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Abstract

Recently, it has been shown that the concept of the pole mass of a

heavy quark becomes ambiguous beyond perturbation theory, because

of the presence of infrared renormalons. We argue that the predictions

of heavy quark e�ective theory, whose construction is based on the pole

mass, are free of such ambiguities. In the 1=mQ expansion of physi-

cal quantities, infrared and ultraviolet renormalons compensate each

other between coe�cient functions and matrix elements. We trace

the appearance of these compensations for current-induced exclusive

heavy-to-heavy and heavy-to-light transitions, and for inclusive de-

cays of heavy hadrons. In particular, we show that the structure of

the heavy quark expansion is not obscured by renormalons, and none

of the predictions of heavy quark e�ective theory are invalidated.
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1 Introduction

For heavy quarks, the non-relativistic bound-state picture suggests the no-

tion of the pole mass m
pole
Q de�ned, order by order in perturbation theory,

as the position of the singularity in the renormalized quark propagator. The

pole mass is gauge invariant, infrared �nite, and renormalization-scheme in-

dependent [1]. In the context of perturbation theory, it is thus a meaningful

\physical" parameter. Once non-perturbative e�ects are taken into account,

however, this concept needs to be generalized, since in reality there is no pole

in the quark propagator because of con�nement. Recently, it has been shown

that signals for such non-perturbative e�ects can be found in the asymptotic

behaviour of perturbation theory itself. The presence of infrared renormalons
in the perturbative series that relates the pole mass to a mass de�ned at short
distances leads to an unavoidable ambiguity of order �QCD in the de�nition of

m
pole
Q [2, 3]. The appearance of renormalons signals that perturbation theory

is incomplete without the inclusion of non-perturbative corrections. In fact,
much of the non-perturbative structure of a theory can be inferred from a
study of the singularities of correlation functions after Borel transformation

with respect to the coupling constant. The application of this approach to
QCD was pioneered by 't Hooft [4]. The positions of the singularities on
the positive real axis signal the magnitude of non-perturbative corrections.
In turn, the structure of non-perturbative corrections implies constraints for
the structure of infrared renormalons [5]{[7].

The existence of a \physical" de�nition of the mass of a heavy quark,

which agrees with the pole mass up to terms of order �QCD, plays a cru-
cial role in the construction of the heavy quark e�ective theory (HQET)
[8]{[17], which by now has become the main theoretical tool used to ana-
lyze the properties and decays of hadrons containing a heavy quark. In view
of the intrinsic ambiguity in the de�nition of the pole mass, the question

arises whether the HQET is an inconsistent e�ective theory, whose predic-
tions are plagued by renormalon ambiguities. The purpose of this paper is to

demonstrate that this is not the case. Renormalons enter HQET predictions
because one tries to separate perturbative and non-perturbative (as opposed

to short- and long-distance) e�ects into coe�cient functions and matrix el-

ements. Infrared renormalons appear in the coe�cient functions since soft
loop momenta give a non-negligible contribution to the Feynman integrals
which appear in their calculation. Similarly, ultraviolet renormalons appear

in the matrix elements because of the power divergence of Feynman integrals

in the HQET. In this paper, we argue that in predictions for physical quanti-

ties such as weak decay amplitudes, renormalon ambiguities cancel between

coe�cient functions and matrix elements.1 A generic HQET prediction for

1For the case of the heavy quark two-point function this cancellation has been demon-
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a physical quantity A(mQ) is of the form

A(mQ) = C0(mQ=�)M0(�) +
1

mQ

C1(mQ=�)M1(�) + : : : : (1)

We will trace the cancellation of renormalons explicitly to subleading order

in 1=mQ, by showing that the infrared renormalon in C0 cancels against an

ultraviolet renormalon in the matrix elementM1, so that the sum of the two

terms on the right-hand side is unambiguous. In more complicated processes

such as avour-changing transitions between two heavy hadrons of di�erent

velocity, the way in which these cancellations take place is rather non-trivial.

However, that they take place should not be a surprise. In fact, the appear-
ance of renormalons could be avoided if in the construction of the HQET
one would follow the idea of Wilson's operator product expansion (OPE)
[18] literally [2, 3]. The OPE is not designed to separate perturbative and

non-perturbative e�ects, but to disentangle the physics on di�erent distance
scales. This is not accomplished when one uses dimensional regularization
in the calculation of the coe�cient functions. Instead, one should introduce
a hard factorization scale � < mQ by cutting out momenta k < � from the
Feynman diagrams which determine the Wilson coe�cients, and attribute

these contributions to the matrix elements. In practice, this procedure is
impracticable and awkward, but it would eliminate the infrared renormalons
from the coe�cient functions and the ultraviolet renormalons from the ma-
trix elements. What is important is that in the HQET such a program could
be implemented without changing the transformation property of the e�ec-

tive Lagrangian under the spin-avour symmetry [19]. Hence, the structure
of the predictions obtained using the HQET remains una�ected. This implies
that renormalons enter the usual (practical) form of the HQET in such a way

that they do not spoil the relations imposed by heavy quark symmetry [20]
and the equation of motion (including the vanishing of certain 1=mQ correc-

tions at zero recoil [14]), and they do not increase the number of hadronic
form factors that appear in a given order of the 1=mQ expansion.

Let us note in passing that in the lattice formulation of the HQET (or
indeed in any regularization scheme with a dimensionful cut-o�) one encoun-

ters ultraviolet divergences which behave as powers of the ultraviolet cuto�
(i.e. inverse powers of the lattice spacing). These power divergences are due

to the mixing of higher dimensional operators with lower dimensional ones.

They become more severe as higher-order terms in the 1=mQ expansion are
calculated. The presence of power divergences, and the fact that they are

likely to imply the existence of non-perturbative e�ects, and hence to re-
quire non-perturbative subtractions, was explained in Ref. [21]. The close

connection between the presence of power divergences and that of ultraviolet

strated in Ref. [2].
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renormalons in matrix elements of higher dimensional operators in the HQET

was pointed out in Ref. [2], and will become apparent below. Techniques for

the non-perturbative subtraction of the power divergences in lattice simula-

tions are being developed [22]; a brief outline of the approach can be found

in Ref. [23].

The outline of the paper is as follows: In Sect. 2, we briey discuss the

appearance of renormalons in the asymptotics of perturbation theory and

their relation to singularities in the Borel transform of correlation functions.

To obtain a renormalon calculus which is convenient for explicit calculations,

we follow Refs. [2, 7] and consider QCD in the limit of a large number of

light quark avours. We then recall some of the reasoning behind the usual

construction of the HQET and show in which way it is a�ected by infrared
renormalons in the pole mass of the heavy quark. In Sects. 3 and 4, we
study the cancellation of renormalons in exclusive heavy-to-heavy and heavy-
to-light decay processes. In the �rst type of decays, the symmetries of the
e�ective theory imply a set of non-trivial consistency conditions, which relate
the infrared renormalons in the coe�cient functions of bilinear heavy quark

currents to the infrared renormalon in the pole mass. We derive the exact
form of these relations, which are independent of any unknown hadronic
matrix element. We then check them to order 1=Nf . We also show with an
explicit calculation that a sum rule recently derived by Shifman et al. [24],
which has been used to put a bound on the hadronic form factor that enters

the extraction of jVcbj from semileptonic decays, cannot be correct, due to
a mismatch of infrared and ultraviolet renormalons. In Sect. 5, we show
that renormalon contributions cancel in inclusive, current-induced decays of
hadrons containing a heavy quark. This proves a conjecture of Bigi et al. [3],
although we do not agree on the details of the cancellation. In Sect. 6, we

summarize our results and give some conclusions.

