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Abstract

Motivated by the experimental accessibility of rare B decays in the ongo-
ing and planned experiments, we propose to undertake a model-independent
analysis of the inclusive decay rates and distributions in the processes
B → Xsγ and B → Xs ℓ

+ℓ− (B = B± or B0
d). We show how measure-

ments of the decay rates and distributions in these processes would allow
us to extract the magnitude and sign of the dominant Wilson coefficients of
the magnetic moment operator mbs̄LσµνbRF

µν and the four-fermion opera-
tors (s̄LγµbL)(ℓ̄γµℓ) and (s̄LγµbL)(ℓ̄γµγ5ℓ). Non-standard-model effects could
thus manifest themselves at low energy in rare B decays through the Wil-
son coefficient having values distinctly different from their standard-model
counterparts. We illustrate this possibility using the examples of the two-
doublet Higgs models and the minimal supersymmetric models. The dilepton
invariant mass spectrum and the forward-backward asymmetry of ℓ+ in the
centre-of-mass system of the dilepton pair in the decay B → Xs ℓ

+ℓ− are
also worked out for the standard model and some representative solutions
for the other two models.
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1 Introduction

The measurement of the decay mode B → K∗γ by the CLEO collaboration
[1], having a branching ratio B(B → K∗γ) = (4.5 ± 1.0 ± 0.9) × 10−5, has
put the physics of the electromagnetic penguins on an experimental foot-
ing.This measurement and the experimental upper bound on the inclusive
decay B(B → Xsγ) < 5.4 × 10−4 at 90% C.L. [2] have been analysed in
the context of the standard model (SM) [3] and in extensions of it such as
the two-Higgs-doublet models (2HDM) [4, 5, 6], the minimal supersymmet-
ric models (MSSM) [7, 8, 9], and a number of other more exotic variations
[10, 11]. Very recently, the CLEO collaboration has published a first mea-
surement of the inclusive decay rate, based on the measurement of the photon
energy spectrum in the decay B → Xsγ [12]. The branching ratio

B(B → Xsγ) = (2.32 ± 0.51 ± 0.32 ± 0.20) × 10−4 (1)

puts more restrictive bounds on the non-SM parameters. In the SM context,
the short-distance contributions in these transitions are dominated by the top
quark and hence they provide valuable information about its mass and the
Cabibbo-Kobayashi-Maskawa (CKM) weak mixing matrix elements VtsVtb
[13]. Specifically, the recent CLEO measurement of B(B → Xsγ) yields at
present the following bounds [3]:

0.62 ≤
∣∣∣∣
Vts
Vcb

∣∣∣∣ ≤ 1.1 . (2)

Alternatively, the ratio Vts/Vcb can be determined from unitarity and one
may use |Vts|/|Vcb| ≃ 1 to obtain from the CLEO measurements bounds on
the Wilson coefficient C7(mb) of the effective magnetic moment operator.
Using B(B → Xsγ) = (2.32±0.67)×10−4, obtained by adding the statistical
and the systematic errors in quadrature, one obtains

0.22 ≤ |C7(mb)| ≤ 0.30. (3)

This bound is subject to the residual next-to-leading order corrections. The
inclusive branching ratio B(B → Xsγ) = (2.32 ± 0.67) × 10−4 is consistent
with the exclusive branching ratio B(B → K∗ +γ) = (4.5±1.0±0.9)×10−5,
with R(K∗/Xs) ≡ Γ(B → K∗ + γ)/Γ(B → Xs + γ) calculated to be 0.1 ≤
R(K∗/Xs) ≤ 0.2 in most theoretical models of recent vintage [3], [14]-[21].
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The bound on |C7(mb)| given in (3) can be used to constrain the non-SM
contribution to the decay rate B(B → Xsγ). The inclusive branching ratio
in the SM, including the leading corrections in the anomalous dimension ma-
trix and O(αs) virtual and bremstrahlung corrections, has been estimated
to be B(B → Xsγ)= (2.8 ± 1.0) × 10−4 [3]. With mt = 174 ± 16 GeV de-
termined from the CDF data [22], a good part of the uncertainty in the
theoretical estimates of B(B → Xsγ) is due to the scale dependence of
the perturbative QCD framework and the QCD scale parameter entering
αs itself. Recently, parts of the next-to-leading-order corrections have been
included in the anomalous dimension matrix and the resulting decay rate
Γ(B → Xs + γ) has been recalculated [21]. The inclusion of these terms
reduces the scale-dependence of the effective coefficient C7(µ) as the scale µ
is varied in the range mb/2 ≤ µ ≤ 2mb. The partial next-to-leading-order,
however, not unexpectedly shows a regularization scheme-dependence and
its value is also somewhat diminished compared to the leading-log estimates.
This reduces the branching ratio, and the (partial) next-to-leading-order es-
timates give B(B → Xsγ)= (1.9 ± 0.2 ± 0.5) × 10−4 [21]. The complete
next-to-leading-order result is not yet available and hence the estimates of
the SM for B(B → Xsγ) are not completely quantitative, although the in-
clusive rate (1) and the SM estimates [3, 21] are in good agreement. The
sensitivity to new physics in B → Xsγ is therefore somewhat entangled with
the QCD corrections. Despite this, the CLEO data on rare B decays have
provided valuable constraints on the parameters of models that are popular
candidates for the extensions of the SM, and in some cases these constraints
are very competitive compared to the ones following from direct and indirect
searches [12].

The determination of |C7(mb)| from the inclusive branching ratio B(B →
Xsγ) is a prototype of the kind of analysis that we would like to propose here
to be carried out for the rare B decays in general and for the semileptonic
decays B → Xs ℓ

+ℓ−, in particular. In the standard model, a measurement
of the radiative rare B decay B → Xsγ mentioned above and related ones,
such as B → Xs ℓ

+ℓ−, B → Xd ℓ
+ℓ−, the corresponding exclusive decays

B → (K,K∗, π, ρ, ...)ℓ+ℓ−, would lead to a determination of mt and the
CKM matrix element product VtsVtb and VtdVtb. The purely leptonic decays
B0
s → ℓ+ℓ− and B0

d → ℓ+ℓ− and the modes B0
s → γγ, B0

d → γγ, while hav-
ing very different final states and branching ratios – and hence representing
experimentally very different propositions – have more or less the same infor-
mation content in the SM as the decays mentioned above (see, for example,
[23] and references cited therein).

The aim of this paper is to undertake first steps towards a model-independent
analysis of the FCNC electroweak rare B decays. Although the method of
analysing the data and the relevant theoretical framework being presented
here are developed for the inclusive decays B → Xsγ and B → Xs + ℓ+ℓ−,
much of the general considerations being discussed apply also to the corre-
sponding exclusive decays such as B → K∗γ, B → K∗ ℓ+ℓ− and B →



Kℓ+ℓ−. Of course, the extraction of the short-distance physics in terms of
the Wilson coefficients of the dominant operators from the data on exclu-
sive decays would require the knowledge of the relevant form factors. This
may compromise the precision on the short-distance part of the amplitudes
in question at present, though advances in computational methods for QCD
may allow quantitative conclusions to be drawn from exclusive decays also.

Our analysis is based on the renormalization group (RG)-improved treat-
ment of the effective Hamiltonian relevant for B decays under consideration,
obtained by integrating out the top quark and the other heavy degrees of
freedom. The resulting Hamiltonian in the SM can be written as:

Heff (b→ sX) = −4GF√
2
λt

10∑

i=1

Ci(µ)Oi(µ) . (4)

Here X stands for qq̄, γ, gluon and ℓ+ℓ− and λt = V ∗

tsVtb; the operator basis
contains dimension-5 and -6 operators and is given in the appendix.

