

we find S[ρ̂] = S[ρ̂D] = −[1 ln 1+0 ln 0] = 0, i.e. no entropy in a pure state. Secondly,

forming a mixed state (ensemble) such that the system is in state |1〉 with probability

p and in state |2〉 with probability 1 − p, the density matrix becomes ρ̂′ = |1〉p〈1| +

|2〉(1 − p)〈2|, i.e. a decoherent superposition. Hence, we obtain

ρ′ij =







p 0

0 1 − p





 . (3)

The density matrix (3) shows no interference terms and is diagonal per se.4 Then,

S[ρ̂′] ≡ S(p) = −[p ln p + (1 − p) ln(1 − p)] 6= 0, generally. In fact, 0 ≤ S(p) ≤

4Note that Tr ρ̂ = Tr ρ̂′ = 1: the system is in some state with total probability 1.
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S(1/2) = ln 2. Total ignorance about the state of the system (p = 1/2) corresponds

to ln 2 units of entropy in a two-state system, i.e. 1 bit of information is lost compared

to certainty about its state (p = 0, 1).

One concludes that entropy production can only occur if the interference terms

of the density matrix representing a more or less pure state of the observed system

decay dynamically.5 In a closed system evolving unitarily in time, however, there is

no way to transform, for example, ρ̂ into ρ̂′, see Eqs. (1), (3). Only the interaction

of the system with an environment [1, 3, 4], can have such an effect. The presence

(and integrating out) of the environment degrees of freedom essentially changes the

dynamics of the observed system. This can lead to the decay of the interference

terms in its density matrix, i.e. environment-induced quantum decoherence, which is

necessary to increase its impurity and, thus, to produce entropy.

Next, consider a non-relativistic particle moving in a one-dimensional double-

well potential presenting the observable subsystem, which is coupled translationally

invariant to a single environment oscillator. The classical action is

S =
∫

dt
{

1
2
Mẋ2 + 1

2
mẏ2 − 1

2
mω2(y − x)2 + 1

2
MΩ2x2 − 1

4!
λMΩ4x4

}

. (4)

For simplicity, let M = m = Ω. Then, properly rescaling by Ω, one obtains

S =
∫

dt
{

1
2
ẋ2 + 1

2
ẏ2 − 1

2
ω2(y − x)2 + 1

2
x2 − 1

4!
λx4

}

, (5)

in terms of dimensionless quantities and two coupling constants, ω2, λ ≥ 0. For ω = 0

the minima of the doublewell lie at x± = ±(λ/3!)−1/2, at a depth of −3/2λ (the local

maximum is zero at x = 0). Presently, I want to study the case that the excitation

energy of the x-particle (X) is smaller than the level spacing ω of the environment

oscillator (Y), which is assumed to be in its ground state. Starting with a given initial

state of X, I will calculate the time evolution of the corresponding density matrix ρ̂X

5The argument does not depend on particular physical characteristics of the system; it holds for

the two-state system as well as for an interacting quantum field.
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under the influence of the vacuum fluctuations of Y. Excited states of Y contribute

only virtually here; they cannot become real due to energy conservation.

For illustration, I choose the metastable initial state of X, when classically the par-

ticle “rests on top of the hill” (x = 0). Quantum mechanically this can be represented

by a minimum uncertainty Gaussian wave packet,

ψ(x, t = 0) = π−1/4w
−1/2
0 e−

1
2
x2/w 2

0 , (6)

with w0 ≪ λ−1/2. Also, assume ω to be sufficiently larger than 3/2λ.

First of all, let the system evolve classically. Nothing will happen. However, any

infinitesimal perturbation of the fine-tuned initial conditions causes X to move “down

the hill”, left or right (L or R), dragging Y along. There is local chaos in the sense of

extreme sensitivity to the initial conditions at x, y ≈ 0; arbitrarily small uncertainties

in the initial conditions lead to a loss of predictability. For an ensemble of initial

conditions X switches with probabilities pL(t′) and pR(t′) = 1− pL(t′) between L and

R, respectively, if at least one trajectory passes x = 0 in a certain interval [t′−ǫ, t′+ǫ].

