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Abstract

We discuss how one can determine the average kinetic energy of the heavy quark
inside heavy mesons from di�erential distributions in semileptonic B decays. A
new, the so-called third, sum rule for the b ! c transition is derived in the small
velocity (SV) limit. Using this sum rule and the measured momentum dependence
of the B ! D� transition (the slope of the Isgur-Wise function), we obtain a new

lower bound on the parameter �2� = (2MB)�1hBj�b(i ~D)2bjBi proportional to the
average kinetic energy of the b quark inside a B meson. Existing data suggest
�2� > 0:4 GeV2 and (from the \optical" sum rule) � > 500 MeV, albeit with some
numerical uncertainties.
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1. It has been shown in two recent papers [1, 2] how the operator product
expansion (OPE) allows one to derive various useful sum rules for heavy 
avour
transitions in the small velocity (SV) limit [3]. Non-perturbative corrections are
incorporated into the theoretical side of the sum rules in the form of an expansion
in inverse powers of the heavy quark mass. In Ref. [2] the so-called �rst sum rule
at zero recoil was obtained, which was then used for estimating the deviation of the
B ! D� transition form factor from unity at zero recoil to order O(�2

QCD). Another
sum rule analysed in Ref.[1] yields a �eld-theoretic proof of the inequality

�2� > �2G ; (1)

where �2� and �
2
G are related to the kinetic energy and the chromomagnetic operators,

�2� =
1

2MB
hBj�b(i ~D)2bjBi; �2G =

1

2MB
hBj�b(i=2)�GbjBi: (2)

(This inequality had previously been obtained within a quantum-mechanical ap-
proach [4, 5].) In this paper we exploit similar ideas to obtain a new sum rule in
the SV limit, which relates �2� to the expectation value of the square of the excita-
tion energy of the �nal hadronic state Xc in B ! l�Xc transitions. At present the
corresponding inclusive di�erential distribution has not been measured yet. Instead
we use the measured slope of the Isgur-Wise function as extracted from B ! D�l�

decays near zero recoil to get a lower bound on �2�, without any reference to �2G.
The resulting bound turns out to be numerically close to that of Eq. (1).

2. The general method for deriving sum rules in the SV limit is presented in
Ref. [1]. Here we restate only some basic points, primarily to introduce the relevant
notations. The OPE is applied to the transition operator [6, 7]

T̂ab(q) = i

Z
d4x eiqx Tfjya(x)jb(0)g ; (3)

where ja denotes a current of the type �c�ab with an arbitrary Dirac matrix �a;
q is the momentum carried by the lepton pair. The average of T̂ab over the heavy
hadron state Hb with momentum pHb

represents a forward scattering amplitude (the
so-called hadronic tensor),

hab(pHb
; q) =

1

2MHb

hHbjT̂abjHbi : (4)

The observable distributions are expressed through structure functions wab: wab =
(1=i) disc hab: The hadronic tensor can be decomposed in terms of the possible
covariants [7] (their number depends on the Lorentz structure of the currents) with
coe�cients hi. In the case of vector and axial-vector currents we deal with the
functions hV Vi , hAAi and hVAi , i = 1; :::; 5, introduced in Ref. [8]. In the HQET limit
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[9] { when one neglects 1=mb;c corrections {, the hadronic tensor hab is de�ned by a
single invariant function h for any matrix �a in the current ja, namely:

hab = Cabh ; Cab = Tr

"
1+ 6v1

2
�a

1 + 6v2
2

�b

#
: (5)

Here �a = 
0�ya
0 and v1�, v2� are 4-velocities of the initial and �nal hadrons,

v1� =
(pHb

)�
MHb

; v2� =
(pHb

� q)�
MHc

; (6)

(MHb
and MHc

can be substituted by mb and mc, respectively, to leading order).
The function h depends on two scalar invariants available in the process, namely
(v1q) and q2. In what follows we will assume the hadron Hb to be at rest; the �rst
invariant then reduces to q0. Moreover, in studying the transitions b ! c at zero
recoil or in the small velocity (SV) limit, it is convenient to employ directly the
space-like momentum transfer ~q 2 = (v1q)2 � q2 as the second argument of h. More
speci�cally, for vector and axial-vector currents one has to leading order:

h =
hAA1

1 + v1v2
=

1

2

mc

mb
hAA2 = �mch

AA
5 ;

h =
hV V1

1� v1v2
= �

1

2

mc

mb

hV V2 = mch
V V
5 ; h = �mch

V A
3 :

The functions hi not listed here vanish in this approximation. The expressions for
all hi up to order 1=m2

b when the factorization (5) is broken can be found in [8].
The factorization of h�� into a universal kinematical structure multiplied by a

single hadronic function h in general ceases to be valid in higher orders in 1=mc;b.
Yet it still holds for those corrections that are relevant for the third sum rule to be
derived below. We will explain this point shortly.