The problem of carrying out a model-independent analysis in FCNC pro-
cesses is evident from the SM expression for Heff given above. In the most
general case, which would also include Left-Right-symmetric (LR) models,
the operator basis consists of 20 operators, having 20 independent coeffi-
cients Ci. However, as argued later, we shall limit the present analysis to
left-handed fields only, in which case there are still 10 operators to be consid-
ered. The effective Hamiltonian then still involves 10 independent coefficients
Ci and determining them experimentally is a monumental task. It is obvious
that some theoretical assumptions have to be used to focus the attention
on the more interesting Wilson coefficients. In our opinion, the promising
coefficients from the stand-point of non-SM physics searches are the ones in
which the electroweak loop effects (penguins and boxes in the diagrammatic
language) play the dominant role.

The analysis carried out here is restricted to the models in which the effec-
tive Hamiltonian is of the form given in (4). We show later how measurements
can be analysed to determine the inadequacy of this operator basis, should
that happen. Although by no means completely general, the operator basis
contained in Heff encompasses most models of current theoretical interest,
which include, apart from the SM, the 2HDM (both types I and II) and the
MSSM. The effective Hamiltonian in the four-generation models, as well as
in models with anomalous trilinear gauge and fermion couplings, can also be
written in the above form.

The coefficients Ci(MW ), i = 1, . . . , 6, determine the non-leptonic B-
decay rates and the B-hadron lifetimes. Since data on B decays and the
results obtained in the SM from (4), including QCD effects, are in good
agreement with each other (±20%), there is not much room left for the first
six coeffficients involving the four-quark operators to deviate from their SM
values. So we fix Ci(MW ), i = 1, . . . , 6, to their SM values. Beyond the
leading-log approximation, these receive corrections of order αs(MW ) at the
large scale µ = MW ; they should be incorporated in theoretical estimates



consistently with other higher-order effects. The coefficients of our interest
are C7(µ), ..., C10(µ), since they are generated at scale µ = MW by elec-
troweak loops (penguins and boxes). They govern the physics of the rare B
decays b → s + g, B → Xsγ, B → Xs ℓ

+ℓ− and B0
s → ℓ+ℓ−. We shall con-

centrate on them and show how to extract these coefficients (both their signs
and magnitudes) from data on radiative and (semi)leptonic rare B decays.
These can be compared with the SM and extensions of it to search for new
physics.

The experimental quantities we consider in this paper are the following:

• Inclusive radiative rare decay branching ratio B(B → Xsγ);

• Invariant dilepton mass distributions dB(B → Xs ℓ
+ℓ−)/dŝ;

• Forward-backward (FB) charge asymmetry A(ŝ) in B → Xs ℓ
+ℓ−.

The kinematic variables are defined as:

u = (pb − p1)
2 − (pb − p2)

2,

s = (p1 + p2)
2,

ŝ =
s

m2
b

,

w(s) =
√

(s− (mb +ms)2)(s− (mb −ms)2). (5)

where pb, p1 and p2 denote, respectively, the momenta of the b quark (= B
hadron), ℓ+ and ℓ−. The FB asymmetry A(ŝ) is defined with respect to
the angular variable z ≡ cos θ = u/w(s), where θ is the angle of the ℓ+

with respect to the b-quark direction in the centre-of-mass system of the
dilepton pair. It is obtained by integrating the doubly differential distribution
d2B/(dz dŝ) [24]:

A(ŝ) ≡
1∫

0

dz
d2B
dz dŝ

(B → Xsℓ
+ℓ−) −

0∫

−1

dz
d2B
dz dŝ

(B → Xsℓ
+ℓ−). (6)

The rationale for concentrating on these measurements is the following.
We remark that the decay rate B(B → Xsγ) puts a bound on the absolute
value of the coefficient C7(µ). However, the radiative B decay rate by itself
is not able to distinguish between the solutions C7(µ) > 0 (holding in the
SM) and the solutions C7(µ) < 0, which, for example, are also allowed in the
MSSM as one scans over the allowed parameter space. We recall that the
invariant dilepton mass distribution and the forward-backward asymmetry
in B → Xs ℓ

+ℓ− are sensitive to the sign and magnitude of C7(µ) [24, 25, 26].
This is easy to see in the approximation of neglecting the s-quark mass, in
which limit the differential branching fraction for B → Xsγ can be written
as:

dB(B → Xs ℓ
+ℓ−)

dŝ
= K(1 − ŝ)2{(|Ceff

9 (µ)|2 + |C10(µ)|2)(1 + 2ŝ)

+|C7(µ)|24

ŝ
(2 + ŝ) + 12 Re (C7(µ)Ceff

9 (µ))}, (7)



where K is a constant and Ceff
9 (µ) is defined as

Ceff
9 (µ) = C9(µ) + Y (µ, ŝ) , (8)

where Y (µ, ŝ) is a function involving the coefficients Ci(µ); i = 1, . . . , 6, and
it depends on the kinematic variable ŝ through the one-loop matrix element
of the four-quark operators. Long-distance effects would also be contained
in Y (µ, ŝ); however, we shall not consider these here.

Consistent with our assumptions, we shall take the function Y (µ) from
the SM and admit non-SM contributions only in C7(µ), C8(µ). C9(µ), and
C10. From the above expression it is obvious that the dilepton invariant-mass
distribution is sensitive to the real part of the product C7(µ)Ceff

9 (µ) in sign
and magnitude. However, this distribution by itself cannot determine the
sign of Ceff

9 and C10. As the FB asymmetry and the dilepton rate are in
general independent quantities, they provide independent constraints on the
Wilson coefficients, and we argue that the FB asymmetry A(ŝ) can be used
to resolve these ambiguities. In the limit ms = 0, the FB asymmetry has a
simple form also:

A(ŝ) = −3

2
K(1 − ŝ)2C10(µ){Ceff

9 (µ)ŝ+ 4C7(µ)}. (9)

The ŝ-dependence in A(ŝ) now allows us to disentangle the dependence on
C7(µ) and Ceff

9 (µ). Moreover, the FB asymmetry A(ŝ) is directly propor-
tional to the coefficient C10(µ) and hence the asymmetry is very effective in
constraining C10(µ).

The first measurements will be done for partially integrated dilepton mass
distribution and asymmetry. We discuss how to extract the Wilson coeffi-
cients from these measurements. A given integrated branching ratio B(∆s)
over a given range in s, ∆s, and a given value of C7(µ) can be analysed in
terms of the contour plots drawn in the Wilson-coefficients plane C9(µ) and
C10(µ). It is obvious from the quadratic equation (7) that, for a given C7(µ),
there is at most a four-fold ambiguity in the signs of C9(µ) and C10(µ). In
addition one may make use of the integrated FB asymmetry A(∆s). For
a fixed value of A(∆s) one finds hyperbolae in the C9-C10 plane, for given
sign and magnitude of C7(µ). The intersection of the contours obtained from
B(B → Xs ℓ

+ℓ−; ∆s) and A(∆s) then determines the signs and magni-
tudes of all three Wilson coefficients C7(µ), C9(µ) and C10(µ). We plot, in
the C9(µ)-C10(µ) plane, the contours that are allowed from the solutions of
the two algebraic equations for B(∆s) and A(∆s) for the two values of C7,
C7 = ±0.3, and two invariant-mass intervals below the J/ψ and above the ψ′

mass (see figs. 1-4), pointing out the SM solution and the general solutions in
non-SM cases. It is, however, conceivable that there is no consistent solution
of the two algebraic equations for B(∆s) and A(∆s) in B → Xsℓ

+ℓ− and
the branching ratio B → Xsγ in terms of the coefficients C7(µ), C9(µ) and
C10(µ), which would then indicate that the operator basis chosen in describ-
ing the Heff given above is incomplete. The LR-symmetric models, which



we have dropped from our discussion, is a case in point. Of course, given
enough statistics the two distributions could be used to determine the coeffi-
cients from the data fits and compared with the values in the various models
directly. We illustrate these analysis techniques for some assumed values of
the branching ratios and asymmetry and representative values in the allowed
parameter space in various models in terms of both the contour plots in the
Wilson coefficient space and the distributions themselves.

