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ABSTRACT

The Hamiltonians of SU(2) and SU(3) gauge theories in 3+1 dimensions can be expressed
in terms of gauge invariant spatial geometric variables, i.e., metrics, connections and curvature
tensors which are simple local functions of the non-Abelian electric field. The transformed
Hamiltonians are local. New results from the same procedure applied to the SU(2) gauge
theory in 2+1 dimensions are also given.
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We outline a formalism which contains a rather new approach to non-perturbative dynam-
ics of the gluon sector of QCD. What is achieved is a formally exact transformation of the
Hamiltonian on the physical subspace of states obeying the Gauss law constraint. The new
Hamiltonian is local and is expressed in terms of gauge invariant spatial geometric variables, i.e.,
a dynamical metric Gij(x) which is a simple function of the non-Abelian electric field Eai(x) and
the Christoffel connection Γi

jk and curvature-tensor Ri
jkℓ computed from Gij by the standard

formulas of Riemannian geometry. For gauge group SU(2) the underlying geometry is purely
Riemannian, and the six gauge-invariant variables contained in Gij are essentially all that are
required. For gauge group SU(3) there is a more complicated metric-preserving geometry with
torsion, and the torsion tensors are expressed in terms of a set of 16 gauge-invariant variables.
The Hamiltonian we find is admittedly complicated and has some strange features. But it also
has some physical features, and I am moderately optimistic that physical and geometric insight
can be combined so that results of physical interest can be drawn from the formalism.

We start with an observation about the basic equations of canonical Hamiltonian dynamics
in Aa

0 = 0 gauge with conjugate variables Aa
i (x), the non-Abelian vector potential, and Eai(x).

The equal-time commutation relations, the Gauss law constraint, the non-Abelian magnetic
field, and the Hamiltonian are

[Aa
i (x), E

bj(x′)] = iδabδj
i δ

(3)(x− x′) (1)

Ga(x)ψ =
1

g
(∂iE

ai + gfabcAb
iE

ci)ψ = 0 (2)

Bai(x) = ǫijk[∂jA
a
k +

1

2
gfabcAb

jA
c
k] (3)

H =
1

2

∫

d3xδij [E
aiEaj +BaiBaj ] (4)

We observe that (1)-(3) are covariant under spatial diffeomorphisms of the initial value manifold
R

3, that is coordinate transformation xi → yα(xi), i, α = 1, 2, 3, with the transformation rules

Aa
i (x) → Aa

α(y) =
∂xi

∂yα
Aa

i (x)

covariant vector

Eai(x) → Eaα(y) =

∣

∣

∣

∣

∣

∂x

∂y

∣

∣

∣

∣

∣

∂yα

∂xi
Eai(x)

contravariant vector density (5)

These rules are quite natural, since Aa = Aa
i dx is a one-form, and Eai is usually realized

as Eai(x) = −iδ/δAa
i (x). The magnetic field is also a contravariant vector density. The

Hamiltonian (4) is not invariant under the diffeomorphisms (5) because the Cartesian metric δij
appears. Nevertheless, we shall be guided in our work by the idea of preserving the diffeomorphic
covariance of the canonical formalism.
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We now summarize the recent preprint [1] in which these ideas are implemented in the
electric field representation [2-4] of non-Abelian gauge theories, with state functionals ψ[Eai]
and the potential Aa

i = iδ/δEai. The constraint (2) can be expressed as

Ga(x)ψ =

(

1

g
∂iE

ai − ifabcEbiδ/δEci

)

ψ (6)

The second term, which we call Ḡa(x), is a local group rotation operator. If the constraint
were simply Ḡa(x)ψ[E] = 0, then we could easily find a broad class of states which satisfy it,
namely wave functionals which depend on the local invariants formed from Eai. For example,
the second rank tensor density ϕij = EaiEaj is gauge invariant for any group, and for SU(2) its
six components constitute an essentially complete set of local invariants. For SU(3) one must
add the ten components of the third rank tensor density ϕijk = dabcEacEbjEck.

The first key step in our work is to perform a unitary transformation [2] to eliminate the
unwanted term in (6). We write

ψ[E] = exp(iΩ[E]/g)F [E] (7)

and try to find a phase Ω[E] such that

Ga(x) exp(iΩ[E]/g)F [E] = exp(iΩ[E]/g)Ḡa(x)F [E] (8)

This leads to the two requirements on Ω[E]

1. its gauge variation is

δΩ[E] =
∫

d3xθa(x)∂iE
ai(x) ,

2. it is invariant under diffeomorphisms.

