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Abstract

We consider bosonized QCD2, and prove that after rewritting the theory in terms of gauge
invariant �elds, there exists an integrability condition valid for the quantum theory as well.
Furthermore, performing a duality type transformation we obtain an appropriate action
for the description of the strong coupling limit, which is still integrable. We also prove
that the model displays a complicated set of constraints, restricting the dynamics of part
of the theory, but which are necessary to maintain the positive metric Hilbert space.
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1. Introduction

In contrast to the case of Schwinger model, quantum chromodynamics of massless fermions

in 1+1 dimensions can not be solved in terms of free �elds. Several methods have been used

in such case, some of them rendering useful results. We mention here the 1=N expansion

introduced by 't Hooft1, from which one obtains some information about the spectrum of
the theory, and the computation of the exact fermion determinant2 in terms of a Wess

Zumino Witten model3;4, by which one arrives at an equivalent bosonic action2;5. Several

authors made a�orts in the direction of solving such a di�cult model6, but an exact

solution is still missing (see [7] for an extensive review).

Working in the light cone gauge (A� = 0) and formulating the problem in terms of

light cone variables 't Hooft obtained a non-linear equation for the fermion self energy, from

which he could obtain the above mentioned information about the spectrum of the theory.
This procedure is however ambiguous, as pointed out by Wu8, and implies a tachyon for
small bare fermion masses (therefore also in the massless fermions case), see also [9]. This
situation clearly requires that a non-perturbative and explicitly gauge invariant approach
should be used in order to obtain informations based on �rm grounds. Some authors
speculated that this situation was a sign of a possible non-trivial phase structure of the
theory26.

The model has also been extensively studied, especially in the absence of fermions,
in relation to string theory. Indeed, string theory should be a model describing bound
states in strong interactions. Therefore Wilson loops in this model should be described
by the string approach as well10. In this sense it is natural to integrate out the fermions
obtaining gauge invariant objects, which describe mesonic bound states with an in�nite
string attached to it. In such a case, the construction of �elds such as �=UV (see section
2) or eg=UgV , describing gauge invariant bound states is natural after all. The original
content of the (gauge dependent) fermion �elds can still be recovered from the source

terms. Those are kept as a bookkeeping concerning the translation between original gauge
dependent �elds, and the bosonic formulation, which is non-local. In this sense, we also
recall the construction of bilinear fermion �elds11 in the light cone gauge, which arises also
from a WZW type action.

The fact that QCD2 can be studied using non-perturbative methods is by itself a non-
trivial statement. In the light cone gauge this can be motivated by the fact that bylinears
in the fermion �elds form a W1 algebra11, which underlies integrable theories12. Here, we

shall see that one obtains higher-conservation laws building an a�ne Lie algebra. We use
methods based on the Polyakov Wiegman identity2 extensively used in refs. [13] and [14],
and the consequent duality transformations14, which seem to have a widespread application

in such a class of models14;15. Due to the underlying gauge invariance, imposition of the
BRST condition in order to obtain the spectrum will be of crucial importance14;16.

Having in mind the above motivations, we �rst rewrite, in section 2 the problem in

terms of bosonic matrix variables. Fermionic Greens functions can be obtained from the
sources, which have been kept in the process. However, the path integration is performed
in terms of bosonic �elds. We found a set of �elds in terms of which the partition function

factorizes, as a product of two conformal theories, and a third model corresponding to
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an o�-critical perturbation of the WZW theory. Later we verify that the di�erent sectors

interact non-trivially due to the constraint structure. However we proceede with a semi
classical reasoning, computing the equation of motion of the latter �eld, proving that it

corresponds to an integrability condition of the theory. Notice that due to the fermionic

integration, there are already, at this point, corrections of the order of �h. We verify that

there is a non-trivial change of variables which leads to a dual formulation of the theory,
in terms of �elds which are appropriated to describe the strong coupling limit. Using the

Poisson bracket structure in section 4, we verify that the higher conservation laws obey

a Kac-Moody algebra. We also argue that the quantization of such higher conservation

laws can be done by means of the introduction of renormalization factors for the current

contribution. In section 5 we discuss the constraints arising from the structure of the
gauge interaction, and subsequently (section 6) we abtain also second class constraints. In

section 7 we discuss the consequence of the constraints for the dual theory, and later we

argue about the Regge behaviour of the spectrum1. We still discuss the possibility of a
conformally invariant type solution for the current, ending with some further conclusions.

2. Bosonization of two-dimensional QCD

We shall consider the QCD2 lagrangian, given by the expression

L = �
1

4
trF��F�� +  i 6D ; (2:1)

where D� = @� � ieA�. We work out some results in the path integral formulation, but
in a later stage consider also the canonical quantization, forcing us to use both, Euclidian
and Minkowski spaces alternatively. The conventions are given in the appendix.

The partition function is

Z [�; �; i�] =

Z
D D DA� e

�
R
d
2zL�

R
d
2z (� + �+i�A�) ; (2:2)

where �; � are the external sources for the fermions  ; and i� the external source for the
gauge �eld A�.

In order to obtain the bosonized version of the theory one has to rewrite the fermionic

determinant det i 6D as a bosonic functional integral. To achieve such aim we consider the
change of variables2

A =
i

e
V @V �1 ;

A =
i

e
U�1@U :

(2:3)

The fermionic determinant is given up to factors of the free Dirac operator, to be
discussed later in connection with the ghost system, by the expression

det i 6D = e�[UV ] ; (2:4)
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where the �[g] is the Euclidian Wess-Zumino-Witten (WZW) functional, given by the

expression

�[g] =
1

8�

Z
d2z @�g

�1@�g �
i

4�
���

Z
dr

Z
d2z ĝ�1 _̂gĝ�1@�ĝĝ

�1@� ĝ ; (2:5)

where ĝ(r; z; z) is the usual extension of g(zz) to a space having the Euclidian two-di-

mensional space as a boundary, and ĝ(1; z; z) = g(z; z) ; ĝ(0; z; z) = 1. The WZW func-

tional obeys the Polyakov Wiegman identity2

�[UV ] = �[U ] + �[V ] +
1

4�
tr

Z
d2z U�1@U V @V �1 ; (2:6)

which will be used extensively in this work. We �nd the seeked bosonized formulation
taking advantage of the invariance of the Haar measure, and write the above fermion
determinant as

det i 6D � e�W (A) =

Z
D g e�SF [A;g] ; (2:7a)

where SF [A; g] is the equivalent of the fermionic action in terms of the bosonic variables
and gauge �eld and reads