This paper is organized as follows. In section 2, we briefly review the
kinematics of the decays B → Xsγ and B → Xs ℓ

+ℓ−, define the amplitudes
and the various distributions of interest. In section 3, we perform a numerical
study of the differential and integrated branching ratio in B → Xs ℓ

+ℓ−. To
illustrate the method, we have taken a representative value for the effective
Wilson coefficient, C7(mb) = ±0.3, which lies within the presently allowed
range for this quantity from data on B → Xsγ. We give the partially in-
tegrated branching ratio B(∆s) and the asymmetry A(∆s), making the de-
pendence on the coefficients C9 and C10 explicit. The resulting constraints
on these coefficients from the “low-dilepton mass” and “high-dilepton mass”
regions are then displayed as contour plots in the C9-C10 plane for some
illustrative values of the branching ratios and FB asymmetries. The invari-
ant dilepton mass spectrum in B → Xs ℓ

+ℓ− and the FB asymmetry are
also shown here for some representative values of the Wilson coefficients. In
section 4 we discuss the predictions of specific models, namely the 2HDM
(type I and type II) and the MSSM. These models allow a calculation of the
coefficients C7(µ), C9(µ) and C10(µ) as a function of the model parameters.
For the case of the 2HDM we show C7(µ), C9(µ) and C10(µ) as a function of
the charged Higgs mass mH+ for representative values of the ratio of the two
vacuum expectation values v2/v1. As already noted [25], the type-I 2HDMs
admit negative C7(µ) solutions, as opposed to the positive C7(µ) solution
obtained in the SM. However, for the type-I models the negative C7(µ) solu-
tions are excluded by present data, as will be shown in section 4. To analyse
the MSSM we vary the parameters of the model over the experimentally al-
lowed values, and the resulting region in the C9(µ)–C10(µ) plane is shown.
In doing this, we have imposed the constraints on the coefficient C7(µ) as
explained earlier. The restrictions on the supersymmetric (SUSY) particle
masses from present searches and the anticipated reach of experiments at
the Tevatron and LEP-II are also imposed. The most interesting part of
this exercise is that these constraints do allow both the negative and positive
C7(µ) solutions, which are consistent with the data on B → Xsγ but admit
values of the coefficients C9(µ) and C10(µ) sufficiently different from those of
the SM, thereby yielding very different differential distributions in the decay
B → Xs ℓ

+ℓ−. These distributions are shown for some representative values
of the Wilson coefficients. Section 5 contains a summary. To fix our notation
we collect the relevant formulae for the effective Hamiltonian, including the
RG-improved Wilson coefficients Ci(µ) in an appendix.



2 Estimates of B(B → Xsγ), Invariant Dilep-

ton Mass Distribution and Forward–Backward

Asymmetry in B → Xs ℓ
+ℓ−

In the following we shall consider the inclusive decays B → Xsγ and B →
Xsℓ

+ℓ−, where ℓ is either electron or muon. It has been shown that inclusive
B decays may be treated in a 1/mb expansion, the leading term of which
is the free quark decay. The next-to-laeding effects are of second order in
1/mb, i.e. O(m2

s/m
2
b) [27, 28, 29]. This is true for total rates, for partially

integrated rates, and also for decay distributions, as long as one is not too
close to the kinematic endpoint in which the energy release in the hadronic
subprocess becomes small.

We shall also not include QCD corrections to the free-quark decay distri-
butions, aside from the leading logarithms, which are induced by the renor-
malization group running. It is known that the measured inclusive lepton
energy distributions of the charged-current-induced semileptonic transitions
are well approximated by the partonic distributions b→ (c, u)ℓ−ν̄ℓ, including
QCD corrections [31, 32]. We expect this for the flavour-changing neutral
current semileptonic transitions as well.

The second proviso is that we shall concentrate on the short-distance
contributions to the decays B → Xsγ and B → Xs ℓ

+ℓ−. This again is not a
drastic oversimplification, as it is known that the long-distance contributions
to the decay B → Xsγ are small [33, 34, 35] and those in the decays B →
Xs ℓ

+ℓ− are dominantly present at and near the J/ψ and ψ′ poles, extending
also to the region between them. These contributions can be modelled using
data on the decays B → (J/ψ, ψ′)Xs → (ℓ+ℓ−)Xs, which already exist and
which are expected to become quite precise in the future. We shall thus
concentrate on the distributions in the regions away from the resonances and
consider the two regions

“Low dilepton-mass”: 4m2
ℓ ≤ s ≤ m2

J/ψ − δ ,

“High dilepton-mass”: m2
ψ′ + δ ≤ s ≤ smax, (10)

where δ is a cut-off that can be matched with the experimental cuts used
in the analysis. In these two regions we expect only small long-distance ef-
fects. Due to limitations in rates and dilepton trigger requirements, we antic-
ipate that the “Low dilepton-mass region” is accessible to e+e− experiments
(CLEO and B factories) and the “High dilepton-mass region” typically to B
experiments which will be carried out with hadron beams (CDF, HERA-B,
LHC). Given high enough luminosity, this region can also be probed at the
B factories.



2.1 Decay rate for B → Xsγ

The procedure for the computation of the Wilson coefficients in the SM and
extensions of it is by now standard. They are obtained at a large scale
µ2 = M2

W (in general at µ2 = m2
Y , where mY stands generically for the mass

of the heavy degrees of freedom) by integrating out degrees of freedom heav-
ier than µ [36], and are sensitive to the presence of new physics. Then the
renormalization group (RG) equations are used to scale down these coeffi-
cients to the scale that is typical for B-hadron decays, namely µ = O(mb).
In this way large logarithms of the form αs lnM2

W are shifted from the ma-
trix element into the Wilson coefficients. The RG evolution of the Wilson
coefficients Ci(µ) involves the (10× 10) anomalous dimension matrix, which
has now been calculated at the one-loop level [37, 38]. This matrix and the
solutions of the RG equations in terms of the effective coefficients Ci(µ) are
given in the appendix.

Starting from the effective Hamiltonian as given in the appendix, one finds
that only one operator, namely O7 contributes at tree level. The contribution
of the QCD bremsstrahlung process b → sγ + g and the virtual corrections
to b→ sγ have been calculated in O(ααs) in ref. [30]. Expressed in terms of
the inclusive semileptonic branching ratio BR(B → Xℓνℓ), one can express
the branching ratio B(B → Xsγ) as:

B(B → Xsγ) = 6
α

π

|λt|2
|Vcb|2

|C7(µ)|2K(µ)

f(mc/mb)[1 − (2αs)/(3π)h(mc/mb)]
× Bsl , (11)

where
f(r) = 1 − 8r2 + 8r6 − r8 − 24r4 ln(r)

is the phase-space function for Γ(b→ c+ℓνℓ) and Bsl = 10.5% is the semilep-
tonic branching fraction. The function h(r) accounts for QCD corrections
to the semileptonic decay and can be found, for example, in ref. [31]. It
is a slowly varying function of r and, for a typical quark-mass ratio of
r = 0.35 ± 0.05, it has the value h(r) = 2.37 ∓ 0.13. The contributions
from the decays b → u ℓ νℓ have been neglected in the denominator in (11)
since they are numerically inessential because |Vub| ≪ |Vcb|.