For gauge group SU(2), these requirements are satisfied by

Ω[E] =
1

2

∫

d3xǫabcEaiEbj∂iE
c
j (9)

where Ec
j is the matrix inverse of Eai. For a general group there is a local expression of similar

structure, but Ec
j is replaced by a quantity Rc

j = (M−1)c d
j kE

dk where M cj dk is 3 dim G× 3 dim
G direct product matrix which is a quadratic function of Eai.

Unitary transformation of the operators of the theory gives

Ēai ≡ exp(iΩ[E]/g)Eai exp(−iΩ[E]/g) = Eai (10)

Āa
i ≡ exp(iΩ[E]/g)Aa

i exp(−iΩ(E)/g)

≡ i
δ

δEai
+

1

g
ωa

i (x) (11)
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ωa
i (x) ≡ − δΩ

δEa(x)
(12)

The second key step in our approach is to realize that, as an immediate consequence of 1.
and 2. above, ωa

i (x) transforms as a covariant vector under diffeomorphisms and as a gauge
connection. So ωa

i (x) is a composite gauge connection constructed as a local function of Ebj(x)
and ∂iE

bj(x). It is ωa
i (x) which contains the geometric information in our approach, which we

now explore for the case of gauge group SU(2).

If we introduce the quantity ea
i (x) related to Eai by

Eai =
1

2
ǫijkǫabceb

je
c
k (13)

then ωa
i = 1/2ǫabcωbc

i is exactly the dual of the Riemannian spin connection on a three-manifold
with frame (dreibein) ea

i . This has the important implication that a Riemannian spatial ge-
ometry underlies SU(2) gauge theory. It was probably guaranteed that the approach would
generate some geometry, but this could have been more complicated than Riemannian, per-
haps with torsion or even non-metricity. The electric field is a geometric quantity, a densitized
inverse dreibein, and it satisfies a condition of covariant constancy

∇iE
ak ≡ ∂iE

ak + Γ′k
ij + ǫabcωb

iE
ck ≡ 0 (14)

where

Γ′k
ij = −1

2
δk
j ∂i ln detGΓk

i (G)

Gij = (detϕ)1/2(ϕ−1)ij (15)

is the standard Christoffel connection plus a ∂i ln detG term necessary because Eak is a density.

The geometrization of gauge theory means that any locally gauge invariant quantity can
be expressed in terms of ϕij or Gij (it is matter of convenience which of these tensor variables
is used). Let us show how this is done for the unitary transformed “expectation value” of the
Hamiltonian

“ < F |H|F > ” =
1

2

∫

d3xδij
[

ĒaiĒajF ∗F + (B̄aiF )∗(B̄ajF )
]

(16)

The electric energy density simply involves the Cartesian trace of ϕij. To work out the magnetic
terms substitute (11) in the unitary transform of (3). On a general wave functional F [E] one
obtains

B̄ai(x)F [E] =
(

1

g
B̂ai + iǫijkD̂j

δ

δEak
− 1

2
gǫijkfabc δ

δEbj

δ

δEck

)

F [E] (17)

where D̂j is a gauge covariant derivative with composite connection ωb
j and B̂ai is the magnetic

field of ω.

We now impose the Gauss law constraint by letting F → F [ϕij ]. Using the chain rule to
convert δ/δE to δ/δϕ, the previous expression becomes

B̄ai(x)F [ϕ] = 2{1

g
Eap(Ri

p −
1

2
δi
pR) + iǫijkEap∇j

δ

δϕkp
− gǫijkǫpqrEa

r detE
δ

δϕjq

δ

δϕkr
}F [ϕ] (18)
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Note that through the chain rule and (14), the connection terms necessary to make
∇jδ/ δϕ

kpF [ϕ] a spatial covariant derivative automatically appear, and that B̂ai can be ex-
pressed as the electric field contracted with the Einstein tensor of the spatial geometry. One may
now see that all gauge indices in (18) cancel in the Hamiltonian (16) because of EapEaq = ϕpq,
etc., so the Hamiltonian can be expected entirely in terms of gauge invariant geometric variables!
(Actually, we have oversimplified the present discussion beginning in (13), where we effectively
assumed that detE(x) is non-negative. Incorporation of both signs of detE(x) causes some
complication for which we refer readers to [1]. We have also dropped certain operator ordering
δ(0) terms which are treated in [1].)

The Hamiltonian has several unusual features, which also appear in the non-geometric
treatments of [2-3].

1) Non-perturbative 1/g2 and 1/g terms appear as a consequence of the unitary transfor-
mation used to simplify Gauss’ law. It is then far from clear how to do perturbative
calculations to check the short-distance properties of the transformed theory. But these
terms may be a virtue, since they are a consequence of the exact treatment of the non-
Abelian gauge invariance.