SF [A; g] = �[UgV ]� �[UV ]

= �[g] +
1

4�

Z
d2z

�
e2A�A� � e

2AgAg�1 � ieAg@g�1 � ieAg�1@g
�

;
(2:7b)

The above equation was obtained by repeated use of the Polyakov Wiegman identity (2.6),

respecting local gauge transformations. The external sources have been used in order to
rede�ne the integration over the fermionic �eld as

 i 6D + � +  � =
�
 + �(i 6D)�1

�
i 6D

�
 + (i 6D)�1�

�
� �(i 6D)�1� : (2:8)

The change of variables (2.3) leads to a non-trivial Jacobian, but fortunately it is also
the exponencial of the WZW functional, that is

DADA = ecV �[UV ]DUDV ; (2:9)

where cV is the quadratic Casimir, and a de�nite regularization respecting vector gauge
invariance has been chosen. As we stressed after (2.3), this is again written up to a factor

containing the free Dirac operator.

The non-linearity in the gauge �eld interaction can also be disentangled by means of
the identity (see notation in the appendix)

e
1
4

R
d
2z trF2

�� =

Z
DE e

R
d
2z [12 trE

2
+

1
2 trEFz�z] ; (2:10)
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where E is a matrix-valued �eld. Taking into account the informations above we arrive at

Z [�; �; i�] =

Z
DEDUDV Dg�

� e
��[UgV ]+(cV+1)�[UV ]+

R
d
2z tr [ 12E

2
+

1
2EFz�z ]�

R
d
2z i�A�+

R
d
2zd2w �(z)(i6D)

�1
(z;w)�(w)

:

(2:11)

If we were considering massive fermions, we should include a term mtr (g + g�1) in
the e�ective action6. However we shall avoid such a complication and only consider the

massless case. We also have to deal with gauge �xing. In fact, the process of introducing

ghosts is standard, and we suppose that the procedure is included above, until it is neces-

sary to explicitely take into account the ghost degrees of freedom, which will be the case
upon consideration of the spectrum, when the BRST condition has to be used. Up to that

point our manipulations do not explicitely depend on the gauge �xing/ghost system, and

we proceed without it (or else, keeping it behind our minds).
De�ning the gauge invariant �eld eg = UgV , and using the invariance of the Haar

measure, that is Dg = Deg, we see that the eg �eld decouples (allways up to BRST condition
- see later) and we are left with

Z [�; �; i�] =

Z
Deg e��[~g] Z DEDUDV D(ghosts)�

� e(cV+1)�[UV ]+
R
d
2z tr [ 12E

2
+

1
2EFz�z ]�Sghosts�

R
d
2z i�A�+

R
d
2zd2w �(z)(i6D)

�1
(z;w)�(w)

;

(2:12)
where A� variables are given in terms of the UV variables.

The presence of the gauge �eld strenght Fzz hinders further developments in the way
it is presented above. However, in terms of the U and V variables we can write

trEFz�z =
i

e
trUEU�1@(�@��1) ; (2:13)

where � = UV . This will permit a complete separation of some variables. Indeed, � is a

more natural candidate to represent the physical degrees of freedom, since U and V are
not separately gauge invariant. In the way it is written, in eq. (2.13), we can rede�ne
E taking advantage once more of the invariance of the Haar measure, in such a way that
the e�ective action only depends on the combination � = UV , while U and V appear

separately only in the source terms, which are gauge dependent, as they should, that is,

A =
i

e
U�1@U ;

A =
i

e
(U�1�)@(��1U) :

(2:14)

If we eventually choose the light cone gauge, U = 1; A = i
e
�@��1 and A = 0. From the

structure of (2.13), it is natural to rede�ne variables as eE0 = UEU�1 ; DE = D eE0. Notice
that already at this point the E rede�nition implies, in terms of the gauge potential, an
in�nite gauge tail, which captures the possible gauge transformations. It is also conveniente
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to make the rescaling eE0 = 2ie(cV + 1) eE, with a constant Jacobian. In terms of the �eldeE, consider the change of variables
@ eE =

1

4�
��1@� ; D eE = ecV �[�]D� : (2:15)

We use the identity (2.6) to transform the �� interaction into terms which can be handled

in a more appropriated fashion. Writting both steps separately we have

Z [�; �; i�] =

Z
Deg e��[~g]DUD(ghosts) e�Sghosts Z D�D eEe(cV+1)�[�]

�

�e(cV+1)tr

R
d
2z@eE�@�

�1
�2e2(cV+1)

2
R
d
2ztr eE2�

R
d
2z i�A�+

R
d
2zd2w�(z)(i6D)

�1
(z;w)�(w)

(2:16)

in such a way that after substitution of (2.15) and use of (2.6) for �[��], we arrive at

Z [�; �; i�] =

Z
Deg e��[~g]DUD(ghosts) e�Sghosts Z D�D��

�e
(cV+1)�[��]��[�]�

2e2(cV +1)2

(4�)2
tr

R
d
2
z[@

�1
(�

�1
@�)]2�

R
d
2
zi�A�+

R
d
2
zd

2
w�(z)(i6D)

�1
(z;w)�(w)

:

(2:17)
We de�ne the (massive) parameter

� =
cV + 1

2�
e ; (2:18)

and the �eld e� = ��, in terms of which the partition function reads

Z [�; �; i�] =

Z
Deg e��[~g]DUD(ghosts) e�Sghosts Z De� e(cV+1)�[e�]

�

�

Z
D� e

��[�]��2

2 tr

R
d
2z [@�1

(��1@�)]2
e
�
R
d
2z i�A�+

R
d
2z d2w�(z)(i6D)

�1
(z;w)�(w)

;

(2:19)

where now A = i
e
U�1@U ; A = i

e
(U�1��1e�)@(e��1�U).