The inclusive decay width for B → Xsγ is dominantly contributed by
the magnetic-moment operator O7, hence the rationale of factoring out its
coefficient in the expression for B(B → Xsγ) in Eq. (11). Including O(αs)
corrections brings to the fore other operators with their specific Wilson co-
efficients. The effect of these additional terms can be expressed in terms of
the function K(µ), which lumps together the effects of bremsstrahlung cor-
rections in the inclusive decay rate. The function K(µ) has been computed
in the SM in [3] taking into account the dominant corrections from C2 and
C8 (the coefficients of other operators are considerably smaller). Typically,
0.79 ≤ K(µ) ≤ 0.86 for mb/2 ≤ µ ≤ 2mb. Since C8(µ) receives possible
non-SM contributions in the same way as C7(µ), one should compute the
K-factor and incorporate these corrections into a full next-to-leading-order



analysis. However, we are not working beyond leading order in this paper
and so we ignore the K factor. Using the CLEO inclusive measurement

B(B → Xsγ) = (2.31 ± 0.67) × 10−4, (12)

we get the following bound on C7(µ):

0.22 ≤ |C7(µ)| ≤ 0.30. (13)

Using, however, the 90%-confidence-level range from the CLEO measurement
B(B → Xsγ) = (2.31±1.1)×10−4 and the theoretical calculation for B(B →
Xsγ) from [3] we obtain

0.19 ≤ |C7(µ)| ≤ 0.32. (14)

This range, in our opinion, adequately reflects the present uncertainties.
When not stated otherwise, we shall fix |C7(µ)| = 0.3, which is in com-
fortable agreement with the CLEO data.

2.2 Decay distributions in B → Xs ℓ
+ℓ−

Using Heff given in (4), one obtains for the dilepton invariant mass distri-
bution

dB
dŝ

= Bsl
α2

4π2

λt
|Vcb|

2 1

f(mc/mb)
ŵ(ŝ)

[ (
|C9 + Y (ŝ)|2 + C2

10

)
α1(ŝ, m̂s)(15)

+
4

ŝ
C2

7α2(ŝ, m̂s) + 12α3(ŝ, m̂s)C7(C9 + Re Y (s))
]
,

where the auxiliary functions are defined as follows:

α1(ŝ, m̂s) = −2ŝ2 + ŝ(1 + m̂2
s) + (1 − m̂2

s)
2 (16)

α2(ŝ, m̂s) = −(1 + m̂2
s)ŝ

2 − (1 + 14m̂2
s + m̂4

s)ŝ+ 2(1 + m̂2
s)(1 − m̂2

s)
2(17)

α3(ŝ, m̂s) = (1 − m̂2
s)

2 − (1 + m̂2
s)ŝ (18)

Y (ŝ) = g(mc/mb, ŝ)(3C1 + C2 + 3C3 + C4 + 3C5 + C6) (19)

−1

2
g(1, ŝ)(4C3 + 4C4 + 3C5 + C6)

−1

2
g(0, ŝ)(C3 + 3C4) + ∆C9

and g(z, ŝ) is the one-loop function given in the appendix. Furthermore, the
constant ∆C9 depends on the scheme, which is chosen in the evaluation of
the one-loop matrix elements of the operators O1 · · ·O6. It contains also
a large logarithm ln(M2

W/m
2
b), which is not due to QCD effets but rather



comes from the one-loop matrix elements of O1 · · ·O6. In the MS scheme
one obtains [25]

∆C9 =
4π

αs(MW )





4

33


1 −

(
αs(MW )

αs(mb)

)−11/23

− 8

87


1 −

(
αs(MW )

αs(mb)

)−29/23




 ,

(20)
which generates the correct logarithms in the limit αs → 0.

The corresponding differential asymmetry as defined in (6) is

A(ŝ) = −Bsl
3α2

8π2

1

f(mc/mb)
ŵ2(ŝ)C10

[
ŝ(C9 + Re Y (ŝ)) + 4C7(1 + m̂2

s)
]
.(21)

In the subsequent section, we shall be evaluating the partial branching
ratio B(∆s) and partial FB asymmetry A(∆s), where ∆s defines an interval
in the dilepton invariant mass. All numerical calculations are done with a
non-zero value for the s-quark mass, ms = 500 MeV. The asymmetry in
the dilepton angular distribution in the SM can be qualitatively understood
as follows. The decays B → Xs ℓ

+ℓ− occur through γ , Z and W+W−

exchange diagrams. For small mt (mt/MW ≪ 1) the photon contribution
dominates and the vector-like interactions to the leptonic current remain
substantial; consequently, the asymmetry is small. However, formt/MW ≥ 2,
as suggested by the CDF value for mt, the contribution from the Z-exchange
diagrams becomes important and the coefficient of the left-handed leptonic
current grows as m2

t , leading to a large asymmetry.

3 Analysis of the Decays B → Xsγ and B →
Xsℓ

+ℓ−

In this section we shall discuss how the Wilson coefficients appearing in the
effective Hamiltonian may be extracted from the experimental information.
We shall assume that all the matrix elements are normalized at the scale
µ ∼ mb, the mass of the b quark and hence the decay distributions are given
in terms of the Wilson coefficients at the scale mb. The SM makes specific
predictions for these coefficients (modulo perturbative QCD uncertainties),
but if there is physics beyond the SM, these coefficients will in general be
modified.

We will somewhat elaborate on this point. A specific model provides the
set of Wilson coefficients at high scales, which we shall choose to be the scale
of the weak bosons µ = MW . Furthermore, we shall integrate out heavy
degrees of freedom at the same scale µ = MW ; this procedure introduces
an uncertainty due to the difference in the masses of the heavy degrees of
freedom, as for example arising from mt ≃ 2MW . However, since the QCD
coupling constant is small at these very high scales and does not appreciably
change between these thresholds, it is a reasonably accurate approximation to



neglect QCD corrections for scales above µ = MW . Starting from this scale,
the Wilson coefficients are obtained from the solution of the renormalization
group equations at the scale µ ∼ mb, where we use the one-loop result for
the anomalous dimensions and the beta function (see appendix).

In order to determine the sign of C7 and the other two coefficients C9

and C10, one has to study the decay distributions and rates in B → Xsℓ
+ℓ−,

where ℓ is either electron or muon. As already discussed, these decays are
sensitive to the sign of C7, and to C9 and C10. The first experimental in-
formation available in the decay B → Xsℓ

+ℓ− will be a measurement of the
branching fraction in a certain kinematic region of the invariant mass s of
the lepton pair. In order to minimize long-distance effects we shall consider
the kinematic regime for s below the J/ψ mass (low invariant mass) and for
s above the mass of the ψ′ (high invariant mass). Integrating (20) over these
regions for the invariant mass one finds3

B(∆s) = A(∆s)
(
C2

9 + C2
10

)
+B(∆s)C9 + C(∆s), (22)

where A, B and C are fixed in terms of the Wilson coefficients C1 · · ·C6 and
C7. We derive from (15):

A(∆s) = Bsl
α2

4π2

1

f(mc/mb)

∫

∆s

dŝ û(ŝ)α1(ŝ, m̂s) (23)

B(∆s) = Bsl
α2

4π2

1

f(mc/mb)

∫

∆s

dŝ û(ŝ) [2α1(ŝ, m̂s) Re Y (ŝ) + 12C7α3(ŝ, m̂s)](24)

C(∆s) = Bsl
α2

4π2

1

f(mc/mb)

∫

∆s

dŝ û(ŝ)
[
α1(s, m̂s)

{
( Re Y (ŝ))2 + ( Im Y (ŝ))2

}

+
4

s
|C7|2α2(s, m̂s) + 12α3(s, m̂s)C7 Re Y (ŝ)

]
, (25)

where the auxiliary functions αi, i = 1, 2, 3, are as given above.
In our analysis we keep the values for C1 · · ·C6 and the modulus of C7

fixed and hence A(∆s), B(∆s) and C(∆s) may be calculated for the two
invariant-mass ranges of interest. For the numerical analysis we use mb = 4.7
GeV, mc = 1.5 GeV, ms = 0.5 GeV. The values for the Wilson coefficients
C1, . . . , C6 are given in the appendix. The resulting coefficients A, B, and C
are listed in Table 1.