Since it does not matter which hadronic function we deal with { they all lead
to one and the same third sum rule { we will use hAA1 in our derivation. Thus,
we consider the transitions of the B meson induced by the axial-vector current
A� = �c
�
5b : To isolate hAA1 one considers the spatial components of the axial
current generating the transitions of the B meson to D� and the corresponding
higher excitations. In [2] sum rules at zero recoil (~q = 0) were obtained; here we
will work at small, but non-vanishing values of j~qj. The terms O(~q2) will be kept
while those of higher order in j~qj will be neglected. First we consider hAA1 (q0; ~q) in
the complex q0 plane (~q is assumed to be �xed, and �QCD � j~qj � MD) and shift
q0 by introducing the quantity

� = q0max � q0; q0max = MB � ED�; ED� = MD� +
~q2

2MD�

: (7)

The physical cut is characterized by � real and positive. The imaginary part of h1 is
given by the \elastic" contribution of D� plus inelastic excitations. For what follows
it is crucial that all these contributions are positive-de�nite.
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Negative � describe the region below the cut, and the amplitude hAA1 can be
computed { and it actually was [8, 10, 11] { as an expansion in �QCD=mc;b. For our
purposes it is su�cient to limit ourselves to the corrections of �rst and second order
in �QCD. This is exactly the approximation adopted in [8, 10, 11], and expressions
obtained there will be used below.

At the next stage we assume �QCD � j�j � mb;c. The amplitude hAA1 is expanded
in powers of �QCD=� and �=mb;c. Polynomials in � can be discarded since they have
no imaginary part. We are interested only in negative powers of �. The coe�cients
in front of 1=�n are related, through dispersion relations, to the integrals over the
imaginary part of hAA1 with weight functions proportional to the excitation energy
to the power n � 1. Thus, the �rst sum rule considered in Ref. [2] corresponds to
n = 1; the second sum rule (sometimes called optical or Voloshin's sum rule [12],
see also [13, 14]) corresponds to n = 2. The lower bound on �2� { our main aim in
this work { stems from the third sum rule, i.e. we need to analyse the coe�cient in
front of 1=�3 in the expansion of h1.

The 1=� expansion can be read o� from Eq. (A.1) in Ref. [8]. One technical
element of the derivation deserves a comment. The theoretical expression for the
amplitude hAA1 presented in [8] contains only the quark masses without any reference
to the meson masses. It is then convenient to expand hAA1 �rst in an auxiliary
quantity,

�q = mb �Ec � q0; Ec = mc +
~q2

2mc

: (8)

Then, if necessary, we reexpress the expansion obtained in this way in terms of �.
The di�erence between �q and � is O(�QCD � ~q

2=m2
b;c) and O(�

2
QCD=mb;c). It will be

seen shortly that for our purposes this di�erence can simply be ignored in the third
sum rule in the SV limit. It cannot be discarded, however, in the second sum rule.
(The situation is quite di�erent from what took place in the sum rules at zero recoil,
see [1]: there the di�erence between � and �q is absolutely essential for the n � 2
sum rules.)

The expression for hAA1 in Eq. (A.1) in [8] has the form

�hAA1 = [(mb+mc�q0)+O(�
2
QCD=mb)]

1

z
+O(�2

QCD)
1

z2
+
4

3
(mb+mc�q0)�

2
�~q

2 1

z3
(9)

z = �q(2Ec + �q): (10)

Notice the similarity of the coe�cient in front of 1=z3 and the leading part of the
coe�cient in front of 1=z. This is not accidental. The terms 1=z3 appear only in
the expansion of the denominator (mbv � q)2 � 2q� to second order in �q (see Ref.
[8]) and, therefore, preserve the same universal factorization pointed out above in
the HQET limit.