Up to source terms, and the BRST constraints to be discussed later, the above gen-
erating functional factorizes in terms of a conformal theory for eg, representing a gauge
invariant fermionic bound states degrees of freedom, a second conformal �eld theory for e�,
representing some gauge condensate, and an o�-critically perturbed conformal �eld theory

for the �-�eld, which describes also a gauge �eld condensate, in view of the change of
variables (2.15). The conformal �eld theory representing e� has an action with a negative
sign (see (2.19)). Therefore we have to carefully take into account the BRST constraints

in order to arrive at a positive metric Hilbert space. Since we will study �rst the �-degrees

of freedom, we leave this problem for a later section.
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3. Integrable perturbation of the WZW theory and duality

We consider the perturbed WZW action

S = �[�] +
1

2
�2tr

Z
d2z

�
@�1(��1@�)

�2
;

= �[�] +
1

2
�2�(�) :

(3:1)

We will look for the Euler-Lagrange equations for �. It is not di�cult to �nd the

variations:

��[�] =

�
�

1

4�
@(��1@�)

�
��1�� ;

��(�) = 2
h
@�1(��1@�) +

�
@�2(��1@�); (��1@�)

�i
��1�� :

(3:2)

Collecting the terms, we �nd it useful to de�ne the current components

J� = ��1@� ;

J
�
= 4��2@�2J� = 4��2@�2(��1@�) ;

(3:3)

which summarize the � equation of motion as a zero curvature condition given by

[D;D] = [@ � J�; @ � J
�
] = @J� � @J

�
� [J

�
; J�] = 0 : (3:4)

This is the integrability condition for the Lax pair17

D�M = 0 ; with D� = @� � J
�
� ; (3:5)

where J� = J
�
1
+ iJ

�
2
; J

�
= J

�
1
� iJ

�
2
and M is the monodromy matrix. This is not a Lax

pair as in usual non-linear sigma models18, where J�� is a conserved current, in which case
we obtain a conserved non-local charge from (3.4), as well as higher local and non-local

conservation laws, derived from an extension of (3.4) in terms of an arbitrary spectral
parameter18. However, in a certain extent, the situation is simpler in the present case, due
to the rather unusual form of the currents (3.3), which permits to write the commutator

appearing in (3.4) as a total derivative, in such a way that in terms of the current J
�
, we

have

@
n
4��2J

�
� @@ J

�
+ [J

�
; @J

�
]
o
= 0 : (3:6)

Therefore the quantity

I
�
(z) = 4��2J

�
(z; z) � @@J

�
(z; z) + [J

�
(z; z); @J

�
(z; z)] ; (3:7)

does not depend on z, and it is a simple matter to derive an in�nite number of conservation
laws from the above (see later in the Minkowskian formulation).
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This means that two-dimensional QCD is an integrable system! Moreover, it corre-

sponds to an o�-critical perturbation of the WZW-action. If we write � = ei� � 1+ i�, we
verify that the perturbing term corresponds to a mass term for �. Later we will discuss

in more detail this issue in the large N limit (for the SU(N) theory). The next natural

step is to obtain the algebra obeyed by (3.7), and its representation. However there is a

di�culty presented by the non-locality of the perturbation. We now introduce a further
auxiliary �eld de�ning a dual action, local in all �elds, and representing the low energy

scales of the theory, and later we return to the problem of �nding the algebra obeyed by

(3.7).

Consider the �-term of the action (3.1). We write the quadratic term in (3.1) intro-

ducing the integral over a Gaussian �eld @C as

e�
1
2�

2
� =

Z
DC e

R
d
2z 1

2 tr (@C)
2��tr

R
d
2z C(��1@�)

; (3:8)

where the left hand side is readily obtained completing the square in the r.h.s.
Indeed, at this point we have two choices. We can turn to Minkowski space, and pro-

ceed with the canonical quantization of the action (3.1) with the non-local term substituted
in terms of the C �eld dependent expression obtained in the exponent of the integrand of
the r.h.s. of equation (3.8). Before that, motivated by the presence of the auxiliary vector
�eld C, we make again a change of variables of the type

C =
1

4��
W@W�1 ;

DC = ecV �[W ]
DW ;

(3:9)

together with the now very frequently used identity (2.6) in order to �nd a dual action.
We have for the �-partition function the expression

Z =

Z
D�DW e

��[�]+cV �[W ]� 1
4�

R
d
2zW@W�1��1@�+

R
d
2z 1

2(4��)2
[@(W@W�1

)]
2

; (3:10)

from which can separate the contribution ��[�W ] � ��[e�]; after such manoeuver we are

left with

Z =

Z
De� e��[e�] Z DW e

(cV+1)�[W ]+
tr

2(4��)2

R
d
2z [@(W@W�1

)]
2

: (3:11)

The dual action has now a coupling constant corresponding to the inverse of the
initial charge. Therefore (3.11) is appropriated for the study of a strongly coupled limit.

Notice that the procedure is, in a sense, familiar to the one used to obtain a dual action,
where a non-dynamical �eld is introduced, and one eliminates the original dynamical and
�elds leaving the so called dual formulation. See the refs. [13], [14] and [15] for further
details. We separate a further WZW-conformal piece, and we are left with a local massive

action for W . The drawback is the fact that now W itself has an action with a negative
sign. Naively it describes also massive excitations, although a complete description of the
spectrum can only be obtained after disentangling the non-linear relations and imposing

the BRST conditions.
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For the sources, we have now to replace A in (2.19) by i
e
(U

�1

W e��1 e�)@(e��1 e�W�1

U).

We notice also here, that we have dual descriptions of two-dimensional QCD. In the �rst,
valid in the perturbative region, for high energies, we �nd out a non-local perturbation of

the WZW action. In terms of W the perturbation is local, but at the price of a negative

sign in the naive kinetic term in the W action, which is appropriated to describe the low

energy (strong coupling) regime of the theory. In spite of such di�erent complementary
descriptions, both models are integrable. In the weak coupling regime we found the conser-

vation laws (3.3 - 3.6). In the case of the W -theory, it is not di�cult to �nd the equations

of motion, and again derive the similar relations for the quantity

I
W
(z) =

1

4�
(cV + 1)J

W
(z; z) +

1

(4��)2
@@ J

W
(z; z) +

1

(4��)2
[J
W
(z; z); @J

W
](z; z) ;

(3:12)

with J
W

=W@W�1 and @I
W

= 0, i.e. I
W

does not depend on z.
Therefore, after �nding isomorphic higher charges for both formulations, we are mo-

tivated to �nd their corresponding algebras, and later quantize them.