Inspection of (25) shows that the integrand for C(∆s) behaves as 1/s for
small values of s, leading to a logarithmic dependence of C(∆s) on the lepton
mass for the case of the low invariant mass region. In fact, this is the only

3 In performing the integrations over ∆s we have set the resolution parameter δ to zero,

since we do not consider any long-distance contribution. The long-distance contribution

peaks strongly at the J/ψ and ψ′ and δ has to be several times the width of these resonances

in order to avoid large long-distance effects. However, calculating only the short-distance

part one may safely neglect δ, since the short-distance contribution is flat in this region.



∆s C7 A(∆s)/10−8 B(∆s)/10−8 C(∆s)/10−8 C(∆s)/10−8

ℓ = e ℓ = µ

4m2
ℓ < s < m2

J/ψ +0.3 2.86 −5.76 84.1 76.6

4m2
ℓ < s < m2

J/ψ −0.3 2.86 −20.8 124 116

m2
ψ′ < s < (1 −m2

s) +0.3 0.224 −0.715 0.654 0.654
m2
ψ′ < s < (1 −m2

s) −0.3 0.224 −1.34 2.32 2.32

Table 1: Values for the coefficients A(∆s), B(∆s) and C(∆s) for the decay
B → Xsℓ

+ℓ−.

point where the masses of the leptons enter our analysis, and from this one
may obtain the corresponding coefficients for ℓ = µ:

C(4m2
µ < s < m2

J/ψ) = C(4m2
e < s < m2

J/ψ)−8|C7|2(1+m̂2
s)(1−m̂2

s)
3 ln

(
m2
µ

m2
e

)
.

(26)
Of course one may apply (26) also to obtain C for any other lower cut s0 on
the lepton invariant mass, as long as s0 ≪ m2

J/ψ.
For a measured branching fraction B(∆s), one can solve the above equa-

tion for B(∆s), obtaining concentric circles in the C9-C10 plane, with their
centre lying at C∗

9 = B(∆s)/(2A(∆s)) and C∗

10 = 0. The radius R of these
circles is proportional to

R =
√
B(∆s) − Bmin(∆s), (27)

where the minimum branching fraction

Bmin(∆s) = C(∆s) − B2(∆s)

4A(∆s)
(28)

is determined mainly by the present data on B → Xsγ, i.e. by |C7|. For the
cases of interest one obtains, with the help of Table 1:

Bmin(4m2
e < s < m2

J/ψ) =

{
8.1 × 10−7 for C7 = 0.3
8.6 × 10−7 for C7 = −0.3,

(29)

Bmin(m2
ψ′ < s < (1 −m2

s)) =

{
8.5 × 10−10 for C7 = 0.3
3.0 × 10−9 for C7 = −0.3.

(30)

Note that B(∆s) is an even function of C10, so one is not able to fix the
sign of C10 from a measurement of B(∆s) alone.

To further pin down the Wilson coefficients, one could perform a mea-
surement of the forward-backward asymmetry A, which has been defined
above. The asymmetry is an odd function of C10, and for a fixed value of the
total branching ratio in this kinematic region one obtains, from integrating



∆s C7 α(∆s)/10−9 β(∆s)/10−9

4m2
ℓ < s < m2

J/ψ +0.3 −6.08 −24.0

4m2
ℓ < s < m2

J/ψ −0.3 −6.08 55.4

m2
ψ′ < s < (1 −m2

s) +0.3 −0.391 0.276
m2
ψ′ < s < (1 −m2

s) −0.3 −0.391 1.37

Table 2: Values for the coefficients α(∆s)and β(∆s).

over a range (∆s):

A(∆s) = C10 (α(∆s)C9 + β(∆s)) , (31)

where

α(∆s) = −Bsl
3α2

8π2

1

f(mc/mb)

∫

∆s

dŝ û2(ŝ)ŝ (32)

β(∆s) = −Bsl
3α2

8π2

1

f(mc/mb)

∫

ŝ

dŝ û2(ŝ)
[
ŝ Re Y (ŝ) + 4C7(1 + m̂2

s)
]
.(33)

For a fixed value of A(∆s), one obtains hyperbolic curves in the C9-C10

plane; like the coefficients A, B and C, the parameters α and β are given in
terms of the Wilson coefficients C1 · · ·C6 and C7, and the kinematic region
of s considered; their values are presented in Table 2.

Given the two experimental inputs, the branching fraction B(∆s) and the
corresponding asymmetry A(∆s), one obtains a fourth-order equation for the
Wilson coefficients C9 and C10, which admits in general four solutions. In
figs. 1-4 we plot the contours for a fixed value for the branching fraction
B(∆s) and the FB asymmetry A(∆s). Since B(∆s) is an even function of
C10 and A(∆s) is an odd one, we only plot positive values for C10. The
asymmetry vanishes for C10 = 0, but also for C9 = −β(∆s)/α(∆s). The
two lines C10 = 0 and C9 = −β(∆s)/α(∆s) divide the C9-C10 plane into
four quadrants, in which the asymmetry has a definite sign. Reflecting the
hyperbolae on the line C10 = 0 or C9 = −β(∆s)/α(∆s) results in a sign
change of the asymmetry.

Figures 1 and 2 show the contours in the C9(µ)-C10(µ) plane for the low-
invariant-mass region 4m2

e < s < m2
J/ψ, and figs. 3 and 4 are for the high-

invariant-mass region m2
ψ′ < s < (1− m̂s)

2. Figures 1 and 3 are obtained for
C7(µ) = 0.3, while figs. 2 and 4 are for C7(µ) = −0.3. The possible solutions
for C9 and C10 are given by the intersections of the circle corresponding to
the measured branching fraction and the hyperbola, corresponding to the
measured asymmetry. Assuming the SM values for both B(∆s) and A(∆s),
one obtains the solid lines in figs. 1-4. The possible solutions in this case



are represented by solid dots (SM solutions) and solid squares (other non-SM
possible solutions).

From the figures one reads off that for the SM values of B and A one has
more than one solution for the coefficients C9 and C10, but the ambiguity
may in general be resolved by measuring both the low and the high invariant
mass regions.

However, there is in principle also the possibility that the equations do
not have a solution for C9 and C10. This is the case, for example, when
the asymmetry is large and the branching fraction small, in which case the
hyperbola may not intersect with the corresponding circle any more. If this
happens one has to conclude that the present analysis is not complete; in
other words, the operator basis we started from is not complete and physics
beyond the SM will be present in the form of additional operators such as
right-handed currents.

The upper and lower limits for the asymmetry as a function of the branch-
ing fraction may be obtained analytically and are given by

A(∆s)± = R̄ cos θ±
(
α(∆s)R̄ sin θ± + y

)
, (34)

with

R̄ =

√√√√B(∆s) − Bmin(∆s)
A(∆s)

(35)

sin θ± =
1

4


− y

α(∆s)R̄
∓
√√√√ y2

α2(∆s)R̄2
+ 8


 (36)

y = β(∆s) − B(∆s)α(∆s)

2A(∆s)
. (37)

These boundaries are shown in fig. 5 for the low- and the high-invariant-
mass region respectively. From these figures it is obvious that the bound is
in fact non-trivial: it lies in any case far below the bound |A| < B.

If data become more precise one may in fact also expect a measurement
of the spectrum and the asymmetry as a function of s. The spectrum itself
is very sensitive to the values of the Wilson coefficients and to the sign of C7.
In fig. 6 we plot the various contributions to the spectrum, for positive and
for negative C7.