Expanding in �q=2Ec we observe that 1=zn reduces to 1=�nq , plus lower powers of
1=�q, plus a polynomial in �q. Next one eliminates �q in favour of �. The term 1=z3

comes with a coe�cient �2� � ~q
2; hence the di�erence between 1=� and 1=�q is here of
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higher order and can be neglected. Likewise, to O(�2
QCD) one can replace 1=�q by

1=� in 1=z2. As far as 1=z is concerned, we must reexpress 1=�q in terms of 1=�,

1

�q
=

1

�
+
(�� �q)

�2
+ ::: (11)

The next terms in Eq. (11) are irrelevant since they lead to corrections of higher
order in �QCD and/or j~qj. This observation is crucial, since it tells us that the 1=z
part contributes only to the �rst and the second sum rules; it generates no 1=�3

terms. As a result hAA1 has the form

�hAA1 =
1

�

 
1 �

~q2

4m2
c

+O(�2
QCD=m

2
c)

!
+

1

�2

�
O(�2

QCD=mc) +O(�QCD~q
2=m2

c)
�
+

1

�3
�2�
3

~q2

m2
c

+ polynomial ; (12)

where only the terms O(~q2) are kept. We do not discuss perturbative corrections
either. Writing out the dispersion relation in �,

�hAA1 (�; ~q2) =
1

2�

Z
d~�

wAA
1 (~�; ~q2)

�� ~�
=

1

�
�
1

2�

Z
d~�wAA

1 (~�; ~q2)+
1

�2
�
1

2�

Z
d~� ~�wAA

1 (~�; ~q2)+
1

�3
�
1

2�

Z
d~� ~�2wAA

1 (~�; ~q2)+ ::: (13)

and expanding it in 1=� we get the sum rules by equating the coe�cients in front of
1=�n. Here wAA

1 = 2 ImhAA1 .

3. Now we discuss the phenomenological side of the sum rule. The structure
function wAA

1 is non-vanishing for positive �,

wAA
1 (�) =

1X
i=0

jFB!ij
2

2Ei
2��(�� �i); (14)

where the sum runs over all possible �nal hadronic states: the term with i = 0
corresponds to the \elastic" transition B ! D�, while i = 1; 2; : : : represent excited
states with energies Ei = Mi+~q2=(2Mi). Strictly speaking, jFB!ij

2 does not present
the square of a form factor; rather it is the contribution to the given structure
function coming from the multiplet of degenerate states, which includes summation
over spin states as well. In the particular example considered, D is not produced
in the elastic transition, so that in the elastic part one needs to sum only over the
polarization of D�. Therefore, the term \form factor" for FB!i is rather symbolic;
jFB!ij

2 depends on ~q. Moreover, �i in Eq. (14) is the excitation energy (including
the corresponding kinetic energy),

�i = Ei � ED�:
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For the elastic transition �0 vanishes, of course.
The dispersion representation (13) and (12) lead to the following sum rule for

the second moment of wAA
1 (the coe�cient in front of 1=�3, the third sum rule in the

nomenclature of Ref. [1]):

1

2�

Z
d��2wAA

1 (�) =
1X
i=1

jFB!ij
2

2Ei

�2i =
1

3
�2�

~q2

m2
c

: (15)

A few remarks regarding Eq. (15) are in order here. First of all, since �0 = 0,
the elastic contribution drops out on the left-hand side, and the sum actually starts
from the �rst excitation. Secondly, since all �2i are of order �

2
QCD, we need to know

FB!2, FB!3, etc., only to zeroth order in �QCD. To this order all transition form
factors to the excited states are proportional to ~q, i.e.

jFB!ij
2
/ ~q2: (16)

(The transitions to P -wave states are actually relevant, see [15] for further details.)
Moreover, due to Eq. (16) we can neglect the O(~q2) term in �i; thus in Eq. (15):

�i = Mi �MD�:

Thirdly, m�2
c on the right-hand side can be replaced, to the accuracy desired, by

(MD�)�2 or by the mass of any excited state.
After all these simpli�cations the third sum rule takes the form

1X
i=1

jFB!ij
2

2Mi
(Mi �MD�)2 =

1

3
�2�~v

2; ~v =
~q

M
(17)

(it does not matter which particular mass, MD� or Mi, stands in the denominator).
The next steps are rather obvious. The lower bound on �2� is a consequence of

positivity of all individual contributions in the left-hand side of Eq. (17). Indeed,
let us rewrite it as follows:

1

3
�2� = �21 �

1X
i=1

jFB!ij
2

2Mi~v2
+

1X
i=2

jFB!ij
2

2Mi~v2
(�2i � �21): (18)

The second term is evidently positive. The �rst sum can be found, in turn, by using
the Bjorken sum rule [16]. This sum rule relates the sum over the P -wave states in
the brackets to the ~q2 dependence of the \elastic" B ! D� transition (the slope of
the Isgur-Wise function [17]).