2 Renormalons and the Construction of the

HQET

Given a perturbative series for some quantity F (�s) in terms of the coupling

constant �s(�) renormalized at some scale �,

F (�s) =
1X
n=0

Fn

�
�0

4�
�s(�)

�n
; (2)

where �0 = 11 � 2
3
Nf is the �rst coe�cient of the �-function, we de�ne the

Borel transform eF (u) of F (�s) by
eF (u) = F0 �(u) +

1X
n=0

1

n!
Fn+1 u

n : (3)
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If the series is Borel summable, the function F (�s) can be reconstructed from

its Borel transform using the integral relation

F (�s) =

1Z
0

du exp

�
� 4�u

�0 �s(�)

� eF (u) : (4)

However, if the coe�cients Fn in (2) develop a factorial divergence for large

n, the Borel transform eF (u) can have singularities on the integration con-

tour, and the na��ve Borel summation fails. In such a case, the result of the

integration depends on a regularization (or resummation) prescription, and

F (�s) is not uniquely de�ned in terms of eF (u).
In QCD, one source of divergence in the expansion coe�cients of a per-

turbative series is related to higher-order diagrams in which a virtual gluon
line with momentum k is dressed by a number of fermion, gluon and ghost
loops.2 E�ectively, this introduces the running coupling constant gs(k) at

the vertices. Since the coupling constant increases for low momenta because
of asymptotic freedom, the insertion of additional bubbles drives the gluon
line to increasingly softer momentum, i.e. the infrared region in Feynman
integrals becomes more important. When the running coupling constant is
expressed in terms of a �xed coupling constant renormalized at some large

scale �, using

�s(k) '
�s(�)

1� �0

4�
�s(�) ln

�2

k2

=
1X
n=0

[�s(�)]
n+1

�
�0

4�
ln
�2

k2

�n
; (5)

the appearance of powers of large logarithms leads to a factorial divergence

in the expansion coe�cients Fn in (2). Associated with this are renormalon

singularities in the Borel transform eF (u).
In our case, the renormalon singularities will occur as single poles on

the real axis in the Borel plane. Poles on the positive real axis, which arise

from the low-momentum region of Feynman diagrams, are called infrared

renormalons.3 Let us denote the positions of these poles by ui and their
residues by ri, so that

eF (u) =X
i

ri

u� ui
+ : : : ; (6)

where the ellipses represent terms that are regular for u > 0. For the cal-
culation of the inverse Borel transform from (4), we may write the pole

2We hasten to add that in a non-abelian theory bubble summation is not a gauge-

invariant procedure. This is one of the reasons why we will have to use a large-Nf expansion

to obtain a consistent renormalon calculus, see below.
3Similarly, poles on the negative real axis arise from the high-momentum region and

are called ultraviolet renormalons.
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denominators in terms of a principle value and a �-function contribution:

1

u� ui
! P

1

u� ui
+ �i �(u� ui) : (7)

Here, �i is a complex number which depends on the regularization prescrip-

tion. For instance, one may choose one of the following regularizations (with

�! +0)

u� ui + ��

(u� ui)2 + �2
! �i = �� ;

1

u� ui � i�
! �i = �i� : (8)

One may also choose the principal value prescription itself, in which case
�i = 0. We write the regularized form of the Borel transform as

eF (u) = eFreg(u) +X
i

�i ri �(u� ui) ; (9)

where by de�nition eFreg(u) contains the pole terms regularized with a prin-
ciple value prescription, and all ambiguity resulting from the freedom to use
a di�erent prescription resides in the �-function contributions. The inverse
Borel transformation then leads to

F (�s) = Freg(�s)+
X
i

�i ri exp

�
� 4�ui

�0�s(�)

�
' Freg(�s)+

X
i

�i ri

�
�QCD

�

�2ui
;

(10)
where Freg(�s) is the inverse Borel transform of eFreg(u). In the last step, we

have used the one-loop expression

�s(�) =
4�

�0 ln(�2=�
2
QCD)

(11)

for the running coupling constant.4 These de�nitions make explicit the fact
that terms which depend on the regularization prescription are exponen-

tially small in the coupling constant, i.e. they have the form of power cor-

rections. The leading asymptotic behaviour is determined by the nearest
infrared renormalon pole at u = u1. We de�ne the renormalon ambiguity

�F as the coe�cient of �1:

�F = r1 exp

�
� 4�u1

�0 �s(�)

�
' r1

�
�QCD

�

�2u1
: (12)

It is a measure of the intrinsic ambiguity in the quantity F arising from the

necessity to regularize the divergent behaviour of perturbation theory in large

4Note that the last relations in (10) and (12) become exact in the large-Nf limit.
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orders. It is the purpose of this paper to trace how these leading (in powers

of �QCD=�) ambiguities cancel in HQET predictions for physical quantities.

Although the appearance of renormalons can hardly be doubted on phys-

ical grounds, a rigorous proof of their existence does not exist even in �eld

theories that are much simpler than QCD. For this reason, various forms

of large-N expansions have become the state-of-the-art approach to study

renormalon singularities. In QCD, one uses 1=Nf as an expansion parame-

ter, where Nf is the number of light quark avours. In the large-Nf limit,

the insertions of fermion loops in a gluon propagator are the only higher-

order contributions that have to be retained in the perturbative expansion,

since they involve powers of Nf �s = O(N0
f ). Unfortunately, QCD in the

large-Nf limit is not an asymptotically free theory; the �rst coe�cient of the
�-function becomes negative for Nf > 33=2. However, it is believed that
although the 1=Nf expansion is not adequate to describe the dynamics of
QCD, it can still be used to locate the position of the renormalon poles in
the Borel plane. In other words, the hope is that tracing the fermionic con-
tribution to the �-function one gets the remaining contributions for free, and

that using the correct value of �0 in (4) gives the right result. Although there
exists no proof of this assertion, we will accept it as a working hypothesis.

In the large-Nf limit, the summation of bubbles can be performed directly
on the gluon propagator. In Landau gauge, and after renormalization of the
fermion loops, the Borel transform of the resummed propagator takes the

form [2, 7]

fD��
ab (k; u) = i�ab

 
eC

�2

!
�u

k�k� � g��k2

(�k2)2+u ; (13)

where � is the renormalization scale, and C is a scheme-dependent constant.

In the MS scheme,C = �5=3. Consider now an arbitrary correlation function
without external gluons. To order 1=Nf , all its dependence on the coupling

constant �s comes from diagrams containing one resummed gluon propaga-
tor. The Borel transform of such diagrams is simply obtained by using the
Borel transformed propagator (13) instead of the usual propagator.

Following Beneke and Braun [2], let us then consider the structure of

infrared renormalons in the pole mass and on-shell wave-function renormal-
ization of a heavy quark. In terms of the self-energy �( /p), one has

mpole
Q = mQ + �( /p)

���
/p=mpole

Q

; 1� Z�1Q =
@�( /p)

@ /p

����
/p=mpole

Q

; (14)

where mQ is the bare mass. In general, these are complicated implicit equa-

tions. However, since the self-energy is of order 1=Nf with respect to the

bare mass, one can replace mpole
Q by mQ on the right-hand side, thereby ne-

glecting terms of order 1=N2
f . We work in Landau gauge and use dimensional
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regularization. By evaluating the diagram depicted in Fig. 1, we obtain for

the Borel transform of the self-energy the relations

e�( /p; u)���
/p=mQ

=
CF mQ

�0
(d� 1) e�Cu (4�)2�d=2

�
mQ

�

�d�4�2u

�(d� 2� 2u)
�(2 � d

2
+ u) �(d � 3� 2u)

�(d � 1 � u)
+O(N�2

f ) ;