This corresponds to a loss of information about the actual binary decision “either L

or R” and an entropy SX = −
∑

i=L,R pi ln pi.
6 Note that SX or pL,R are strongly

conditional (“fine-grained”) quantities. In distinction, the usual classical entropy is

calculated after “coarse graining”, i.e. by constructing a local probability density

f(t) in the phase space of X related to the ensemble average over initial conditions,

Sc.g.(t) ≡
∫

dxdp f(t) ln f(t) + C. A chaotic loss of predictability from strongly

diverging trajectories in phase space causes Sc.g. to increase: as time passes, more

and more cells of the coarse graining contribute − effectively, the phase space volume

occupied by the ensemble grows (without violating Liouville’s theorem).

In conclusion, in a classical system, be it chaotic or not (with or without coarse

graining), entropy can only be produced IF there is a physically relevant ensemble of

6If the ensemble of initial conditions is constrained to preserve the reflection symmetry of the

action, Eq. (5), then pL(t′) = pR(t′) = 1

2
and SX(t′) = ln 2 stay constant.
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initial conditions. Thus, one cannot explain altogether classically entropy production

or thermalization in a single high-multiplicity event in strong interactions.

Secondly, let the system evolve quantum mechanically. To begin with, let

there be no coupling to the environment (ω = 0). Even with the fine-tuned initial

condition, Eq. (6), the amplitude ψ to find X at a particular space-time point begins

to flow “down the hill” symmetrically (L and R) due to the quantum spreading of

the wave packet. For a free particle w0 → w(t) = (w2
0 +w−2

0 t2)1/2 (for M = 1); here

one expects an accelerated spreading “downhill”, cf. Eq. (12) below. The related

probability density |ψ|2 also evolves and stays symmetric; generally, it cannot be

simulated by the classical evolution starting with an ensemble of initial conditions due

to the absence of quantum interference between classical trajectories. In any case, the

system remains in a pure quantum state. The density matrix is ρ̂X(t) = |ψ(t)〉〈ψ(t)|,

|ψ(t)〉 = exp[−iĤ0t]|ψ(0)〉, where Ĥ0 is the Hamiltonian of X from Eq. (5) with ω = 0.

Therefore, S[ρ̂X(t)] = −1 ln 1 = 0, cf. Eq. (2). Quantum mechanically one knows

everything there is to know about a closed system (X), given any pure initial state

and its Hamiltonian, which consistently yields S[ρ̂X ] = 0. Even with an ensemble of

initial states, i.e. an impure density matrix ρ̂X(0), there is no entropy production,

since S[ρ̂X(t)] = S[exp(−iĤ0t)ρ̂X(0) exp(+iĤ0t)] = S[ρ̂X(0)] stays constant.7

The situation changes completely if the subsystem (X) evolves quantum mechan-

ically coupled to the vacuum fluctuations and virtual excitations of the environment

(Y). With the above assumptions the initial density matrix of the total system is:

ρ̂(t = 0) ≡ ρ̂X(0) ⊗ ρ̂Y (0) , (7)

with matrix elements ρX(x, x′; 0) = π−1/2w−1
0 exp[−1

2
(x2 +x′2)/w 2

0 ] and ρY (y, y′; 0) =

(ω/π)1/2 exp[−1
2
ω(y2+y′2)]. The time evolution of the density matrix of the observable

subsystem, ρ̂X(t) = TrY ρ̂(t), can be calculated with the Feynman-Vernon influence

functional technique; I will make use of general results obtained in the first of Refs.

7The unitary (time evolution) transformation does not change the eigenvalues of ρ̂X . Thus, the

statistical entropy, Eq. (2), cannot possibly show a sign of classical chaos in a closed system.

6



[1]. The idea is to derive a propagator for ρ̂X , which incorporates the influence of the

environment degrees of freedom (Y) exactly. This can be achieved, since Y and its

coupling to X are at most quadratic in coordinates and momenta, see Eq. (5).

It should be remarked that the final state of the environment is not specified;

presently, it may contain virtual excitations of Y.8 The relevance of this for a high-

multiplicity hadronic (or nuclear) reaction is the following: Even though the QCD

vacuum “far away” conforms to the usual one before and after, the additionally

produced secondary hadrons all require a dressing of their valence quarks by localized

virtual excitations of the vacuum or environment, which obviously makes an essential

difference as compared to the initial state.