4. Higher conservation laws and corresponding algebras

To obtain the algebra obeyed by the previously found conserved charges, it is easier to go
to Minkowski space, proceed with the canonical quantization19, obtaining �rst the Poisson
algebra, and later the constraints and the quantum commutators of the model. In fact,
from the computation of the fermion determinant, we have an e�ective bosonic action
which already takes into account some quantum corrections, namely the fermionic loops

have been summed up. Therefore, the Poisson brackets already have quantum corrections
arising from fermionic loops. This fact minimizes the possibilities of anomalies in the
full quantum de�nition of the charges20. As a matter of fact, we shall see that quantum

corrections are restricted to the introduction of renormalization constants.

From the conventions described in the appendix we �nd the Minkowski space action

S = �(cV + 1)�M [W ] +
1

2(4��)2

Z
d2x [@+[(W@�W

�1)]2 ; (4:1)

with the Minkowski space WZW functional given by

�M [W ] =
1

8�
tr

Z
d2x@�W�1@�W +

1

4�
���tr

Z
1

0

dr

Z
d2x Ŵ�1 _̂

WŴ�1@�ŴŴ�1@�Ŵ :

(4:2)

Due to the presence of higher derivatives in the above action, it is convenient to introduce
an auxiliary �eld and rewritte it in the equivalent form

S = �(cV + 1)�M [W ] + tr
1

2

Z
d2x

�
�B2 +

1

2��
@+B@�WW�1

�
; (4:3)
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where (4.1) is obtained completing the square in the B-term in (4.3). The momentum

canonically conjugated to the variable W is

�Wij =
@S

@@0Wij
= �

1

4�
(cV + 1)@0W

�1
ji �

1

4�
(cV + 1)Aji +

1

4��
(W�1@+B)ji ;

= �̂Wij �
1

4�
(cV + 1)Aji ;

(4:4)

where the �rst term is obtained from the principal sigma model term in the WZW action,

the second arises from the pureWZW term, and the third one from the interaction with the
auxiliary �eld. It is convenient to separate the WZW contribution Aij to the momentum,

since the new variable b�W is local in the original �elds. The treatment of the WZW term

(second above) follows closely the one introduced in [19], see also [7]. An explicit form for

Aij cannot be obtained in terms of local �elds, but we only need its derivatives, which are

not di�cult to obtain, that is7;19

Fij;kl =
�Aij

�Wlk
�
�Akl

�Wji
= @1W

�1
il W

�1
kj �W

�1
il @1W

�1
kj ; (4:5)

in terms of which we have the Poisson bracket relationn
�̂Wij (x); �̂

W
kl (y)

o
= �

cV + 1

4�

�
�Alk

�Wij
�
�Aji

�Wkl

�

=
cV + 1

4�

�
@1W

�1
jk W

�1
li � @1W

�1
li W�1

jk

�
�(x1 � y1) :

The momentum associated with the B �eld is

�Bij = �
1

4��
(W@�W

�1)ji : (4:6)

We can now list the relevant �eld operators appearing in the de�nition of the conservation
law (3.12), which we rewrite in Minkowski space as

IW� =
1

4�
(cV + 1)JW� �

1

(4��)2
@+@�J

W
� �

1

(4��)2
[JW� ; @+J

W
� ] ;

@+I
W
� = 0 :

(4:7)

In terms of phase space variables they are

JW� =W@�W
�1 = �4��e�B ;

@+J
W
� = �4��@+e�B = 4��B ;

@+@�J
W
� = (4��)2[W

ê
�
W

� (cV + 1)�e�B ]� (4��)�(cV + 1)W 0W�1
� 8��B0 ;

(4:8)

where the tilde means tranposition of the matrix indices. It is straighforward to compute

the Poisson algebra. We have�
IWij (t; x); I

W
kl (t; y)

	
=
�
IWkj �il � I

W
il �kj

�
�(x1�y1) � ��il�kj�0(x1 � y1) (4:9)
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where � = 1

2�
(cV + 1). The current itself is a realization of the Kac-Moody algebra, since

�
IWij (t; x); J

W
�kl(t; y)

	
= (JW�kj�il � J

W
�il�kj )�(x

1
� y1) + 2�il�kj�

0(x1 � y1) ;�
JWij (t; x); J

W
�kl(t; y

1)
	
= 0 :

(4:10)

We thus obtain a Kac-Moody algebra for IW� , and JW� is a representation of such an algebra,

with a central extension. We shall return to this discussion later, after consideration of

the quantization of the charge.
The Hamiltonian density can also be computed, and we arrive at the phase space

expression

HW =
ê
�
W

W 0 + 4��
ê
�
W e�BW � e�BB0 � 4��2(cV + 1)(e�B)2

� 2(cV + 1)�e�BW 0W�1 +
1

4�
(cV + 1)(W 0W�1)2 +

1

2
B2 ;

(4:11)

where B0 = @1B ; W 0 = @1W ; the above Hamiltonian can be rewritten in a quadratic
form in terms of the currents, although in such a case we have also velocities, due to the
appearance of the time derivatives:

HW = �
�
JW
1

�2
�

1

(4��)2
�
@2
+
JW� JW

+
+ JW� @�@+J

W
� � (@+J

W
� )2

�
; (4:12)

where JW
1

= 1

2
(JW

+
�JW� ) and JW

+
=W@+W

�1. At this point we can compare the model
with its �-formulation. In this case we have the action

S = �M [�] + �tr

Z
d2xC��

�1@+� +
1

2
tr

Z
d2x (@+C�)

2 ; (4:13)

where C� is the Minkowski space conterpart of C (see eq. (3.8)).

The canonical quantization proceeds straighforwardly, and the relevant phase space

expressions are obtained for J
�
in (3.3), which in Minkowski space, due to the C� equation

of motion reads

J
�
� = 4��2@�2

+
(��1@+�) = 4��C� ; (4:14a)

�� = @+C� ; (4:14b)

while �-momentum is given by

ê
�
�

ji =
1

4�
@0�

�1
ji + �(C��

�1)ji ; (4:14c)

where the hat above �
�

means that we neglected the WZW contribution as before25, and
as a consequence�ê

�
�

ji(t; x);
ê
�
�

lk(t; y)

�
= �

1

4�

�
@1�

�1

jk
�
�1

li
� @1�

�1

li
�
�1

jk

�
�(x � y) (4:14d)
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From the de�nition of the canonical momentum associated with C� we have

@+J
�
� = 4���� : (4:15)

The conserved charge is (from (3.6) we change @ ! �@� ; @ ! @+ ; J
�
� ! J

�
�)

I
�
� = 4��2J

�
� + @+@�J

�
� + [J

�
�; @+J

�
�] ;

@+I
�
� = 0 ;

(4:16)

therefore the situation is analogous to the one we found previously interchanging the
(B;�B) phase space variables with (��; C�) (noticing the exchanged order).