In a similar way, it may become possible to measure also the differential
asymmetry

A(s) =

0∫

−1

dz
d2B
dŝdz

−
1∫

0

dz
d2B
dŝdz

, (38)

which is also sensitive to the sign of C7. The various contributions to A(s)
are shown in fig. 7.
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Figure 1: Contour plots of B(∆s) and A(∆s) in the C9-C10 plane for the low-invariant-
mass region 4m2

ℓ < s < m2
J/ψ and C7 = 0.3. The circles correspond to fixed values of B:

B = 5.6× 10−6 (solid curve), B = 3.0 × 10−6 (long-dashed curve), B = 1.0 × 10−5 (short-
dashed curve), B = 1.5 × 10−5 (dash-dotted curve). The left branches of the hyperbolae
correspond to positive values of A: A = 1.7 × 10−7 (solid curve), A = 5.0 × 10−8 (long-
dashed curve), A = 5.0× 10−7 (short-dashed curve), A = 1.0× 10−6 (dash-dotted curve).
The right branches of the hyperbolae correspond to negative values of A: A = −1.41·10−8

(solid curve), A = −5.0 · 10−9 (long-dashed curve), A = −3.0 · 10−8 (short-dashed curve),
A = −6.0 · 10−8 (dash-dotted curve). For negative values of C10, the figure is simply
reflected with A → −A. The solid dot indicates the SM values for C9 and C10. The solid
square is another allowed solution resulting from the SM values of B and A.
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Figure 2: Same as in fig. 1, but for C7 = −0.3.

4 Model Predictions for the Wilson Coeffi-

cients

Once the parameters C7, C9, and C10 have been extracted from experimental
data, a direct comparison with different theoretical predictions can be made.
If a deviation from the SM result is observed, new models accounting for this
discrepancy, can be looked for. If no such deviation is observed, the result
can be used to set bounds on new physics.

As already alluded to in the introduction, the operator basis considered
here is not the most general one. For example, in the left-right symmetric
(LR) models the basis (4) will have to be enlarged to incorporate the ex-
tended SU(2)L × SU(2)R × U(1) gauge sector. The enlarged set contains
the SM operators contained in Heff above and another set of 10 operators
obtained from this by flipping the chirality structure of the fermion fields
PL → PR, where PL,R = (1 ± γ5)/2, increasing the number of independent
Wilson coefficients to 20.

Since we are restricting the operator basis to exclude ab initio LR-symmetric
models, we give reasons why such extensions of the SM are unlikely to make
a significant contribution to rare B decays. In the minimal LR-symmetric
models, the right-handed CKM matrix is identical to, or the complex con-
jugate of, the left-handed CKM matrix. However, in this case, there are



-10 -5 0 5 10

C9

0

2

4

6

8

10

12

C
1
0

Figure 3: Contour plots of B(∆s) and A(∆s) in the C9-C10 plane for the high-invariant-
mass regionm2

ψ′ < s < (1−ms)
2 and for C7 = 0.3. The circles correspond to fixed values of

B: B = 2.56×10−7 (solid curve), B = 1.0×10−7 (long-dashed curve), B = 5.0×10−7 (short-
dashed curve), B = 1.0 × 10−6 (dash-dotted curve). The left branches of the hyperbolae
correspond to positive values of A: A = 1.41 × 10−8 (solid curve), A = 5.0 × 10−9 (long-
dashed curve), A = 3.0× 10−8 (short-dashed curve), A = 6.0× 10−8 (dash-dotted curve).
The right branches of the hyperbolae correspond to negative values of A: A = −1.41×10−8

(solid curve), A = −5.0×10−9 (long-dashed curve), A = −3.0×10−8 (short-dashed curve),
A = −6.0 × 10−8 (dash-dotted curve). For negative values of C10, the figure is simply
reflected with A → −A. The solid dot indicates the SM Values for C9 and C10. The solid
squares are other allowed solutions resulting from the SM values of B and A.
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Figure 4: Same as in fig. 3, but for C7 = −0.3.

rather strong lower limits on the mass of WR, MR > 1.5 − 2.5 TeV, arising
from the condition that the short-distance contributions to the KL–KS mass
difference not exceed the experimental value [39]. In view of this restriction
on MR, it would be difficult to see tangible differences between the SM and
the minimal LR models in rare B decays, much as has been argued for the
B0–B0 mixing ratio xs and xd [40]. These qualitative anticipations have been
borne out by explicit calculations [10, 11].

The situation with the non-minimal LR models is more involved [41].
While the bounds on mR from ∆mK can be evaded, the constraints from ǫK
force mR to be in excess of 30 TeV, in general [42]. So, we shall no longer en-
tertain the LR models, asserting that the present and impending constraints
following from B(B → Xsγ), xd and ∆mK render the LR-symmetric-model
effects in the FCNC semileptonic decays B → Xs ℓ

+ℓ− insignificantly small
and restrict the operator basis to the one given in (4). In this section, we con-
sider as illustrative examples two popular extensions of the SM (the MSSM
and the 2HDM) and study how the predictions for the Wilson coefficients
C7, C9, and C10 are altered in these models, compared to the SM.

Supersymmetric models have a new source of flavour-changing neutral
currents because of the quark-squark-gluino vertex, which is, in general, not
diagonal in generation space [43]. If the generation mixings of such ver-
tices were arbitrarily large, they would lead to phenomenologically unac-
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Figure 5: The bounds for the partially integrated asymmetry
A(∆s) as a function of the partial dilepton branching ratio
B(∆s). The upper plot is for the “low-invariant-mass region”
and the lower one is for the “high-invariant-mass region” as
defined in the text. The boundary demarcated by the solid
curves are for the positive value C7 = 0.3, the long-dashed
curves correspond to the negative value C7 = −0.3. The
dotted line is the trivial bound |A| < B. The solid dot denotes
the SM value.
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on the Wilson coefficients. Solid line: SM. Long-dashed line:
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50 100 150 200 250 300

mH
 +

0.4

0.5

0.6

C
7

Figure 8: The dependence of C7 on the charged Higgs mass
for v2/v1 = 1 (solid line), v2/v1 = 2 (dashed line), v2/v1 = 10
(dot-dashed line). The band between the two curves reflects
the QCD uncertainty (see text).

ceptable flavour violation in the K0–K̄0 system. However, in the minimal
supersymmetric model, flavour universality of the supersymmetry-breaking
terms is usually assumed to hold at the grand-unification scale. In this
case, a non-vanishing (and calculable) generation mixing in the quark-squark-
gluino vertex is induced only by the effect of renormalization from the grand-
unification scale to the weak scale. Given the present experimental limit on
the gluino mass, this effect leads only to very small contributions to flavour-
changing bdecays [7] and it will be neglected in our analysis. Gluino-mediated
flavour-changing neutral currents may however play an important role in non-
minimal supersymmetric models (see [44] and references therein).

Once the gluino contributions (as well as the analogous ones from neu-
tralino exchange) are neglected, the flavour violation in the model is com-
pletely specified by the familiar CKM matrix. The one-loop supersymmetric
corrections to the Wilson coefficients C7, C9, and C10 are given by two classes
of diagrams: charged-Higgs exchange and chargino exchange. Their analyti-
cal expressions can be found in ref. [7], and will not be repeated here.