Presently, the resulting density matrix ρ̂X(t) is (cf. also the first of Refs. [1]):

ρX(z−, z+, t) = π−1/2w−1(t) e−[z+ − v(t)t]2/w2(t)

× e−z
2
−
{C + 1

4
w 2

0 c
2 − d−2[B + 1

2
w 2

0 bc]
2/w2(t)}

× eiz−{(az+ − 2d−1[B + 1
2
w 2

0 bc][z+ − v(t)t]/w2(t)} , (8)

with the effective velocity v(t) = 0 for the zero-momentum initial wave packet, the

effective width w(t) ≡ 2ξ|d|−1, ξ ≡ (A + 1
4
w−2

0 + 1
4
w 2

0 b
2)1/2, and with rather com-

plicated time-dependent coefficients A, B, C, a, b, c, d, to be discussed elsewhere;

the coordinates in Eq. (8) are z− ≡ x − x′ and z+ ≡ 1
2
(x + x′) in terms of ordinary

one-dimensional ones. Since we are particularly interested in the decoherence process

and entropy production, we consider only the simplest off-diagonal density matrix

elements here, ρX(x, x′ = −x, t) = ρX(z− = 2x, z+ = 0, t). They can be directly

related to the linear entropy produced in the observable subsystem (X):

Slin ≡ Tr [ρ̂X − ρ̂ 2
X ] = 1 −

∫

∞

−∞

dz−

∫

∞

−∞

dz+ ρX(z−, z+, t) ρX(−z−, z+, t)

= 1 − 1
2
c
−1/2
1 w−1 , (9)

8As a corollary to the Schmidt decomposition [1] it is easy to prove that starting with an overall

pure state of the complex system, cf. Eq. (7), IF the final state of the environment is a pure state,

THEN the observable subsystem ends up in a pure state too (without entropy production).
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with c1 ≡ C + 1
4
w 2

0 c
2 − (B + 1

2
w 2

0 bc)
2/(dw)2 and independently of the initial wave

packet momentum (p = 0 at present). Thus, inserting (9) into (8), one obtains:

ρX(x,−x, t) = π−1/2w−1(t) exp
{

−x2w−2(t)[1 − Slin(t)]−2
}

, (10)

∫

∞

−∞

dx ρX(x,−x, t) = 1 − Slin(t) ≥ e−S(t) . (11)

The inequality results from the fact that the linear entropy provides a lower bound for

the relevant statistical entropy, cf. Eq. (2), as shown in [1]. Note that Eqs. (9)−(11)

are completely independent of the time-dependent functions entering there, which are

specific for a particular dynamical system. They are based, however, on the Gaussian

structure of the subsystem density matrix, Eq. (8).

At this point the attentive reader might wonder what happened to the non-linear

interaction ∝ λx4 of the double-well potential, see Eq. (5). Of course, it cannot

be treated exactly. I employed a mean-field-type approximation, replacing 1
4!
λx4 by

1
2
λ〈x2〉x2 ≡ 1

2
Λ2(t)x2. As long as one studies only the initial time-evolution over short

periods, as compared to the time a classical particle would need to “roll down the hill”,

one may even set Λ ≈ 0. For the following qualitative considerations, Λ plays the role

of an adiabatically changing parameter. However, a more accurate approximation is

necessary (and feasible) to follow the truly long-time quasi-periodic motions of the

system. Then, one expects periods of increasing decoherence and entropy production,

cf. below, followed by periods of quantum revival in the observed subsystem. The

more complex the environment becomes, the more unlikely quantum revivals will be,

since the total system including the environment finds more and more ways to evolve

before a reconstruction of the subsystem initial-state wave function.9

To begin with, it can be checked explicitly that there is no entropy production for

a vanishing coupling to the environment, Slin
ω=0(t) = 0, cf. Eq. (9). Next, calculating

9Such effects have been experimentally observed in even simpler systems involving a two-state

subsystem of one Rydberg atom coupled to a single mode of the electromagnetic field [5].
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the effective width in the long-time limit 10, one finds:

w(t) =
(

w 2
0 + w−2

0 f−2
−

+ ω3f−2
−

[f 2
−

+ ω2]−1
)1/2 f 2

−
+ ω2

f 2
− + f 2

+

exp t− , (12)

with t− ≡ f−t, f± ≡ [±1
2
ω 2

+ +(1
4
ω 4

+−ω2ω 2
−
)1/2]1/2, and ω 2

±
≡ ±ω2 +Λ2−1. Assuming

a sufficiently small coupling, ω2 < 1, note that ω 2
±

is negative as long as Λ2(t) <

1 − ω2. Thus, the width grows exponentially with an effective Lyapunov exponent

f−. For vanishing coupling to the environment, it reduces to the classical Lyapunov

exponent of the inverted oscillator, fω=0
−

= (1 − Λ2)1/2, while the width becomes

wω=0(t) = (w 2
0 + [w0f

ω=0
−

]−2)1/2 exp(fω=0
−

t). This suggests quite generally that the

time-dependent widths of suitable (Gaussian) wave packets may serve as “quantum

indicators” of chaotic behaviour in the corresponding classical system.