@ e�( /p; u)
@ /p

����
/p=mQ

= �(1 + u)

mQ

e�( /p; u)���
/p=mQ

+O(N�2
f ) ; (15)

where CF = 4=3, and d denotes the number of space-time dimensions. For

generic u, one can evaluate these expressions for d = 4. The positions of
renormalons are determined by the �-functions in the numerator. There are
infrared renormalons at positive half-integer values of u, as well as ultraviolet
renormalons at negative integer values of u. For u = 0, the self-energy and its

derivative are ultraviolet divergent in d = 4 dimensions. One can subtract the
ultraviolet divergence by subtracting the pole at u = 0 after setting d = 4 [2].
This determines the renormalized Borel transform up to a scheme-dependent
function R(u), which is entire in the Borel plane if a renormalization scheme
with analytic counterterms (such as MS) is employed. The result is

fmpole
Q (u) = mR

Q

�
�(u) +

CF

�0

�
6 e�Cu

�
�

mQ

�2u
(1 � u)

�(u) �(1 � 2u)

�(3 � u)
� 3

u
+Rm(u)

�

+ O(N�2
f )

�
; (16)

and

eZR
Q(u) = �(u) +

CF

�0

�
� 6 e�Cu

�
�

mQ

�2u
(1� u2)

�(u) �(1 � 2u)

�(3 � u)
+

3

u
+RZ(u)

�

+ O(N�2
f ) ; (17)

where mR
Q is the renormalized mass. The �rst expression has been derived in

Ref. [2]. Note that to order 1=Nf the choice of mQ in the parentheses on the

right-hand side is arbitrary. The functions Rm(u) and RZ(u) depend on the
renormalization scheme speci�ed by the superscript \R". In the MS scheme,
one has Rm(u) = �5=2+O(u) and RZ(u) = 11=2+O(u). For the discussion

of renormalon singularities these functions are irrelevant. The asymptotic

behaviour of the perturbative expansions for mpole
Q and ZQ is determined by

the nearest infrared renormalon pole, which is located at u = 1=2. According

to (12), it leads to intrinsic ambiguities given by

�mpole
Q = �2CF

�0
e�C=2�QCD +O(N�2

f ) ;

�ZQ =
3CF

�0
e�C=2

�QCD

mQ

+O(N�2
f ) : (18)
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Note that the product e�C=2 �QCD is scheme-independent.

After this lengthy introduction into the problem, let us now turn to the

construction of the HQET [8]{[11]. A heavy quark interacting with light

degrees of freedom inside a hadron is almost on-shell. It is then natural to

split its momentum into a \large" and a \small" piece according to pQ =

mQ v + k, where v is the velocity of the hadron, and mQ is some choice of

the heavy quark mass discussed in detail below. For the moment let us just

require that the components of the residual momentum k are much smaller

than mQ. One then proceeds by introducing a velocity-dependent heavy

quark �eld hv(x), which is related to the original �eld Q(x) by

hv(x) = exp(imQ v � x)
(1 + /v)

2
Q(x) : (19)

The e�ective Lagrangian for hv reads [10, 11, 15]

Le� = �hv (iv �D � �m)hv + : : : ; (20)

where �m is the residual mass term for the heavy quark in the e�ective
theory. It appears since there is a freedom in the choice of the expansion
parameter mQ in (19). One can show that in physical matrix elements only

the combination (mQ+ �m) appears, i.e. di�erent choices of mQ are compen-
sated by di�erent values of �m [15]. The ellipses in (20) represent terms that
contain additional powers of iD�=mQ or �m=mQ. If one arranges things in
such a way that the components of k and �m are of order �QCD and inde-
pendent of mQ, this construction provides a systematic expansion in powers
of �QCD=mQ. Moreover, the leading terms in the e�ective Lagrangian (20)

are then invariant under a spin-avour symmetry group. To this end, the
heavy quark mass mQ used in the �eld rede�nition (19) must be a \physical"
mass such as the pole mass, the mass of the lightest hadron that contains the

heavy quark, or any other de�nition that di�ers from the pole mass by an
amount of order �QCD. The residual mass term is given by �m = mpole

Q �mQ;

i.e. if one chooses the pole mass to construct the HQET, the residual mass
vanishes, and to any �nite order in perturbation theory the e�ective heavy

quark propagator has a pole at k = 0. However, from our previous con-

siderations we know that there is an intrinsic ambiguity of order �QCD in
the de�nition of the pole mass, once non-perturbative e�ects are taken into

account. Hence, if one wants to write down the Lagrangian of the HQET
without specifying a particular Borel summation prescription, one can do

this for the price of an ambiguous residual mass term [2]. To be speci�c, let
us construct the HQET using the heavy quark mass de�ned with a principle

value prescription to regularize the poles in the Borel plane [cf. (10)]. It then

follows that

�m = �1�m
pole
Q = ��1

2CF

�0
e�C=2�QCD +O(N�2

f ) : (21)
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The ambiguity associated with the de�nition of the pole mass shows up in

the form of an ambiguous parameter in the e�ective Lagrangian (20). At �rst

sight this may seem a problem: How can one derive unambiguous predictions

from a Lagrangian that contains an ambiguous parameter? The answer is

that the e�ective theory has to be matched onto the full theory at some

large momentum scale. In this process there appear coe�cient functions

multiplying the operators of the HQET. The ambiguous residual mass term

is required to cancel ambiguities in these coe�cient functions. The important

point to note is that �m is independent of mQ and thus does not break the

avour symmetry of the e�ective Lagrangian. The way in which the residual

mass enters the 1=mQ expansion has been investigated in Ref. [15].

Let us come back, at this point, to the original formulation of Wilson's
OPE [18], in which renormalons never appear. Introducing a hard factoriza-
tion scale � in the construction of the HQET would yield a residual mass
term of the form �m � ��s(�). Likewise, hadronic matrix elements in
the e�ective theory as well as the Wilson coe�cient functions would have a
power-like dependence on �, in such a way that the factorization scale disap-

pears from the �nal predictions for physical quantities. This is the content of
the renormalization-group equation. In this formulation, the parameters of
the theory are not plagued by ambiguities, but they depend on the arbitrary
parameter �. Moreover, the precise form of this dependence (for instance,
the coe�cient of the ��s(�) term in �m) depends on how exactly the hard

cuto� is implemented in Feynman diagrams. Hence, there is a similar arbi-
trariness in the de�nition of these parameters as in the case of the practical
form of the OPE, which contains renormalons. Finally, we note that chosing
� = mQ as a factorization scale (as it was proposed in Refs. [3, 25]) breaks
the avour symmetry of the e�ective Lagrangian (through the residual mass

term) and is thus not a viable choice in processes that involve more than one
heavy quark avour.

3 Heavy-to-Heavy Transition Matrix Elements

In this section we investigate how renormalons appear in the hadronic ma-

trix elements that describe current-induced transitions between two hadrons

containing heavy quarks with masses m1 and m2. These matrix elements are
of the form hH2(v2)j �Q2 �Q1 jH1(v1)i, where v1 and v2 denote the velocities
of the hadrons. The quantum numbers of the light degrees of freedom are

assumed to be the same in the initial and �nal state, but are otherwise arbi-

trary. We will restrict ourselves to the cases of vector or axial vector currents

(� = � or �5). This covers semileptonic weak decays such as �B ! D(�)` ��
and �b ! �c ` ��.