The charged-Higgs contribution is specified by two input parameters: the
charged-Higgs mass (mH+) and the ratio of Higgs vacuum expectation values
(v2/v1 ≡ tanβ). This contribution is interesting in itself, since it corresponds
to a well-defined SM extension: the 2DHM. The interaction between the
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Figure 9: The dependence of C9 on the charged Higgs mass.
The notation is the same as in fig. 8.

charged Higgs and quarks is given by:

L =
g√

2mW

H+ū
(
AuMuV

1 − γ5

2
+ AdVMd

1 + γ5

2

)
d+ h.c., (39)

where Mu,d are the up and down quark mass matrices and V is the CKM
matrix. If both up and down quarks get masses from the same Higgs doublet
(this case is usually referred to as Model I), then

Au = −Ad = 1/ tanβ. (40)

In the supersymmetric case, two different Higgs doublets couple separately
to up and down quarks (Model II) and

Au = 1/Ad = 1/ tanβ. (41)

Let us first consider the case relevant to supersymmetry, i.e. Model II.
Figures 8, 9 and 10 show the charged-Higgs effects on C7, C9, and C10 for
mt = 174 GeV, at leading order in QCD. For each value of v2/v1, two curves
for η ≡ αs(MZ)/αs(µ) equal to 0.68 and 0.41 are shown. The band within
the two lines reflects the QCD uncertainties, since the two chosen values of
η correspond to the uncertainties in αs(MZ) (= 0.118 ± 0.006) [46] and µ
(mb/2 < µ < 2mb). Recently the known part of the next-to-leading correc-
tions has been included in the analysis of b → sγ [45]. They have the effect
of reducing the scale dependence, and of decreasing considerably the value of
C7 with respect to the leading-order calculation shown in fig. 8. We expect
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Figure 10: The dependence of C10 on the charged Higgs
mass. The notation is the same as in fig. 8.

that we can safely ignore the next-to-leading corrections to C9, because the
QCD running is much less important here than in C7. Note that C10 does
not get renormalized under QCD.

The constraints imposed by supersymmetry on the scalar potential re-
quire tanβ > 1 and mH+ > mW . Notice that, as tanβ becomes large, C9

and C10 rapidly converge to the SM value (as tan−2 β), while the charged-
Higgs contribution to C7 remains non-vanishing even in the limit tan β → ∞.
In the case of a non-supersymmetric Model II, the experimental limit on
BR(b→ sγ) rules out a large region of the tanβ–m+

H parameter space [4, 6].
As a consequence, no significant deviation from the SM values of C9 and
C10 can be expected. In supersymmetry, however, the chargino can largely
compensate for the charged-Higgs contribution to C7 [8], and more decisive
differences from the SM are foreseeable, as discussed below.

In the case of Model I, the expressions for C9 and C10 are still the same as
in Model II. However C7 is modified and the constraint from BR(b→ sγ) on
the parameter space is much weaker. For tan β < 1, C7 can become negative.
For small mH+ and tanβ, it is possible to reach values for which C7 equals,
in absolute value, the SM prediction, but is opposite in sign. The region
of parameter space where this happens is barely allowed by the constraints
from ǫK and B0–B̄0 mixing [47], but leads to unacceptable corrections to the
Z0 → b̄b width [48] and is thus ruled out experimentally.

In addition to the diagrams with charged-Higgs exchange, the MSSM
leads also to chargino-mediated diagrams. The chargino contribution is spec-



ified by six parameters. Three of them enter the 2×2 chargino mass matrix:

mχ+ =
(

M mW

√
2 sin β

mW

√
2 cos β µ

)
. (42)

Following standard notations, we call tanβ the ratio of vacuum expectation
values, the same that appears also in the charged-Higgs sector, and M , µ the
gaugino and higgsino mass parameters, subject to the constraint that the
lightest chargino mass satisfies the LEP bound, m+

χ > 45 GeV. The squark
masses

m2

q̃2
±

= m̃2 +m2
q ± Am̃mq (43)

contain two additional free parameters besides the known mass of the cor-
responding quark mq: a common supersymmetry-breaking mass m̃ and the
coefficient A. The parameter A contains all the information (both from the
µ-term and the trilinear term) of left-right squark mixing and it is constrained
by the requirement that the lightest stop is not produced at LEP, mt̃ > 45
GeV 4. We also take into account the CDF limit on squark masses [49], and
impose m̃ > 126 GeV. In eq. (43) we have made the simplifying assumption
that the supersymmetry-breaking left- and right-squark masses are equal.
The last parameter included in our analysis is a common mass ml̃ for slep-
tons, all taken to be degenerate in mass, with the constraint ml̃ > 45 GeV.
Therefore the version of the MSSM we are considering is defined in terms of
seven free parameters.

We have computed the Wilson coefficients in the MSSM and then varied
the seven above-defined parameters in the experimentally allowed region.
The results of our analysis are presented in fig. 11, which shows the regions
of the C9–C10 plane allowed by possible choices of the MSSM parameters.
The upper plot of fig. 11 corresponds to parameters which give rise to positive
(same sign as in the SM) values of C7, consistent with experimental results on
b → sγ (0.19 < C7 < 0.32), while the lower plot corresponds to values of C7

with opposite sign (−0.32 < C7 < −0.19). We also show how our results are
affected by an improvement in the experimental limits on supersymmetric
particle masses, as can be expected from the Tevatron and LEP 200. Fig. 11
also shows the C9−C10 regions allowed by the MSSM if the further constraints
mH+ > 150 GeV, mt̃, mχ+ , ml̃ > 100 GeV are imposed.

The regions shown in fig. 11 illustrate the typical trend of the super-
symmetric corrections. If supersymmetric particles exist at low energies, we
can expect larger values of C10 and smaller (negative) values of C9 than
those predicted by the SM. This is the general feature, although the exact
boundaries of the allowed regions depend on the particular model-dependent
assumptions one prefers to use. For instance, the allowed regions can be
slightly expanded if one introduces more general stop mixings than those

4For a particular choice of the mixing between the two stop states, the light stop can

be decoupled from the Z0 and the LEP bound would not apply. We disregard here this

possibility.
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Figure 11: The region in the C9-C10 plane obtained by
varying the MSSM parameters. The upper (lower) plot cor-
responds to solutions that satisfy the b → sγ experimental
constraint with positive (negative) C7 given in eq.(3) and the
present bounds (mH+ > 80 GeV, m̃t, mχ+, m̃ℓ > 45 GeV). The
smaller areas limited by the short-dashed line correspond to
the region of the MSSM parameter space that will survive an
unsuccessful search for supersymmetry at the Tevatron and
LEP 200 (mH+ > 150 GeV, mt̃, mχ+ , ml̃ > 100 GeV).



considered here. On the other hand, if further constraints are imposed on
the model (such as particular boundary conditions at the GUT scale, radia-
tive symmetry-breaking, etc.), some of the parameters which in our analysis
were taken as independent variables become related with each other, and the
allowed region may somewhat shrink. However, the most interesting feature
of supersymmetry is that solutions with negative values of C7 are possible
and are still consistent with present data. Moreover, values of the other two
coefficients C9 and C10 sufficiently different from the SM are allowed, leading
to measurable differences in the decay rates and distributions of B → Xsℓ

+ℓ−

and Bs → ℓ+ℓ−.

5 Concluding Remarks

The branching ratios B(B → K∗γ) and B → Xsγ have provided first
measurements of the strength of the effective magnetic moment operator
mbs̄LσµνbRF

µν . The inferred value of the Wilson coefficient |C7(mb)| =0.19
– 0.32 from present data is in broad agreement with the SM estimate of the
same. This, in turn, has led to rather stringent bounds on the parameters of a
number of models. The comparison between the SM and experiment has be-
come more precise with the measurement of the inclusive rate B(B → Xsγ).
There is an overriding need to firm up theoretical estimates in the SM by
calculating the next-to-leading-order effects.

While the first step in the measurements of rare B decays has been made,
we expect this field to undergo a qualitative change as the anticipated exper-
imental facilities for B physics take shape and start producing B hadrons in
large quantities. We have in mind here a steady consolidation of the CLEO
and CDF data, with big strides expected to be made at the threshold B
factories at SLAC and KEK and experimental facilities with proton beams
such as HERA-B and in particular the LHC. Among others, we expect mea-
surements of the CKM-suppressed radiative decays B → ργ and B → ωγ,
and the FCNC semileptonic and leptonic decays B → Xs ℓ

+ℓ− (and the
corresponding exclusive decays B → (K,K∗)ℓ+ℓ−) and B0

s → ℓ+ℓ− at these
facilities. Also, the nature of rare B-decay measurements will evolve in time
from being exploratory to becoming rather precise. This has encouraged us
to propose undertaking a more ambitious programme of extracting from data
model-independent quantities – very much along the same lines as was carried
out for the precision electroweak analysis of the LEP, SLC and low-energy
data.