4. It is instructive to brie
y reiterate the derivation of the Bjorken sum rule,
which, as explained above, is needed only to zeroth order in �QCD. Equating the
coe�cients of 1=� in Eqs. (12) and (13) one immediately �nds

1

2�

Z
d� wAA

1 (�) =
1X
i=0

jFB!ij
2

2Ei
= 1�

~v2

4
: (19)
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The elastic part here can be parameterized in terms of the Isgur-Wise function
�(v1v2) [17, 18]. The B ! D� transition has the form

hD�(v2)jA�jB(v1)i =
q
MBMD� [��(1 + v1v2)� (�v1)v2�] �(v1v2) ;

where v1;2 are the four-velocities. This means that

(2ED�)�1jFB!D�j
2 =

MD�

ED�

�
1 + v1v2

2

�2
j�(v1v2)j

2
� 1� �2~v2 : (20)

Here �2 is the slope parameter [16],

�(v1v2) = 1� �2(v1v2 � 1) + ::: = 1 � �2
~v2

2
+ :::; (21)

where we have used the fact that � at zero recoil is unity [3].
Notice that although we discuss the Bjorken sum rule for the axial current, it can

actually be derived for an arbitrary current ja = �b�ac. To leading order in 1=mb;c

the universal factorization (5) takes place for the structure functions wab = 2Imhab.
Moreover, the sum over any HQET degenerate multiplet of states gives

1

2MB

X
i

hBjjyajH
i
cihH

i
cjjbjBi = CabMHc

1 + v1v2

2
j�Hc

(v1v2)j
2 ; (22)

where �Hc
is the Isgur-Wise function for the Hc multiplet.

At ~v = 0 the sum rule (19) is trivially satis�ed since at zero recoil all inelastic
form factors vanish, and we are left with the elastic contribution, which reduces to
unity. The term linear in ~v2 yields a relation between the slope of � and the inelastic
contributions,

�2 �
1

4
=

1X
i=1

jFB!ij
2

2Mi~v2
: (23)

Let us recall that the ratio jFB!ij
2=~v2 has a �nite limit at zero recoil. Equation (23)

is the Bjorken sum rule proper [16]. Let us add for completeness that in the notation
of Ref. [15], where the P -wave inelastic contributions are written out explicitly, it
takes the form

�2 �
1

4
=

1X
n=1

j�
(n)
1=2(1)j

2 + 2
1X
n=1

j�
(n)
3=2(1)j

2

(for a simple derivation see Ref. [13]). From these expressions it follows, in partic-
ular, that �2 > 1=4.

Combining Eq. (23) with Eq. (18), we �nally arrive at

�2� = 3�21

�
�2 �

1

4

�
+ 3

1X
i=2

jFB!ij
2

2Mi~v2
(�2i � �21) ; �i = Mi �MD� : (24)
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Equation (24) is a direct n = 3 generalization of Voloshin's sum rule written for
n = 2 [12], see also [1],

� = 2�1 h�
2
�

1

4
i+ 2

1X
i=2

jFB!ij
2

2Mi~v2
(�i � �1) : (25)

Since the second term in Eq. (24) is positive we obtain the following, obvious
inequality:

�2� > 3�21 h�
2
�

1

4
i (26)

(we recall that �1 here is the lowest excitation energy, �1 = M1 �MD�).
For a numerical estimate let us take that

�1 � 500MeV (27)

and let us use for �2 the central value of the measured slope [19] of the B ! D�

form factor,
�2 = 0:84 � 0:12 � 0:08: (28)

Then we get
�2� > 0:45 GeV 2: (29)

With the same parameters the lower bound for � from Voloshin's sum rule is

� > 590 MeV : (30)

We will discuss shortly the numerical uncertainty in the lower bounds. Before this
three comments are in order here regarding the sum rules presented above. First, the
very same �nal results are obtained irrespective of what currents we start from, axial
or vector, or a mixture of these two. The only di�erence is that, say, for the vector
currents we would get MD rather than MD� in the de�nition of �1. This di�erence is
unimportant in the limit mb;c !1, of course. This remark brings us to the second
point. In Eq. (26) all subleading 1=mb;c terms have been omitted; these terms
together with radiative corrections are the main source of the uncertainty in the lower
bound (29). Finally, in the original sum rules the sum runs over all states including
those which represent high-energy excitations described, in the sense of duality, by
perturbative formulae (see Ref. [1] for more details). To get predictions for �2�
and � normalized at a low (quark-mass-independent) scale � one must truncate the
sum over the excited states at �i � � and invoke duality between the perturbative
corrections and the contributions of the excited states above �.