The Hamiltonian might be computed at this point. However we will postpone it to

a later section, since we will have to compute it in terms of more appropriated currents,
rendering the problem easier to be formulated in terms of the constraints, hidden in the
gauge transformation properties.

We come now to the point where we are urged to consider the quantization of the
symmetry current (4.16). Let us consider the problem in the �-language, since the short
distance expansion depends on the high energy behavior of the theory, therefore, since the
only massive scale is the coupling constant, we have to consider the weak coupling limit.
The weak coupling limit is better described by the �-action. In such a case, we need the
short distance expansion of the current J�� = 4��2@�2

+
(��1@+�) with itself. Since the

short distance expansion is compatible with the weak coupling limit, where the theory is
conformally invariant, Wilson expansions can be dealt as usually.

We consider the short distance expansion

[J��(x); @+J
�
�(y)]

�����
y=x+�

=
X
n

a(n)(�)O(n)(x) ; (4:18)

aiming at a classi�cation of O(n)(x) according to its dimension20. It is in fact easier to

start out of local objects, that is in terms of J�
+

J
�
+
=

1

4��2
@2
+
J
�
� = ��1@+� ; (4:19)

and later act with antiderivative operators. Therefore we analyse the auxiliary operator
product expansion

[J�
+
(x); J�

+
(y)]

�����
y=x+�

=
X
n

a
(n)

J
�

+

(�)O
(n)

J
�

+

(x) : (4:20)

Let us suppose that the theory is local. The fact that the interaction contains an

antiderivative will be taken into account subsequently. Along such premises the problem is

11



very simple, and has been solved long ago20, with the classi�cation for possible operators

O
(n)

J�
+

(x):

1: dimO(n) = 0 ; no operator ;

2: dimO(n) = 1 ; O
(1)

J
�

+

(x) = ��1@� ;

3: dimO(n) = 2 ; O
(2)

J
�

+

(x) = @(��1@�) ;

4: dimO(n)
� 3 ; operators with �nite coe�cients :

Therefore we �nd

[J�
+
(x); J�

+
(y)] = a(1)(�)J�

+
(x) + a(2)(�)@J�

+
(x) ; (4:21)

where dim a(1)(�) = 1, therefore a(1)(�) is linearly divergent, that is, a(1)(�) � 1=�, while
dima(2) = 0, and a(2)(�) is logarithmically divergent, that is a(2)(�) � ln �. Acting on the
above Wilson expansion with @�2x we obtain the new expansion

[@�2
+
J
�
+
(x); J�

+
(y)] = a(1)(�)@�2

+
J
�
+
(x) + ea(2)(�)@�1

+
J
�
+
(x) ; (4:22)

where ea(2)(�) is a(2)(�) plus a possible @�1a(1)(�) correction. We now act with @�1� , ob-
taining

[@�2
+
J
�
+
(x); @�1

+
J
�
+
(y)] = @�1ea(2)(�)@�2

+
J
�
+
(x) + �nite ; (4:23)

since @�1a(2) is �nite.
Let us now discuss the e�ect of the non-local term in the action. Its local version is

given by an expression containing the C� �eld (see [19]). Such a �eld has dimension zero,
and its interaction contains a � factor in the Lagrangian, namely

LC� =
1

2
(@+C�)

2 + �C��
�1@+� : (4:24)

Therefore C� comes in a Wilson expansion accompannied by a �-factor, and has,
e�ectively, dimension 1. Moreover, it can not appear alone, since by Lorentz transformation
it acquires a factor which is the inverse of the one required for the current, since it is the
(�) component of a vector, while the current is a (+) component. Therefore it can appear

at most with a logarithmically divergent coe�cient in the J�
+
(x)J�

+
(x+ �) expansion, and

is irrelevant to the present problem, due to the subsequent manipulations.
This discussion leads to the de�nition of the cut-o� charges

Q
f
� =

Z
dx� f(x�)

n
Z�J

�
�(x) + [J��(x); @J

�
�(x + �)]

o
; (4:25)

with renormalized charge Qf and renormalization constant Z� respectively given by

Qf = lim
�!0

Q
f
� ; Z� = 1� @�1a(1)(�) : (4:26)
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Such a charge is �nite, and

dQ
f
�

dx+
= lim

�!0

Z
dx� f(x�)

n
Z�@+J

�
� + @+

�
@�1a(1)J

�
� +N [J

�
�; @+J

�
�]
�o
�! 0 ; (4:27)

where N is a normal product prescription rendering the product in [J
�
�; @+J

�
�] �nite.

The in�nite constant can also be interpreted as a charge renormalization. Due to

the renormalization of the higher charge, we cannot give an interpretation to the �eld

operator I
�
ij by itself, but only to an arbitrary linear combination involving the charge and

the current. In any case, since I�ij is a right moving �eld operator, it is natural to assume,

in view of the Poisson algebra (4.9) that it obeys an algebra given by21;22

I
�
ij(z)I

�
kl(w) = (I�kj�il � I

�
il�kj)(w)

1

z � w
� �

�il�kj

(z � w)2
: (4:28)

For J��ij we are forced into a milder assumption. Indeed, since J��ij is a representa-
tion of such an algebra with a central extension and commutes with itself, the equation
@+J

�
�ij = 0 would be too simple to realize the whole problem we are considering. In such a

case we would be left with unequal time commutators for the last equation (4.10). But in

any case, since I�ij is a right moving �eld operator, the equal time requirement in the �rst
equation (4.10) is also super
uous, and we get an operator product algebra of the type

I
�
�ij(z)J

�
�kl(w;w) = (J��kj�ij � J

�
�il�kj)(w;w)

1

z � w
+ 2

�il�kj

(z � w)2
; (4:29)

where once again we turned to the Euclidian variables. The consequence is the fact that
holomorphic derivatives of the current, are indeed primary �elds. However the second

equation in (4.10) can not be taken at arbitrary times, since J�� depends on both x+ and

x�. Moreover, if J�� were purely right moving, the last equation, for unequal times would
imply that it is a trivial operator.