The electroweak precision tests, at LEP and elsewhere, have concentrated
on the self-energies of the electroweak gauge bosons (γ, Z0 and W±), with
possible deviations from the SM expressed in terms of a limited number of
parameters [50, 51]. The main interest in rare B decays is to measure the



effective FCNC vertices to test the SM precisely and search for new physics.
We have argued how to parametrize these vertices through a limited num-
ber of effective parameters, which govern the rates and shapes (differential
distributions) in rare B decays B → Xsγ, B → Xs ℓ

+ℓ−and Bs → ℓ+ℓ−.
The search for physics beyond the SM in these decays can be carried out
in terms of three effective parameters, which can then be interpreted in a
large class of models. The presence of non-SM physics may manifest itself
by distorting the differential distributions in B → Xs ℓ

+ℓ−. Some possible
examples of such distortions have been worked out. While the analysis pre-
sented here covers a large class of models, we have also presented profiles of
the Wilson coefficients in the best-motivated extensions of the SM, namely
the MSSM. We have pointed out that there exist two distinct solutions cor-
responding to the negative and positive values for C7(µ), which cannot be
distinguished from the data on B(B → Xsγ), but they give rise to very dif-
ferent distributions in the decay B → Xs ℓ

+ℓ−. Moreover, the coefficients of
the operators C9(µ) and C10(µ) for the MSSM models may attain values suf-
ficiently different from the corresponding SM values. An encouraging result
of our analysis is that rare B decays B → Xsγ and B → Xs ℓ

+ℓ− have a
discovery potential much beyond direct searches at these facilities. Finally,
we remark that the purely leptonic decay modes B0

s → ℓ+ℓ− can also be
used to further pin down the coefficient of the operator O10 involving the
axial-vector leptonic current, i.e. |C10(µ)|, although this may require much
larger B-hadron statistics. Precision measurements in rare B decays must
be pursued vigorously.
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Appendix: The effective Hamiltonian for B →
Xsγ and B → Xsℓ

+ℓ−

The effective Hamiltonian is

Heff = −4GF√
2
V ∗

tsVtb
10∑

i=1

Ci(µ)Oi(µ), (44)

where the operator basis is chosen to be

O1 = (s̄LαγµbLα)(c̄LβγµcLβ) (45)

O2 = (s̄LαγµbLβ)(c̄LβγµcLα) (46)



O3 = (s̄LαγµbLα)
∑

q=u,d,s,c,b

(q̄LβγµqLβ) (47)

O4 = (s̄LαγµbLβ)
∑

q=u,d,s,c,b

(q̄LβγµqLα) (48)

O5 = (s̄LαγµbLα)
∑

q=u,d,s,c,b

(q̄RβγµqRβ) (49)

O6 = (s̄LαγµbLβ)
∑

q=u,d,s,c,b

(q̄RβγµqRα) (50)

O7 =
e

16π2
mb(s̄LασµνbRα)F

µν (51)

O′

7 =
e

16π2
ms(s̄RασµνbLα)F

µν (52)

O8 =
g

16π2
mb(s̄LαT

a
αβσµνbRα)G

aµν (53)

O′

8 =
g

16π2
ms(s̄RαT

a
αβσµνbLα)G

aµν (54)

O9 = (s̄LαγµbLα)(ℓ̄γµℓ) (55)

O10 = (s̄LαγµbLα)(ℓ̄γµγ5ℓ) (56)

(57)

where

qL =
1 − γ5

2
q and qR =

1 + γ5

2
q. (58)

The Wilson coefficients of the operators are given by the renormalization
group evolution

[
µ
∂

∂µ
+ β(g)

∂

∂g

]
Ci

(
M2

W

µ2
, g

)
= γ̂ji(g)Cj

(
M2

W

µ2
, g

)
. (59)

To leading logarithmic level, the QCD beta function β(g) is given by

β(g) = −β0

g3

16π2
with β0 = 11 − 2

3
f (60)

and γ̂(g) is the anomalous dimension matrix, which is, to leading logarithmic
acuracy, given by

γ̂(g) = −γ0

g2

16π2
(61)

Here γ0 is a 10 × 10 matrix given by

γ0 =
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Using as initial condition Cj(MW ) = 0 for j = 1, 3, · · ·6 we obtain, for the
solution of the renormalization group flow

C1(µ) =
1

2
C2(MW )

(
η6/23 − η−12/23

)
(62)

C2(µ) =
1

2
C2(MW )

(
η6/23 + η−12/23

)
(63)

C3(µ) = C2(MW )
(
−0.0112η0.8994 +

1

6
η−12/23 − 0.1403η−0.4230 + 0.0054η0.1456 (64)

− 0.0714η6/23 + 0.0509η0.4086
)

C4(µ) = C2(MW )
(
0.0156η0.8994 − 1

6
η−12/23 + 0.1214η−0.4230 + 0.0026η0.1456 (65)

− 0.0714η6/23 + 0.0984η0.4086
)

C5(µ) = C2(MW )
(
−0.0025η−0.8994 + 0.0117η−0.4230 + 0.0304η0.1456 − 0.0397η0.4086

)
(66)

C6(µ) = C2(MW )
(
−0.0462η−0.8994 + 0.0239η−0.4230 − 0.0112η0.1456 + 0.0335η0.4086

)
(67)

C7(µ) = C7(MW )η16/23 + C8(MW )
8

3

(
η14/23 − η16/23

)
(68)

+C2(MW )
(
−0.0185η−0.8994 − 0.0714η−12/23 − 0.0380η−0.4230 − 0.0057η0.1456

−0.4286η6/23 − 0.6494η0.4086 + 2.2996η14/23 − 1.0880η16/23
)

C8(µ) = C8(MW )η14/23 (69)

+C2(MW )
(
−0.0571η−0.8994 + 0.0873η−0.4230 + 0.0209η0.1456

−0.9135η0.4086 + 0.8623η14/23
)

C9(µ) = C9(MW ) + C2(MW )
(

37

33
− 0.0193η−0.8994 +

74

999
η−12/23 − 0.2608η−0.4230 (70)

−0.0183η0.1456 − 10

9
η6/23 + 0.2143η0.4086

)

C10(µ) = C10(MW ), (71)



where

η =
αs(MW )

αs(mb)

and we use C2(MW ) = −1.
In terms of this effective Hamiltonian, the amplitude for b → sℓ+ℓ− be-

comes

M = 4
√

2GF
α

4π
(V ∗

tsVtb)
{
C9 effsLγµbLlγ

µl + C10sLγµbLlγ
µγ5l

−C7siσµν
qν

q2
(msbL +mbbR)lγµl

}
, (72)

where qµ = pµ1 + pµ2 is the momentum transferred to the leptons. The ef-
fective coefficient C9 eff contains the contributions from the one-loop matrix
elements of O1, ...,O6 and is given by (8). This definition involves the one-
loop function g, which is given by

Re g(z, s) = −4

9
ln z2 +

8

27
+

16z2

9s
(73)

−2

9

√

1 − 4z2

s

(
2 +

4z2

s

)
ln

∣∣∣∣∣∣
1 +

√
1 − 4z2

s

1 −
√

1 − 4z2

s

∣∣∣∣∣∣
for s > 4z2

Re g(z, s) = −4

9
ln z2 +

8

27
+

16z2

9s
(74)

−2

9

√

1 − 4z2

s

(
2 +

4z2

s

)
atan


 1√

4z2

s
− 1


 for s < 4z2

Im g(z, s) = −2π

9

√

1 − 4z2

s

(
2 +

4z2

s

)
Θ(s− 4z2). (75)