In general, the sum rules at non-zero recoil get �QCD=mb;c corrections, which
depend on the particular choice of the weak current considered and can be size-
able. However, all corrections to the hadronic tensor hab start with terms explicitly
proportional to �2

QCD=m
2
b;c [7, 20, 21], see Eq. (A.1) in Ref. [8]. The question is:

Where do the linear corrections come from? A source of subleading corrections is
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quite obvious: they appear at the stage when one expresses �q in the theoretical
formulae in terms of �; since MB = mb + � + ::: (and the same for the charmed
quark), they contain linear terms. This does not a�ect, of course, the �rst sum rule
(n = 1), and in this case the prediction starts from unity plus corrections at the

level �
2
=m2

b;c [2].

5. We now proceed to a more careful discussion of the numerical uncertainties.
The experimentally measured B ! D�(unpolarized) l� decay rate is expressed in
terms of the Isgur-Wise function in the leading approximation, see Eq. (20). In this
approximation the slope of the Isgur-Wise function is related to the ~q2 dependence
of the B ! D� rate. It is clear that with 1=mb;c and radiative corrections included
the ~q2 dependence of the decay rate does not exactly coincide any more with the
slope of the Isgur-Wise function. The corrections were estimated in the literature
(see the review paper [22]). These estimates are consistent with the preliminary
result of recent CLEO measurement [23]

�2ff = 1:01 � 0:15� 0:09; (31)

where form factors were extracted without use of heavy quark symmetry relations.
The di�erence between the values of �2 in Eqs. (28), (31) is attributed to radia-

tive and power corrections. We will use this di�erence to estimate possible correc-
tions to the bounds (29, 30) as 20%.

Similar e�ects due to the �nite mass of the c quark enter our lower bound im-
plicitly, when we use the observed mass values of the excited charmed mesons. In
the future these pre-asymptotic corrections can be isolated in a model-independent
way once the masses of the beauty counterparts are measured. The most sizeable
corrections are expected from the chromomagnetic interaction of the heavy quark
spin inducing hyper�ne splitting among the members of the heavy spin multiplets.
In particular, MD� �MD � 140 MeV. This e�ect is presumably accounted for by
substituting the spin averaged masses for the ground S-wave states and for the P -
wave excitations, rather than the actual masses of D, D�, etc. We actually did this
spin averaging. Another shift arises from the heavy quark kinetic energy term in the
hadron mass. It is natural to expect its value to be smaller in the excited mesons
than for the ground state. Therefore, the static limit of �1 is expected to be some-
what larger than the value of �1 experimentally observed for the actual charmed
particles, but probably by not more than 50 MeV. We then use the value of �1 given
by Eq. (27) as a very reasonable educated guess.

The lower bounds (29), (30) are seen to lie not very far from the estimates
obtained earlier within QCD sum rules [24]

�2� � 0:55 GeV 2 ; � � 450 MeV : (32)

Note that the lower bound on �2� in Eq. (29) is numerically close to the bound (1)
derived recently in [4, 5].
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Unfortunately, numerical uncertainties in all the above numbers prevent us from
making a conclusive statement. Nevertheless, let us assume for a moment that future
re�ned measurements and calculations of the subleading corrections in the third sum
rule will con�rm these values and establish the fact that the two inequalities in Eqs.
(29), (30) are rather close to saturation. This would mean that the sum rules are
actually saturated { to a reasonable degree of accuracy { by the contributions from
the states with masses around MD + �1 generically called D�� in this context. To
account for non-perturbative e�ects in b ! c decays, one would then need only to
consider one inelastic channel, \D��". The higher excited states will be represented
(in the sense of duality) by purely perturbative probabilities calculated in the free
quark-gluon approximation. We actually consider such a situation as a most natural
scenario in QCD. It is worth noting that the D� contribution to the third sum rule
is suppressed for soft pions, unlike the �rst sum rule where it was quite substantial
[2]. The e�ect of the \hard" pion emission is well represented by some of the P -wave
D�� resonances.

6. We have derived the third sum rule for the b ! c transition in the SV limit
and showed how one can use it to constrain the kinetic energy parameter �2� by using
the data on B ! D�. In principle it is quite conceivable that the full di�erential
distribution in q0 and ~q2 in the inclusive semileptonic B decays will be measured in
the future. This measurement can then be immediately translated in the value of �2�,
one of the most important parameters of the heavy quark physics. The more one will
learn about the decays to the excited states, the more accurate the determination
of �2� will become.
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