In the HQET, the currents which mediate these transitions obey an ex-

9



pansion in a series of local operators multiplied by coe�cient functions. These

functions depend upon the heavy quark masses, the renormalization scale,

and the hadron velocity product w = v1 � v2. A particular property of heavy-

to-heavy transitions is that the coe�cients of the operators of dimension four

are all related to the coe�cients of the dimension-three operators [26]. The

reason for this is an invariance of the e�ective theory under reparametriza-

tion of the heavy quark momentum [16]. As an example, we give the exact

form of the expansion of the vector current to order 1=mQ [26]:

�Q2 
�Q1 ! CV

1

(
�hv2

�hv1 +
1

2m1

�hv2
�i /D1 hv1 �

1

2m2

�hv2 i
 �
/D2 

�hv1

)

+
@CV

1

@w

(
1

m1

�hv2
�iv2�D1 hv1 �

1

m2

�hv2 iv1�
 �D2 

�hv1

)

+ CV
2

(
�hv2 v

�
1 hv1 +

1

2m1

�hv2 v
�
1 i /D1 hv1 �

1

2m2

�hv2 i
 �
/D2 v

�
1 hv1 +

1

m1

�hv2 iD
�
1 hv1

)

+
@CV

2

@w

(
1

m1

�hv2 v
�
1 iv2�D1 hv1 �

1

m2

�hv2 iv1�
 �D2 v

�
1 hv1

)

+ CV
3

(
�hv2 v

�
2 hv1 +

1

2m1

�hv2 v
�
2 i /D1 hv1 �

1

2m2

�hv2 i
 �
/D2 v

�
2 hv1 �

1

m2

�hv2 i
 �
D�
2 hv1

)

+
@CV

3

@w

(
1

m1

�hv2 v
�
2 iv2�D1 hv1 �

1

m2

�hv2 iv1�
 �D2 v

�
2 hv1

)

+ O

�
1

m2
1

;
1

m2
2

;
1

m1m2

�
; (22)

where CV
i = CV

i (m1=�;m2=�;w). A similar expansion with coe�cients CA
i ,

and with 5 inserted after whatever object carries the Lorentz index �, holds
for the axial vector current. The symbols Di represent combinations of a

gauge-covariant derivative and the residual mass term. They are de�ned as

[15]

iD�
1 = iD� � �mv�1 ; i

 �
D�
2 = i

 �
D� + �mv�2 : (23)

We will show below that the coe�cient functions CV;A
i of the dimension-

three operators contain infrared renormalons at u = 1=2, corresponding to

power behaviour of order 1=m1 or 1=m2. In order for the physical heavy-
to-heavy transition amplitudes to be unambiguous, we have to require that

these renormalons be compensated by ultraviolet renormalons in HQET ma-

trix elements of dimension-four operators. This requirement is analogous to

the renormalization-group equation in Wilson's OPE. The complete set of

dimension-four operators consists of the local current operators in (22) as
well as operators containing the time-ordered product of a dimension-three

operator with a 1=mQ insertion from the e�ective Lagrangian [14], which at

10



this order is given by [8, 11]

Le� = �hv iv � D hv +
1

2mQ

�hv (iD)2hv + Cmag(mQ=�)
gs

4mQ

�hv ���G
��hv + : : : :

(24)

However, a cancellation of renormalon ambiguities can only occur between

terms that have the structure of matrix elements of local dimension-three

operators. In other words, only the matrix elements of dimension-four oper-

ators that can mix with lower dimensional operators can contain ultraviolet

renormalons.

In heavy-to-heavy transitions, the ultraviolet renormalons in the matrix

elements of the local dimension-four operators can be related to the infrared
renormalon in the pole mass. Using the equation of motion of the HQET,
iv1�D1 hv1 = 0, as well as an integration by parts, one can show that [14, 15]

hH2(v2)j �hv2 � iD�
1 hv1 jH1(v1)i =

��

w + 1
hH2(v2)j �hv2 � (w v�1 � v�2 )hv1 jH1(v1)i + : : : ;

�hH2(v2)j �hv2i
 �D�
2 �hv1 jH1(v1)i =

��

w + 1
hH2(v2)j �hv2(w v�2 � v�1 ) �hv1 jH1(v1)i + : : : ;

(25)

where � may be an arbitrary Dirac matrix. The ellipses represent terms that
vanish upon contraction with v1� or v2�. These terms cannot be written in
the form of matrix elements of local operators. Hence, as explained above,
they must be free of renormalons. As an example, consider the case of the
ground-state pseudoscalar and vector mesons. There, the matrix elements of
local dimension-three operators can be parametrized in terms of the Isgur-

Wise function [20]:

hM2(v2)j �hv2�hv1 jM1(v1)i = ��(w;�)Tr
n
M2(v2) �M1(v1)

o
; (26)

whereM(v) are the tensor wave functions de�ned in Ref. [12]. The matrix

elements of local dimension-four operators can be written as [14, 15]

hM2(v2)j �hv2� iD�
1 hv1 jM1(v1)i = �

��

w + 1
�(w;�)Tr

n
M2(v2) (w v�1 � v�2 ) �M1(v1)

o

+ �3(w;�)Tr

��
� � v�1 + v�2

w + 1

�
M2(v2) �M1(v1)

�
:

(27)

Note that the Feynman rules of the HQET imply that there cannot appear

Dirac matrices next to � under the trace with the meson wave functions.

Obviously, the structure of the trace associated with the function �3(w;�) is
di�erent from the structure of the trace in (26). It follows that �3(w;�) does

11



not contain an ultraviolet renormalon at u = 1=2. Let us now come back

to the terms shown explicitly in (25). They have the structure of matrix

elements of the local dimension-three operators. For instance, in the case

of the second operator on the right-hand side in (22) one has � = ��,

and between the heavy quark spinors one can replace (w v�1 � v�2 ) 
�� by

(w + 1)� � 2v�2 . The parameter

�� = mHi
�mi � �m = mHi

�m
pole
i ; i = 1; 2 (28)

denotes the asymptotic value of the di�erence between the hadron and heavy

quark pole masses, which is avour-independent. Note that this parameter

is independent of the choice of the expansion parameter mQ used in the
construction of the HQET [15]. However, because of its dependence on the
pole mass it does contain an ultraviolet renormalon [2]. Using (21), we �nd
that the corresponding ambiguity in �� is given by

��� = ��mpole
Q =

2CF

�0
e�C=2�QCD +O(N�2

f ) : (29)

Next consider the matrix elements of the operators containing the time-
ordered product of two local operators. An insertion of the kinetic operator

(1=2mQ) �hv (iD)2hv into a matrix element of a local dimension-three operator
does not a�ect the transformation properties under the Lorentz group and
heavy quark spin symmetry. The e�ect of such an insertion is simply a
multiplicative renormalization of the original matrix element. We de�ne a
function K(w;�) by5

hH2(v2)j i
Z
d4xT

n
�hv1(x) (iD1)

2hv1(x);
�hv2(0) �hv1 (0)

o
jH1(v1)i

= hH2(v2)j i
Z
d4xT

n
�hv2(x) (iD2)

2hv2(x);
�hv2(0) �hv1 (0)

o
jH1(v1)i

= K(w;�) hH2(v2)j �hv2(0) �hv1 (0) jH1(v1)i : (30)

Clearly, these time-ordered products can mix with the dimension-three op-
erators under renormalization. This is obvious if a dimensionful regulator is

employed. But even in dimensional regularization, it can be seen from the

renormalization-group equation for the function K(w;�), which contains an
inhomogeneous term proportional to �� [27]:

�
d

d�
K(w;�) = �2�� (w � 1)

@

@w
hh(w) : (31)

5For meson decays, the form factor K(w; �) is usually written as K(w; �) =

2�1(w; �)=�(w; �) [14], where �(w; �) is the Isgur-Wise function [20].

12



Here hh(w) denotes the velocity-dependent anomalous dimension of the cur-

rents in the e�ective theory [12]:

hh(w) =
CF �s

�

h
w r(w) � 1

i
+O(�2s) ;

r(w) =
1p

w2 � 1
ln (w +

p
w2 � 1) : (32)

From (31), it follows that the function K(w;�) contains an ultraviolet renor-

malon at u = 1=2. Let us denote its renormalon ambiguity by �K(w).