It is remarkable how the Lyapunov exponent reflects the dynamics: as the wave

packet spreads “downhill”, Λ2(t) ∝ 〈x2〉 increases until f− reaches zero (becoming

purely imaginary afterwards), when ω− = 0. At this point the behaviour becomes

regular in the sense of being governed by harmonic motions close to the minima of

the double-well potential with a correspondingly milder time-dependence of the width

(cf. the model studied in the first of Refs. [1]).

The second dynamical time scale f−1
+ always stays real. It is relevant for certain

non-Markovian effects generated by the interaction with the environment (fω=0
+ = 0).

These become clearly visible in the entropy evaluated in the same limit as Eq. (12).

Using c1 = C + O(w 2
0 ), one obtains in leading order:

Slin(t) = 1 − w−1(t)
f 2
−

+ ω2

ω3/2f−
× (13)

[

[(
f−[f 2

+ − ω2]

f+[f 2
− + f 2

+

+
f+[f 2

−
+ ω2]

f−[f 2
− + f 2

+

) sin t+ +
2ω2 cos t+
f 2
− + f 2

+

]2 + ω2[
sin t+
f+

−
cos t+
f−

]2
]−1/2

,

with t+ ≡ f+t. Thus, the linear entropy approaches exponentially its saturation

value 1 on the time scale set by the Lyapunov exponent, see Eq. (12), and the
10Here, hyperbolic functions dominate over trigonometric ones in the time-dependent coefficients

in Eq. (8) for times such that a classical particle would still be “rolling down the hill” of the

potential; this restriction is presently assumed for simplicity.
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von Neumann entropy grows exponentially according to eq. (11), at least as fast.

Note that the periodic function multiplying w−1(t) in Eq. (13) is approximately

∝ ω−1/2[1 + 21/2 + sin2(21/4ωt)]−1/2 for f− ≈ f+ and ∝ ω−1/2[1 + cos2(21/2ωt)]−1/2

for f− ≈ 0; i.e. it persists qualitatively even until the effective Lyapunov exponent

becomes imaginary, when the stabilizing effect of the x4-term in the potential is felt.

To summarize, in the above specified long-time limit and for the chosen initial

conditions, Eq. (7), one obtains the observable subsystem (X) density matrix,

ρX(z−, z+, t) = π−1/2w−1(t) e−{z 2
+ + 1

4
z 2
−
[1 − Slin(t)]−2}w−2(t) + iz−z+f− . (14)

Even though this density matrix describes the exponential entropy production and

its diagonal matrix elements with z− = 0 grow rapidly, apart from the overall nor-

malization factor, the (simplest) off-diagonal matrix elements (z+ = 0) do not really

decay here as in usual models of quantum decoherence [1, 3]. This is no surprise in

view of the “poor environment” considered at present, which has only one degree of

freedom frozen in its ground state (modulo virtual excitations). Loosely speaking,

it is unable to accommodate all the phase information contained in the off-diagonal

density matrix elements of the subsystem.

In conclusion, a strong observable entropy production in a quantum system, which

shows a chaotic behaviour in the classical limit with exponentially growing modes, re-

quires only a minimal decohering effect due to an environment of vacuum fluctuations

coupled to it from a higher energy scale.

In particular, complementary to previous studies [3, 6], one observes here that

the environment does not necessarily have to be at any finite temperature for this

effect of partial decoherence to work. Furthermore, it should be realized that the

Schmidt decomposition reveals the remarkable fact that the density submatrices of

“subsystem” and “environment” always have identical non-zero eigenvalues [1]. Thus,

from the point of view of calculating the entropy, Eq. (2), their roles can be inter-

changed and it is a matter of practicability to decide which part of the total Hilbert

space is integrated out to find the entropy of the physically observed subsystem. The
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environment-induced quantum decoherence and its relevance for entropy production

have presenly been illustrated by an elementary example, which, however, points out

to interesting consequences for the quantum evolution of classically chaotic non-linear

field theories.

I thank P. Carruthers, M. Danos, N. E. Mavromatos, B. Müller, O. Bertolami,

and J. Rafelski for stimulating criticism and helpful discussions.
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