Some conclusions may be drawn for J��. As we stressed above, @+J
�
� can not be zero�,

in the full quantum theory, however, in view of (4.29), we conclude that left(-) derivatives
of this current are primary �elds22, since

I
�
ij@

n
+
J
�
�kl =

@n
+
J
�
�il�kj � @

n
+
J
�
�kl�il

�z � �w
: (4:30)

Therefore, we expect a Kac-Moody algebra for I�(z) and @nI� should be primary

�elds, depending on parameters z.
Such an underlining Kac-Moody structure is the most unexpected result in this paper,

since it arose out of a non-linear relation obeyed by the current, which can be traced back

� In the case J
�
�

is left moving we expect further modi�cations of the commutators. See discussion in

the conclusions.
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to an integrability condition of the model. Moreover, the theory has an explicit mass

term - although free massive fermionic theories as well as some o�-critical perturbations of
conformally invariant theories in two dimensionsmay contain a�ne Lie symmetry algebras.

The current itself is now a realization of such algebra in its right moving sector.

Indeed, we have derived the algebra (4.28) from the Poisson structure.

5. The GKO construction

Gauged WZW theories provide a lagrangian realization of the GKO construction16;23.

Deleting the \mass term" � in (2.19) we have a gauged WZW theory as explicited in (2.7).
The WZW functional is invariant under a G�G symmetry transformation given by

g(z; z)! G(z)g(z; z)G(z) : (5:1)

In general one can gauge the anomaly free vector subgroup H � G �G by means of the
addition of the term

1

4�
tr

Z
d2x

�
e2A+A� � e

2a+gA�g
�1 + ieA�g

�1@+g + ieA+g@�g
�1
�

: (5:2)

In the QCD2 case, H corresponds to G.

Such a gauging procedure introduces constraints in the theory, as discussed by Kara-
bali and Schnitzer16. In order to understand this point in more detail, we have to consider
the e�ect of the ghost sector. In general ghosts are introduced considering a gauge �xing
function F(A), and introducing a factor

det

�
@F

@A�

@A�

@�

�
� (F(A)) (5:3)

in the partition function, where � is the gauge parameter. However here if we are to render
explicit the conformal content of the theory, it is more useful to represent all possible chiral

determinants in terms of ghost integrals, such that the reparametrization invariance is also

explicit and one can later verify that the gauge �xing procedure as outlined above, and
which is more frequently used in the gauge �eld literature, is trivial in the sense that one
is led to a unit Faddeev-Popov determinant.

Therefore ghosts are introduced writting determinants in terms of ghost systems, and

decoupling them from the gauge �elds by a chiral rotation, a procedure which is possible

in two-dimensional space-time. This is equivalent to write all determinants as

detD = ecV �[U ](det @)cV ; detD = ecV �[U ](det @)cV (5:4)
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and substitute the free Dirac determinant in terms of ghosts as

(det @)cV =

Z
DbDc e

�tr
R
d
2x�b@�c

;

(det @)cV =

Z
DbDc e

�tr
R
d
2x b@c

:

(5:5)

In fact the determinant of the Dirac operator does not factorize as in (5.4) because of the

regularization ambiguity. At very step one has to assure vector current conservation. Such

determinants cancel out by changing some of variables (as in (2.15)) but do not cancel in

(2.19), from which we are led to the contributionZ
DbDbDcDc e

�tr
R
d
2x (b@c+b@c)

: (5:6)

Although decoupled at the lagrangian level, such terms are essential due to subsequent
constraints arising in the zero total conformal charge sector, leading to BRST constraints
on physical states. Such constraints are obtained in a system of interacting conformally
invariant sectors (g;�; b; b; c; c) described by the partition function.

Z =

Z
DgD�DbDbDcDc e

�k�[g]+(cV+k)�[�]�tr
R
d
2x (b@c+�b@+c) : (5:7)

One can couple the system to external gauge �elds A
ext

and A
ext

as above, or equivalently

by means of the minimal substitution16 @ ! D
ext

= @� ieA
ext

and @ ! D
ext

= @� ieA
ext

with A
ext

= i
e
U�1
ext
@U

ext
, and A

ext

= i
e
V
ext
@V �1

ext
. The interaction of the �elds from the

WZW theory with such external gauge �elds is equivalently obtained from (2.7b), that is16

�k�[g;A] = �k�[U
ext
gV

ext
] + k�[U

ext
V
ext

]

(cV + k)�[�; A] = (cV + k)�[U
ext

�V
ext

]� (cV + k)�[U
ext
V
ext

]

�tr

Z
d2x [bD

ext

c+ bD
ext

c] = �tr

Z
d2x [bV

ext
@(V �1

ext
c) + bU�1

ext
@(U

ext
c)] ;

(5:8)

where k is the central charge . In our preceding discussion k = 1.
In the �rst two cases invariance of the Haar measure permits to change variables as

eg = U
ext
gV

ext
; Deg = Dg ;e� = U

ext
�V

ext
; D� = De� ;

(5:9)

while in the last case one can do a chiral rotation leaving back the free ghost system and
a WZW term cV �[Uext

V
ext

]. Therefore, the �[U
ext
V
ext

] term cancels due to the balance of
central charges, and the partition function does not depend on the external gauge �elds.

This implies, in particular, that the functional derivative of the partition function with
respect to the external gauge �elds vanish, therefore

�Z(A
ext

; A
ext

)

�A
ext

���
A
ext

;A
ext

=0

= 0 =
�Z(A

ext

; A
ext

)

�A
ext

���
A
ext

;A
ext

=0

; (5:10)

15



which are equivalent, due to the minimal coupling, to the set of constraints

kg�1@g � (cV + k)��1@�� 4�[b; c]

�
= 0 = hJg + J� + Jghosti ; (5:11a)

as well as

k@gg�1 � (cV + k)@���1 � 4�[b; c]

�
= 0 =



Jg + J� + Jghost

�
: (5:11b)

Each current above satis�es a Kac-Moody algebra with a corresponding central charge.

One can build up a BRST charge Q as

Q =
X

: ci�n
�
J ign + J i

�n

�
:�

1

2
if ijk

X
: ci�nb

j
�mc

k
n+m: ; (5:12)

where the i; j; k indices refer to the adjoint representation of the symmetry group, f ijk the
structure constants, and the mode expansion of the �elds read

ci =
X

cinz
�n ;

bi =
X

binz
�n�1 ;

J ig;� =
X�

J ig;�
�
n
z�n�1 :

(5:13)

The above charge is nilpotent: Q2 = 1

2
fQ;Qg = 0. This implies that the above system

is a set of �rst class constraints (indeed a similar set of constraints originates for Q resp.
J; b; c).