Vector current conservation implies that K(w;�) must vanish at zero recoil

(w = 1) [14], and this requires that

�K(1) = 0 : (33)

Finally, we note that insertions of the chromo-magnetic operator change the

transformation properties of matrix elements in such a way that there is no
mixing with matrix elements of lower dimensional operators [14]. Hence,
the HQET functions that parameterize these matrix elements are free of
ultraviolet renormalons. This is again special to the case of heavy-to-heavy
transitions, where the spin symmetry applies to both the initial and �nal
state.

We can now equate the infrared and ultraviolet renormalon ambiguities
to derive a set of conditions that have to be ful�lled in order to obtain unam-
biguous predictions for the physical heavy-to-heavy transition form factors.
Separating the terms associated with di�erent Lorentz structures, we obtain
from (22), (25), (29) and (30):

�C1 =
�mpole

2

�
1

m1

+
1

m2

��
w � 1

w + 1
C1 + 2(w � 1)

@C1

@w

�
� �K

2

�
1

m1

+
1

m2

�
C1 ;

�C2 =
�mpole

2

�
1

m1

+
1

m2

��
w � 1

w + 1
C2 + 2(w � 1)

@C2

@w

�
+
�mpole

m1

w � 1

w + 1
C2

� �mpole

m2

1

w + 1
(C1 � C2 + C3)�

�K

2

�
1

m1

+
1

m2

�
C2 ;

�C3 =
�mpole

2

�
1

m1

+
1

m2

��
w � 1

w + 1
C3 + 2(w � 1)

@C3

@w

�
+
�mpole

m2

w � 1

w + 1
C3

� �mpole

m1

1

w + 1
(C1 � C2 + C3)�

�K

2

�
1

m1

+
1

m2

�
C3 : (34)

We use a short-hand notation where we omit the superscript V or A on the

coe�cient functions, and where upper (lower) signs refers to the coe�cients
of the vector (axial vector) current. In total, there are thus six relations. We

�nd it useful to solve for �K using the relation for �CA
1 , and to eliminate

�K from the remaining relations. This leads to

�K = �mpole (w�1)
�

1

w + 1
+2

@

@w
lnCA

1

�
�2

�
1

m1

+
1

m2

�
�1 �CA

1

CA
1

; (35)
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as well as

1

�mpole

�
�CV

1

CV
1

� �CA
1

CA
1

�
=

�
1

m1

+
1

m2

��
1

w + 1
+ (w � 1)

@

@w
ln
CV
1

CA
1

�
;

1

�mpole

�
�C2 �

C2

C1

�C1

�
= � 1

m2

1

w + 1
(C1 � C2 + C3) +

1

m1

w � 1

w + 1
C2

+

�
1

m1

+
1

m2

�
(w � 1)C2

@

@w
ln
C2

C1

;

1

�mpole

�
�C3 �

C3

C1

�C1

�
= � 1

m1

1

w + 1
(C1 � C2 + C3) +

1

m2

w � 1

w + 1
C3

+

�
1

m1

+
1

m2

�
(w � 1)C3

@

@w
ln
C3

C1

: (36)

Equation (35) determines the structure of the ultraviolet renormalon in the

hadronic form factor K(w;�) in terms of the infrared renormalon in the pole
mass and in the coe�cient function CA

1 . Since we are not able to calculate
the hadronic form factor K(w;�) from �rst principles (not even using a 1=Nf

expansion), we cannot check this relation, but we can use it to compute �K
given a calculation of �mpole and �CA

1 . The remaining �ve relations in (36)

form a set of consistency conditions involving only the infrared renormalons
in the pole mass and in the coe�cient functions. Unless these conditions
are satis�ed, a compensation of infrared and ultraviolet renormalons is not
possible. The existence of such relations is non-trivial and is a consequence
of the strong constraints imposed by heavy quark symmetry on the structure
of the weak decay form factors in heavy-to-heavy transitions.

The above results are exact to all orders in 1=Nf . In the large-Nf limit,
they simplify since the renormalon ambiguities are of order 1=Nf , and we can
use the fact that Ci = �i1 +O(1=Nf ). This leads to

�K =
w � 1

w + 1
�mpole� 2

�
1

m1

+
1

m2

�
�1

�CA
1 +O(N�2

f ) ; (37)

and

�CV
1 ��CA

1 =
�mpole

w + 1

�
1

m1

+
1

m2

�
+O(N�2

f ) ;

�CV;A
2 = � 1

w + 1

�mpole

m2

+O(N�2
f ) ;

�CV;A
3 = � 1

w + 1

�mpole

m1

+O(N�2
f ) : (38)

Let us now check these relations with an explicit calculation of the asymp-

totic behaviour of the coe�cient functions to order 1=Nf . The coe�cients
are obtained by comparing matrix elements in the HQET with matrix ele-

ments in the full theory at some reference scale �. This matching procedure

14



is independent of the external states, and it is most economic to evaluate the

matrix elements with on-shell quark states. If one uses dimensional regular-

ization, all loop diagrams in the HQET vanish, i.e. the coe�cient functions

are simply given by the on-shell vertex functions of the full theory [8, 17].

Hence, the Borel-transformed coe�cient functions are obtained by evaluating

the diagram shown in Fig. 2 supplemented by wave-function renormalization.

Setting d = 4 in the �nal result, we obtain

eCV;A
1 (u) = �(u)� 3CF

�0
e�Cu

��
�

m1

�2u
+

�
�

m2

�2u�
(1 � u2)

�(u) �(1 � 2u)

�(3� u)

+
CF

�0
e�Cu

�
�2

m1m2

�u �(u) �(1 � 2u)

�(2 � u)

(
2
h
(1 + u)w � u

i
F 1+u
11

+ u

�
m1

m2

F 1+u
21 +

m2

m1

F 1+u
12

�
+ 2

(1 � u)(1� 2u)

(2� u)
F u
11

)

+
CF

�0

�
� 2

u

h
w r(w) � 1

i
+RV;A(u)

�
+ O(N�2

f ) ;

eCV;A
2 (u) = �2CF

�0
e�Cu

�
�2

m1m2

�u �(1 + u) �(1 � 2u)

�(2 � u)

�
(
F 1+u
12 �

(1� 2u)

3(2� u)

�
F 1+u
22 �

2m1

m2

F 1+u
31

�)
+O(N�2

f ) ;

eCV;A
3 (u) = �2CF

�0
e�Cu

�
�2

m1m2

�u �(1 + u) �(1 � 2u)

�(2 � u)

�
(
F 1+u
21 �

(1� 2u)

3(2� u)

�
F 1+u
22 �

2m2

m1

F 1+u
13

�)
+O(N�2

f ) ; (39)

where

F c
ab =

�(a+ b)

�(a) �(b)

1Z
0

dxxa�1(1� x)b�1
�
x2

m1

m2

+ (1� x)2 m2

m1

+ 2x(1� x)w
�
�c

:

(40)

The terms in the last row in eCV;A
1 (u) come from a renormalization of the ul-

traviolet divergences for u = 0. The coe�cient of the 1=u pole is proportional

to the one-loop coe�cient of the velocity-dependent anomalous dimension in

(32). The detailed form of the entire function RV;A(u) is irrelevant for our
discussion. We note that a check of the complicated expressions (39) is pro-

vided by an expansion around u = 0, from which we recover the one-loop
results for the coe�cient functions derived in Ref. [28].

It is a simple exercise to extract the residues of the renormalon poles at

u = 1=2 from the above expressions. The relevant parameter integrals are
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given by

F
3=2
12 =

2

w + 1

s
m1

m2

; F
3=2
21 =

2

w + 1

s
m2

m1

; F
3=2
11 =

1

2
(F

3=2
12 + F

3=2
21 ) :

(41)

Using (12) and (18), we then compute the corresponding renormalon ambi-

guities in the coe�cient functions. We �nd that the consistency conditions

(38) are indeed satis�ed. In particular, we note that

�CV
1 =

�mpole

4

3w + 1

w + 1

�
1

m1

+
1

m2

�
+O(N�2

f ) ;

�CA
1 =

�mpole

4

3(w � 1)

w + 1

�
1

m1

+
1

m2

�
+O(N�2

f ) ; (42)

so that the di�erence obeys the �rst relation given in (38). Moreover, for the
ultraviolet renormalon ambiguity in the function K(w;�) we obtain from
(37)

�K(w) = �w � 1

w + 1

�mpole

2
+O(N�2

f ) : (43)

Note that �K(w) vanishes for w = 1, as required by vector current conser-
vation [see (33)].