2) The Hamiltonian is non-polynomial in ϕij or Gij. It contains imaginary terms and terms
up to fourth order in functional derivatives.

3) There are singularities in H when detE =
√

detϕ = 0, which can be traced back to the
fact that the SU(2) phase (9) requires the inverse matrix. We take the view that these
singularities are the gauge theory analogue of the angular momentum barrier in central
force quantum mechanics. Our recent work suggests that this energy barrier operates in
the following way. For a configuration ϕij(x) for which detϕ vanishes on a two-surface,
the energy density contains singular factors such that

∫

d3x in (16) diverges unless F [ϕij]
itself vanishes. Since the singularities are one way in which the gauge theory Hamiltonian
in gauge-invariant variables differs from that of ϕ4 theory, one may speculate that the
singularities are a clue to the special dynamical features of gauge theories at low energy.
It is this that we are now studying.

Finally we state that the spatial geometry of the SU(3) theory was also discussed in [1].
Although results are not as explicit as for SU(2), one can see that the spatial geometry of
SU(3) is more complicated. There is a covariantly constant dynamical metric, but there is
torsion of both conventional and novel type.

Very recently, Bauer and Freedman have applied the same geometrical ideas to SU(2) gauge
theory in 2+1 dimensions. The gauge coupling g carries dimension, [g2] = 1, and is therefore
“pulled out” in front of the Lagrangian. The potential Aa

i (x) and electric field Eaj(x) both
have dimension one. The magnetic field is a scalar density

Ba(x) = ǫij [∂iA
a
j +

1

2
ǫabcAb

iA
c
j ] , (19)
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and g disappears from the Gauss constraint (2), but appears in the energy density of (4) which
becomes [g2E2 + g−2B2]. The gauge invariant tensor density ϕij = EaiEaj and the dynamical
metric tensor are simply related by ϕij = ǫikǫjℓGkℓ and have dimension two.

The coupling g also disappears from the unitary transformation (7), and we find that the
phase Ω[E] which satisfies the requirements 1. and 2. is

Ω[E] =
∫

d2xǫabcEaiEbj(ϕ−1)jk∂iE
ck (20)

Physical states obeying the transformed gauge constraint can be taken as functionals F [Gij] of
configurations of positive semi-definite symmetric tensors Gij(x) on the plane.

We need a basis of vectors for the adjoint representation of SU(2) to obtain information on
the spatial geometry from the composite connection ωa

i which is the variational derivative (12)
of (20). We use the basis ea1, ea2 and ea defined by

eai(x) ≡ 1√
G
Eai i = 1, 2

ǫabcebiecj ≡ ǫij√
G
ea (21)

The gauge covariant derivative D̂ie
ak can be expanded in the basis as

D̂ie
ak ≡ −Γk

ije
aj − T k

i e
a (22)

This expression is the analogue of (14).

Even without the specific form of ωa
i , one can show from (22) that Γk

ij transforms under
diffeomorphisms of the plane as a connection which is metric compatible, while T k

i is a tensor.
At this stage, Γk

ij could have an anti-symmetric part, a possible torsion tensor. However, when
the specific form of ωa

i is inserted in (22), one finds after detailed calculation that T k
i vanishes

and that Γk
ij is the symmetric Christoffel connection. This is the first simplification of the 2

+ 1 dimensional case – the underlying geometry is two-dimensional Riemannian, although the
Lie algebra is three-dimensional and the general expansion (22) suggests torsion. (A frame and
expansion analogous to (21)-(22) occur in the case of SU(3) in 3 + 1 dimensions, and torsions
do not vanish.)

The final step is to work out the transformed Hamiltonian. Here there is another simplifi-
cation: due to the (partial) orthogonality of the frame (21), terms with an explicit imaginary
i cancel, and expectation values can be written as the sum of three real positive terms,
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〈F |H|F 〉 =
1

2

∫

d2x
∫

[dGij]
{

g2δijGijF
∗F

+
4Gkℓ

g2
(∇i

δF ∗

δGik
) (∇j

δF

δGjℓ
)

+
detG

g2

∣

∣

∣

∣

1

2
RF + 2ǫ̂ik ǫ̂jℓ

δ2F

δGijδGkℓ

∣

∣

∣

∣

2
}

(23)

where ∇j(δF/δGjℓ) is the Riemannian covariant derivative, R is the scalar curvature, and
ǫ̂ik = (±1, 0). The functional measure is simply

[dGij] =
∏

x

∏

i≤j

dGij(x) (24)

The Hamiltonian (23) is considerably simpler than the three-dimensional case (16). Yet it has
the same qualitative features, so it should be useful for pilot studies of gauge field dynamics.
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