The stress tensor can be computed in terms of such currents, and we have three
contributions, namely T (z) = Tg(z)+T�(z)+T

ghost(z), with the respective central charges

cg = c(g; k) =
2kdg
cg+2k

, c� = c(H;�k � cH), and cghost = �2dH, where one supposes here

that � takes values in H 2 G. The total central charge, ctot = cg + c� + cghost coincides

with that obtained from the GKO construction for coset space conformal theories, and the
total energy tensor decomposes in terms of the GKO stress energy tensor and a residual
piece, T 0, with zero central charge.

Representations of T 0 are thus trivial, and gauged WZW model is equivalent to the

GKO construction of G=H conformal �eld theories. The physical subspace is generated
by a product of matter and ghost sectors, obeying the equation

Qjphysi = 0 : (5:14)

This solves also the problem of the sector with negative central charge, which should not
be considered separately, being coupled through the BRST condition. Had we not such

condition one would expect problems concerning negative metric states. Therefore one

cannot consider each sector separately.
In the case of the inclusion of QCD2 in such a scheme, we shall see that there are

further constraints. Although the new constraints seem to be of the �rst class type when
considered alone, there is a combination which is second class due to the cancelation of the
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ghost contribution. Therefore, in the case of QCD2 we have to deal with Dirac quantization

procedure of second class constraints!24

However, we shall see that several interesting properties characteristic of the model,

as well as part of the conformal structural relations still holds true, and QCD2 problem

can be undertood as an integrable perturbation of a (very simple) GKO construction of

coset space conformal �eld theory. We will have a GKO construction of a very simple
coset model to an o�-critical perturbation of a WZW theory by means of second class

constraints.

6. Coupling to external gauge �elds and constraints

Consider the Minkowskian e�ective action

Seff = �[eg]� (cV + 1)�[�] + �[�]�
1

2
�2
Z

d2x [@�1
+

(��1@+�)]
2 + Sghosts : (6:1)

Let us start with by �rst coupling the �elds (eg;�; ghosts) to external gauge �elds

A
ext

� =
i

e
V
ext
@�V

�1
ext

; A
ext

+
=
i

e
U�1
ext
@+Uext

: (6:1a)

We �nd

Seff (A) = �[U
ext
egV

ext
]� (cV + 1)�[U

ext
�V

ext
] + �[U

ext
ghosts V

ext
]+

+ [1� (cV + 1) + cV ]�[Uext
V
ext

] :
(6:2)

Invariance of the Haar measure, and vanishing of the total central charge (i.e. vanishing
coe�cient of the last term above) tell us that the action does not depend on the external

gauge �elds. Nevertheless, the action can also be written as

Seff (A) = Seff (0) �
1

4�
A
ext

+

�
ieeg@�eg�1 � ie(cV + 1)�@��

�1 + J�(ghost)
�

�
1

4�
A
ext

�

�
ieeg�1@+eg � ie(cV + 1)��1@+�+ J+(ghost)

�
+O(A2) :

(6:3)

Functionally di�erentiating the partition function once with respect to A
ext

+
and sep-

arately with respect to A
ext

� , and putting A
ext

� = 0 we �nd the constraints

ieg@�eg�1 � i(cV + 1)�@��
�1 + J�(ghosts) � 0

ieg�1@+eg � i(cV + 1)��1@+�+ J+(ghosts) � 0
(6:4)

leading to two BRS charges Q(�) as discussed by [16], which are nilpotent. Therefore we

�nd two �rst class constraints.
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The �eld A
ext

+
can also be coupled to the �eld � instead of eg, since the system

(�;�; ghosts) has also vanishing central charge. In such a case we have to disentangle
the non-local interaction considering instead of the third and fourth terms in (6.1) the

�-action

S(�) = �[�] +

Z
d2x

1

2
(@+C�)

2 +

Z
d2x�C��

�1@+� : (6:5)

We make the minimal substitution @+ ! @+ � ieA
ext

+
, repeating the previous argu-

ments for the (�;�; ghosts) system, and we arrive now at the constraint

�@��
�1 + 4���C��

�1
� i(cV + 1)�@��

�1 + J�(ghost) � 0 : (6:6)

One could naively expect that, repeating the previous arguments the system has a

new set of �rst class constraints. But if we instead consider the equivalent system of the
�rst set, together with the di�erence of the (�) currents, namely


ij = (�@��
�1)ij + 4��(�C��

�1)ij � (eg@�eg�1)ij ; (6:7)

one readily veri�es that the above constraint can not lead to a nilpotent BRST charge
due to the absence of ghosts. Therefore, it must be treated as a second class constraint,
de�ning the �eld C�. The Poisson algebra obeyed by 
ij is

f
ij(t; x);
kl(t; y)g = (e
il�kj � e
kj�il)(t; x)�(x � y) + 2�il�kj�
0(x � y)e
 = eg@�eg�1 + �@��

�1 + 4���C��
�1 :

(6:8)

Notice the change of sign in e
. We can thus using the above de�ne the undetermined
velocities, and no further constraint is generated.

The fact that the theory possesses second class constraints is very annoying, since they

can not be realized by the usual cohomology construction. Therefore, instead of building a

convenient Hilbert space, one has to modify the dynamics, since the usual relation between
Poisson brackets and commutators is replaced by the relation between Dirac brackets and
commutators.

Nevertheles, as we will see, several nice structure unraveled so far remain, after such

a harshening mutilation, untouched. Indeed, we shall see that there is a rather deep
separation between the \right" currents, obeying equations analogous to those written so
far, and the \left" currents, which will obey a modi�ed dynamics, due to the second-class

constraints.