We have emphasized above that the appearance of renormalons does not

obscure the structure of the heavy quark expansion. In particular, Luke's
theorem [14], which concerns the vanishing of �rst-order power corrections
at zero recoil, remains una�ected. Let us illustrate this important fact with
the example of the meson decay form factor hA1

(w) de�ned by [17]

hD�(v2; �)j �c �5b j �B(v1)i =
p
mBmD� (w + 1)hA1

(w) ��� + : : : ; (44)

where w = v1 � v2, and � denotes the polarization vector of the D�-meson.

This form factor plays a crucial role in the extraction of jVcbj from the ex-

trapolation of the �B ! D�` �� decay rate to zero recoil. One obtains [29]

lim
w!1

1p
w2 � 1

d�( �B ! D�` ��)

dw
=

G2
F

4�3
(mB �mD�)2m3

D� jVcbj2 jhA1
(1)j2 :

(45)

The important point is that hA1
(1) is protected by Luke's theorem against

�rst-order power corrections [14]. It follows that

hA1
(1) = �A +O(1=m2

Q) ; �A = CA
1 (w = 1) ; (46)

where we use mQ as a generic notation for mc or mb. The presence of an in-

frared renormalon at u = 1=2 in the short-distance coe�cient �A would spoil
this non-renormalization theorem. However, from (37) and (33) it follows

that the infrared renormalon at u = 1=2 in CA
1 vanishes at zero recoil. Our

16



explicit result (42) con�rms this to order 1=Nf . Thus, the theoretical uncer-

tainty in the determination of jVcbj is of order 1=m2
Q; it is not a�ected by a

renormalon ambiguity of order 1=mQ. Note, however, that the expression foreCA
1 (u) in (39) contains a renormalon pole at u = 1, which does not vanish at

zero recoil. The corresponding ambiguity in �A is given by

��A =
CF

2�0
e�C �2

QCD

�
1

m1

+
1

m2

�2
+O(N�2

f ) : (47)

This infrared renormalon must be compensated by an ultraviolet renormalon

in the terms of order 1=m2
Q in (46). For completeness, let us also study

the renormalization of the vector current at zero recoil. There, the relevant
combination of coe�cient functions is

�V = CV
1 (w = 1) + CV

2 (w = 1) + CV
3 (w = 1) : (48)

We �nd that the leading renormalon pole in the Borel transform of �V is

located at u = 1. From its residue, we obtain

��V =
CF

2�0
e�C �2

QCD

�
1

m1

� 1

m2

�2
+O(N�2

f ) : (49)

Note that ��V vanishes in the limitm1 = m2, in which the vector current is
conserved and not renormalized, and hence �V = 1.

As a second example, we demonstrate the cancellation of renormalon

ambiguities in the ratio of the vector form factor hV (w) de�ned by

hD�(v2; �)j �c �b j �B(v1)i =
p
mBmD� hV (w) �

���� ��� v2�v1� (50)

and the axial form factor hA1
(w). Including power corrections of order 1=mc

(and neglecting those of order 1=mb and higher), one �nds that [27]

hV (w)

hA1
(w)

=
CV
1 (w)

CA
1 (w)

�
1 +

��

mc

�
1

w + 1
+ (w � 1)

@

@w
ln
CV
1 (w)

CA
1 (w)

�
+ : : :

�
: (51)

Using the �rst relation in (36), we see that the infrared renormalon of or-

der 1=mc in the ratio CV
1 =C

A
1 is precisely compensated by the ultraviolet

renormalon of the term proportional to ��.

We conclude this section by pointing out an important implication of our
result (47). Recently, it has been claimed that one can derive a sum rule for

the form factor hA1
(1), from which it is possible to obtain a bound for the

non-perturbative corrections of order 1=m2
Q in (46). The sum rule reads [24]

h2A1
(1)+ : : : = �2A�

�2

3m2
c

+
�1 + 3�2

4

�
1

m2
c

+
1

m2
b

+
2

3mcmb

�
+O(1=m3

Q) ; (52)
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where the ellipses represents positive contributions from transitions into ex-

cited states. The parameters �1 and �2 are de�ned in terms of the B-meson

matrix elements of the kinetic and the chromo-magnetic operator in the ef-

fective Lagrangian (24). In principle, these HQET parameters could contain

ultraviolet renormalons. However, since �2 is proportional to the mass split-

ting between B and B� mesons, it is protected from renormalons. Moreover,

from the expansion of the meson mass mB in powers of 1=mb (this extends

(28) to order 1=mb [30])

mB = m
pole
b + ��� �1 + 3�2

2mb

+O(1=m2
b ) ; (53)

and from the fact that to order 1=Nf the Borel transform of the pole mass
given in (16) does not contain an infrared renormalon pole at u = 1, it follows
that �1 does not contain an ultraviolet renormalon6 (at least) to order 1=Nf

[2]. We conclude that the non-perturbative corrections in (52) do not contain
the ultraviolet renormalons required to cancel the infrared renormalon in the

perturbative coe�cient �2A. Hence, there must be something wrong with the
sum rule. Either the short-distance correction on the right-hand side is not
given by �2A, or there must be additional terms of order 1=m2

Q to compensate
the renormalon in �2A. Therefore, the numerical implications derived from
this sum rule in Ref. [24] should be taken with caution.

4 Heavy-to-Light Transition Matrix Elements

We have seen in the previous section that the appearance of renormalons in
heavy-to-heavy transition matrix elements is to a large extent constrained
by the symmetries and equation of motion of the HQET, which apply to
both the initial and �nal hadron states. As a consequence, ultraviolet renor-

malons enter the HQET matrix elements of dimension-four operators only

through the parameter �� and a single function K(w;�). Since the ultravio-

let renormalon in �� is related to the infrared renormalon in the pole mass,

it is possible to derive the consistency relations (36), which determine the
infrared renormalon poles in the coe�cient functions independently of any

unknown hadronic matrix element.
It is well-known that in heavy-to-light transitions there are fewer con-

straints imposed by heavy quark symmetry. In particular, most (if not all)
form factors appearing at order 1=mQ mix with lower dimensional operators

under renormalization. Examples are provided by the 1=mQ expansions for

meson decay constants [31] and the semileptonic �B ! � ` �� decay form factors

6Note that even if �1 and �2 would contain ultraviolet renormalons, the mass depen-

dence of the power corrections in (52) would not match with the mass dependence of the

infrared renormalon pole in �A as given in (47).
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[32]. Therefore, it is not possible to derive consistency relations analogous

to (36) in this case. The best one can achieve is to deduce the structure of

ultraviolet renormalons in the hadronic form factors of the HQET from a cal-

culation of the infrared renormalons in the coe�cient functions and the pole

mass. We shall discuss this for the simplest case of meson decay constants.

Consider heavy-to-light transition matrix elements of the form hXj �q �Q jH(v)i,
where � = � or �5, H(v) is a heavy hadron with velocity v, and X is some

light �nal state. For simplicity, we set the mass of the light quark to zero and

use a regularization scheme with anticommuting 5. This leads to a simple

relation between the coe�cient functions appearing in the expansion of the

vector and axial vector currents [15]:

�q �Q ! C1(mQ=�) �q 
�hv + C2(mQ=�) �q v

�hv +O(1=mQ) ;

�q �5Q ! C1(mQ=�) �q 
�5 hv � C2(mQ=�) �q v

�5 hv +O(1=mQ) :(54)

These coe�cients can be calculated in analogy to the previous section. For

their Borel transforms, we obtain

eC1(u) = �(u) +
CF

�0

(
� 3 e�Cu

�
�

mQ

�2u �
1 +

u

3
� u2

�
�(u) �(1 � 2u)

�(3 � u)

+
3

2u
+R(u)

)
+O(N�2

f ) ;

eC2(u) =
4CF

�0
e�Cu

�
�

mQ

�2u �(1 + u) �(1 � 2u)

�(3 � u)
+O(N�2

f ) ; (55)

where R(u) = 5=4 + O(u) in the MS scheme. We have checked that from
an expansion around u = 0 one recovers the known one-loop expressions for
the coe�cient functions given in Ref. [33]. From the residues of the poles at

u = 1=2, it is straightforward to compute the renormalon ambiguities

�C1 = �
11

12

�mpole

mQ

+O(N�2
f ) ;

�C2 =
2

3

�mpole

mQ

+O(N�2
f ) : (56)

To see how renormalons cancel in physical quantities, let us consider the

1=mQ expansion for pseudoscalar and vector meson decay constants in the
HQET. It reads [31]

fP
p
mP =

h
C1(mQ=�) + C2(mQ=�)

i
F (�)

(
1 +

1

mQ

�
G1(�)� b(mQ=�)

��

6

�

+
6

mQ

�
Cmag(mQ=�)G2(�)�B(mQ=�)

��

12

�)
+O(1=m2

Q) ;
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fV
p
mV = C1(mQ=�)F (�)

(
1 +

1

mQ

�
G1(�)� b(mQ=�)

��

6

�

� 2

mQ

�
Cmag(mQ=�)G2(�) �B(mQ=�)

��

12

�)
+O(1=m2

Q) ; (57)

where Cmag(mQ=�) = 1 + O(�s) is the coe�cient of the chromo-magnetic

operator in the e�ective Lagrangian (24), while B(mQ=�) = 1 + O(�s) and

b(mQ=�) = O(�s) are coe�cients that appear at order 1=mQ in the expan-

sion of the currents [31]. F (�); G1(�), and G2(�) are hadronic parameters,

which are independent of mQ. Both G1(�) and G2(�) mix with lower dimen-

sional operators and contain ultraviolet renormalons, as can be seen from the
renormalization-group equations [31]

�
d

d�
G1(�) =

��

6
�

d

d�
b(mQ=�) ;

�
d

d�

h
Cmag(mQ=�)G2(�)

i
=

��

12
�

d

d�
B(mQ=�) : (58)

Requiring that in (57) the infrared renormalons in the coe�cient functions
cancel against the ultraviolet renormalons in �� and Gi(�), we obtain the
relations

�C1 +�C2

C1 + C2

= ��mpole

6mQ

(b+ 3B)� 1

mQ

�
�G1 + 6Cmag�G2

�
;

�C1

C1

= ��mpole

6mQ

(b�B)� 1

mQ

�
�G1 � 2Cmag�G2

�
: (59)

To order 1=Nf , they simplify to

�G1 = �
mQ

4

�
4�C1 +�C2

�
+O(N�2

f ) =
3�mpole

4
+O(N�2

f ) ;

�G2 = �
�mpole

12
� mQ

8
�C2 +O(N�2

f ) = ��mpole

6
+O(N�2

f ) : (60)

This determines the ultraviolet renormalon ambiguities in the hadronic pa-

rameters Gi(�). The situation encountered here is general for heavy-to-light

transitions; since there are always at least two hadronic parameters that
contain ultraviolet renormalons, it is not possible to derive a consistency

condition for the infrared renormalons in the coe�cient functions C1 and C2.
However, the residues of the renormalons in the coe�cient functions deter-

mine in a unique way the residues of the ultraviolet renormalon poles in the

hadronic parameters of the HQET.
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5 Inclusive Decays of Heavy Hadrons

After the analysis of exclusive transitions, we will now consider current-

induced inclusive decays of hadrons containing a heavy quark. Examples

are the semileptonic decays �B ! Xq ` �� and �b ! Xq ` �� , where q = c or u,

as well as the rare decay �B ! Xs . The avour-changing current relevant

to semileptonic decays is �q �(1� 5) b. For the penguin-induced transitions,

it is of the form �q ���(1 � 5) b. The inclusive decay distributions can be

calculated in powers of 1=mb using an OPE for the transition amplitude

[34]{[40]

T (v; p) = �i
Z
d4x e�ip�x hH(v)jT

n
�b(x) �1 q(x); �q(0) �2 b(0)

o
jH(v)i ; (61)

where H(v) denotes the decaying b-avoured hadron with velocity v, p is

the momentum carried by the current (in the cases above, the total lepton
or photon momentum, respectively), and �i are abbreviations for the ap-
propriate Dirac matrices. The OPE is constructed by performing a phase
rede�nition [cf. (19)]

bv(x) = exp(�imb v � x) b(x) = hv(x) +O(1=mb) (62)

to pull out the leading dependence of the �elds on the heavy quark mass. The
next step is to write T (v; p) as a sum of coe�cient functions multiplying local,
higher dimensional operators. The coe�cients are determined by evaluating
the diagrams shown in Fig. 3, where the momentumof the b-quark is as usual
written in the form pb = mb v + k. The residual momentum k is equivalent
to a derivative acting on the rescaled heavy quark �eld bv.

We will evaluate the contributions in the OPE including terms of order
1=mb and 1=Nf . In general, the equation of motion can be used to relate

all terms of order 1=mb to the residual mass term in the HQET Lagrangian,

which is itself of order 1=Nf . Hence, it will be su�cient to evaluate the 1=mb

corrections at tree level. Let us then start with the discussion of the tree

diagram in Fig. 3. It gives

Ttree = h�1
1

mb /v � /p �mq + i /D
�2 i ; (63)

where we use the short-hand notation hH(v)j�bv � bv jH(v)i � h� i. The tree
diagram contains the propagator of the q-quark in the background �eld of
the light degrees of freedom in the decaying hadron. To proceed, we expand

the propagator as

1

mb /v � /p �mq + i /D
=

1

mb /v � /p�mq

� 1

mb /v � /p �mq

i /D
1

mb /v � /p�mq

+: : : ;

(64)
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where the second term is of order 1=mb relative to the �rst term. The forward

matrix element of any local operator �bv �� iD
� bv containing a single covariant

derivative can be evaluated, up to 1=mb corrections, using (62) together with

the equation of motion iv �Dhv = �mhv, where �m is the residual mass term.

It follows that

h�� iD� i = �m h�� v� i+ : : : ; (65)

where �� denotes an arbitrary Dirac matrix, and the ellipses represent terms

that are suppressed by one power of 1=mb. Applying this relation, and re-

summing the expanded propagator (64), we �nd

Ttree = h�1
1

(mb + �m) /v � /p �mq

�2 i+ : : : ; (66)

where the ellipses represent terms of order 1=m2
b relative to the leading term.

We observe that, as in the case of exclusive decays, the residual mass term
always appears together with the HQET expansion parameter mb in the

combination m
pole
b = mb + �m, i.e. it is the pole mass that enters the tree-

level expression for the transition amplitude. The infrared renormalon in the
pole mass leads to an ambiguity given by

�Ttree = h�1
1

mb /v � /p �mq

(��mpole /v)
1

mb /v � /p �mq

�2 i : (67)

To see how this renormalon is cancelled, let us now turn to the calculation
of the radiative corrections depicted in Fig. 3. We study the Borel transform
of the transition amplitude to order 1=Nf using the resummed gluon prop-
agator (13). In the calculation, we only keep terms that have a renormalon
pole at u = 1=2. We obtain:

eTvertex(u) = 8CF

�0
e�C=2 ��(1 � 2u) h�1

1

mb /v � /p �mq

/v
1

mb /v � /p�mq

�2i + : : : ;

eTbox(u) = �4CF

�0
e�C=2 ��(1 � 2u) h�1

1

mb /v � /p�mq

/v
1

mb /v � /p �mq

�2 i

+
6CF

�0
e�C=2

�

mb

�(1 � 2u) h�1
1

mb /v � /p �mq

�2 i + : : : ;

eTWFR(u) = �
6CF

�0
e�C=2

�

mb

�(1 � 2u) h�1
1

mb /v � /p �mq

�2 i+ : : : : (68)

The ellipses represent terms that are regular at u = 1=2, and terms of order

1=N2
f . Note that there is no renormalon contribution from the renormal-

ization of the q-quark propagator. Moreover, the renormalon poles with

residues proportional to the tree diagram cancel between the box graph and

wave-function renormalization. For the sum of all loop contributions, we �nd

eTloops(u) = 4CF

�0
e�C=2 ��(1�2u) h�1

1

mb /v � /p�mq

/v
1

mb /v � /p �mq

�2 i+: : : :

(69)
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From the residue of the pole at u = 1=2, we obtain for the renormalon

ambiguity

�Tloops = h�1
1

mb /v � /p�mq

�mpole /v
1

mb /v � /p �mq

�2 i +O(N�2
f ) : (70)

As expected, the sum of all contributions in the OPE for the transition

amplitude is free of renormalon ambiguities:

�T = �Ttree+�Tloops = 0 : (71)

That this cancellation occurs was conjectured by Bigi et al. in Ref. [3], how-

ever without presenting an explicit calculation. In fact, it was claimed that
infrared renormalons only appear in the vertex corrections and mass renor-
malization, but not in the box diagram. Our calculation shows that this is

not correct.7 Nevertheless, we con�rm that the cancellation occurs when all
diagrams are taken into account.

The situation encountered here is special in that to order 1=mb there do
not appear non-perturbative corrections when the pole mass is used in the
OPE of the transition amplitude. Hence, at this order there are no ultraviolet
renormalons. What we have demonstrated above is a cancellation of infrared

renormalons. Consider, as an example, the total decay rate for the process
�B ! Xu ` ��. It can be calculated from the imaginary part of the transition
amplitude. Neglecting the mass of the u-quark, one obtains the well-known
result [41]

�( �B ! Xu ` ��) =
G2
F jVubj2
192�3

C(mb)
n
1 +O(1=m2

b )
o
; (72)

where

C(mb) = (mpole
b )

5
�
1 � 2�s(mb)

3�

�
�2 � 25

4

�
+ : : :

�
: (73)

We have shown that the infrared renormalon at u = 1=2 in the pole mass is

cancelled by an infrared renormalon in the perturbative series. It is possible

to eliminate these renormalons explicitly by introducing a heavy quark mass

mR
b renormalized at short distances instead of using the pole mass [3, 25].

As long as mR
b di�ers from m

pole
b by a multiplicative factor Z[�s(mb)], this

substitution does not induce 1=mb corrections to the decay rate (72). For

instance, we may work in the MS scheme and use the running mass mb(�)
evaluated at � = mb. This leads to

C(mb) = [mb(mb)]
5
�
1 � 2�s(mb)

3�

�
�2 � 65

4

�
+ : : :

�
: (74)

7We note that the renormalon contributions in the individual diagrams are the same

in all covariant gauges.
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The perturbative series in this expression does no longer contain a renormalon

at u = 1=2. Note, however, that at some higher order in the 1=mb expansion

there will appear ultraviolet renormalons in the non-perturbative corrections

to the decay rate (72). Correspondingly, the coe�cient C(mb) must contain

infrared renormalons at larger values of the Borel parameter u, which cannot

be eliminated by introducing the renormalized mass mR
b .

6 Summary and Conclusions

We have investigated the appearance of renormalons in the HQET by con-

sidering the 1=mQ expansion for exclusive heavy-to-heavy and heavy-to-light

transitions, as well as for inclusive decays of heavy hadrons. We have ar-
gued that, in general, infrared renormalons in the coe�cient functions of
HQET operators are compensated by ultraviolet renormalons in the matrix
elements of higher dimensional operators, and we have identi�ed which of the
HQET matrix elements contain such ultraviolet renormalons. In the case of

heavy-to-heavy transitions, the symmetries and the equation of motion of the
e�ective theory lead to �ve consistency relations among the infrared renor-
malons in the pole mass and the coe�cient functions. We have checked that
these relations are satis�ed to next-to-leading order in an expansion in powers
of 1=Nf .

The most important, though not surprising, result of our analysis is that
the appearance of renormalons does not alter the structure of the heavy
quark expansion, and does not invalidate any of the predictions derived us-
ing the HQET. In particular, Luke's theorem, as well as relations between
weak decay form factors, remain valid. In this sense, there is no \renormalon

problem" in the HQET. However, as in any OPE it is true that some of

the dimensionful hadronic parameters describing the non-perturbative cor-
rections in the heavy quark expansion have an intrinsic uncertainty of order
�n
QCD. An example is provided by the mass parameter ��. In the practical

form of the OPE, in which dimensional regularization is employed in the
calculation of the coe�cient functions, ambiguities arise from the necessity

to specify a resummation prescription to regulate the divergent asymptotic
behaviour of perturbation theory. In the literal form of Wilson's OPE, they

arise from the introduction of a hard factorization scale �. The hadronic

parameters of the e�ective theory then exhibit a power-like dependence on
�, in a way that depends on how the cuto� is implemented. In both cases,

to de�ne these parameters precisely would require one to �x terms in the
coe�cient functions that are exponentially small in the coupling constant.

As long as one works with truncated perturbative expressions for the Wilson

coe�cients, the errors due to the truncation are parametrically larger than
power corrections. This type of ambiguity is inherent in any OPE and as such
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cannot be avoided. In this context, we note that the introduction of a short-

distance mass instead of the pole mass, which was proposed in Refs. [3, 25],

does in general not help to eliminate renormalons. An exception is the case

of inclusive decays of heavy hadrons, where this procedure eliminates the

leading infrared renormalons. On the other hand, such a choice of the heavy

quark mass destroys the avour symmetry of the e�ective Lagrangian of the

HQET and is thus unattractive, at least in processes that involve more than

one heavy quark avour.

Finally, we like to point out that our somewhat formal investigation of

renormalons can serve for tests of HQET calculations. In some cases, the

requirement that a compensation of infrared and ultraviolet renormalons oc-

curs leads to non-trivial relations. An example is provided by the consistency
conditions (36) for heavy-to-heavy transitions. Using a similar argument, we
could show with an explicit calculation that a sum rule derived by Shifman
et al. [24], which has been used to put a bound on the hadronic form factor
that enters the extraction of jVcbj from semileptonic decays, must be incor-
rect. This sum rule relates a physical observable to a theoretical expression

in which infrared renormalons in a coe�cient function do not match with
ultraviolet renormalons in non-perturbative parameters. This expression has
an intrinsic ambiguity and thus cannot be complete. A further investigation
of what goes wrong with the argument presented in Ref. [24] is necessary
before any useful phenomenological bound can be derived.

While this paper was in writing, we became aware of a preprint by Beneke

et al. [42], who demonstrate the cancellation of infrared renormalons in in-
clusive decay rates. Their results agree with our Sect. 5.
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Figures

p

Figure 1: Borel transform of the heavy quark self-energy to order 1=Nf .

The resummed gluon propagator (13) is denoted by the dashed bubble.

m v m v1 1 2 2

Figure 2: Vertex contribution to the matching calculation of the coe�-
cient functions of heavy-heavy currents.
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Figure 3: Tree-level contribution and radiative corrections to the transi-

tion amplitude.
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