As a consequence of the de�nition of the canonical momenta, eq. (4.14c) the con-
straints have a phase space formulation as


ij = 4�(�
ê
�
�

)ij + @1��
�1
� 4�(eg ê�~g

)ij � @1egeg�1 ; (6:9)

which has been used to compute (6.8). Notice that the structure of the right hand side
of the phase space expression is rather simple. Indeed, the C� �eld just rede�nes the

momentum associated with �, and the above constraints is analogous to the description of
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non-abelian chiral bosons25, that is WZW theory with a constraint on a chiral current. It

follows that the Poisson algebra is very simple. Indeed, one �nds25

f
ij(x);
kl(y)g =16��il�kj�
0(x1�y1) + 4�[(4��

ê
�
�

+ �0�
�1

+4�eg ê�~g

+eg0g�1

)kj�il�

�(4��
ê
�
�

+ �0��1 + 4�eg ê�~g

+ eg0g�1)il�kj ]�(x1 � y1)
=16��il�kj�

0(x1 � y1) + 8�[j�kj�il � j�il�kj ]�(x
1
� y1) ;

(6:10)

where j� = 4��
ê
�
�

+ �0��1 satis�es the Poisson algebra

fj�ij ; j�klg = 8��il�kj�
0(x � y) + 4�(j�kj�il � j�il�kj)�(x � y) : (6:11)

The above expression de�nes also the Q-matrix

Qij;kl = f
ij(x);
kl(y)g
���
equal time

; (6:12)

which is not a combination of constraints, therefore no further constraint is generated by
the Dirac algorithm. The inverse of the Dirac matrix is not di�cult to compute and we
have the expression25

�
Q�1

�
ij;kl

=
1

32�
�il�kj�(x)+

+
1

64�
(�iljjk � �jkjli)jxj+

+
1

128�
(�iajjb � �jbjai)(�aljbk � �bkjla)

1

2
x2�(x)+ (6:13)

+
1

256�
(�iajjb � �jbjai)(�cajbd � �bdjac)(�lcjdk � �dkjcl)

1

3
x3�(x) + � � � ;

where x is the space component of x�.
The next step consists in replacing the Poisson brackets by Dirac brackets. Thus we

have to compute the Poisson brackets of the relevant quantities with the constraints. We
use

fA;Bg
DB

= fA;Bg
PB
� fA;
�gPBQ

�1
��f
�; BgPB : (6:14)

We will see that functions of

J
�
+
= ��1@+� = �4�e�� + ��1�0 + 4��C� ; (6:15)

commute with 
�, and their Dirac brackets coincide with their Poisson brackets.
Canonical quantization and Dirac formulation of the � sector is achieved by the for-

mulae (4.14a; b; c), (4.15), from which we obtain

1

4�
��1@�� = �

ê
�
�

� �
1

4�
��1�0 + �C� : (6:18)
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It is useful, in view of (6.8) to consider the combination

1

4�
@���

�1 = ��
ê
�
�

�
1

4�
�0��1 + ��C��

�1 ; (6:19)

or also, aiming at the expression of the constraint (6.8) which contains the C� �eld, we

have

�@��
�1 + 4��C��

�1 = �4��
ê
�
�

� �0��1 : (6:20)

Thus, in terms of phase space variables the constraint is given by (6.9). Using the above

phase space expressions we �nd

n
J
�
�;


o
= 0n

[J��; @+J
�
�];


o
= f[C�;��];
g = 0 :

(6:21)

For
n
@+@�J

�
�;


o
we have �rst to compute

@+@�J
�
� = @2

+
J
�
� � 2(@+J

�
�)
0 ;

= 4��2��1@+� � 2(��)
0 :

(6:22)

We use the fact that f�0�;
g = 0 and we are left with

��1@+� = �4�
ê
�
�

� + ��1�0 + 4��C� : (6:23)

Using now fC�;
g = 0 we have just to consider

j+ij =

�
�4�

ê
�
�

� + ��1�0
�
ij

: (6:24)

However, since fj+; j�g = 0 we have fj+;
g = 0! As a conclusion, the Dirac algebra is

the same as the Poisson algebra!! This is a non-trivial result, because it holds in spite
of the fact that due to (6.9) the Dirac algebra obeyed by �̂� and � changes drastically,

especially if we take into account the expression of the inverse Dirac matrix (6.13), which

is non-local and has an in�nite number of terms!
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7. BRST constraints in the dual case

In the duality transformation relating the � and the W �elds, we also �nd interesting

relations arising out of the constraint structure of the theory. First let us perform a more

detailed analysis of the ghost structure. Back to the transformations de�ned by (3.9) we

have the factor of (det @+ det @�)
cV left out, which contributes as

Z
gh0 =

Z
Db0

+
Db0�Dc

0
Dc0 e

�tr
R
d
2x (b0+@�c

0
+b0

�
@+c

0
)

: (7:1)

The coupling of a subset of �elds to external gauge potential written in the form

(6.1a) as described in section 6 can be made, and as usual. If such a set has a vanishing

total central charge, the partition function does not depend on the gauge potential, and

we are led to constraints again. With the partition function written in the W language as
in (4.3), and taking into account all appropriate ghosts, we have various self commuting
constraints. Some of them, such as

J~g � (cV + 1)J� + Jghost � 0 ;

J~� � (cV + 1)J� + Jghost � 0 ;
(7:2)

are the same as before, with the advantage that now e� is a pure WZW �eld, in such a way
that it can be simply identi�ed with eg, without further consequences. However, further
constraints involving also the W �eld arise, such as

J
~g
+
� (cV + 1)JW

+
+ J+ghost � 0 ; (7:3)

in such a way that we have, as a consequence, the non-trivial second class constraint

J�
+
� JW

+
� 0 ; (7:4)

or more explicitely

(cV + 1)��1@+�� (cV + 1)W�1@+W +
1

�
W�1@+BW = 0 :

Above we proceeded as in the � formulation, but with the interaction of the A
ext

� �eld

with the W , while in the (dual) � case we considered A
ext

+
.

The phase space expression is given in the formula


W;� = �
ê
�
W

W +
1

4�
W�1W 0 +

ê
�
�

��
1

4�
��1�0 � 0 ; (7:5)

and resembles the �-formulation (see (6.9)). However, as intriguing as it might appear,
if we now substitute the B �eld from the constraint (7.4) back into the action we �nd

a non-local term. This means that while in the �-formulation which is non-local at the
begining we end up with a local action after substituting back the constraint, while in the
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W -formulation, which is local at the begining we end up with a non-local action; another

feature of duality in both formulations.

Keeping the Dirac algebra in mind, we substitute back the con�guration space con-

straints into the action, maintaining the phase space structure. In such a case, using (6.7),
and (2.6), we rede�ne �g � P ; � = Pg�1, and �nd the e�ective action

S =�[P ]�
1

2�
g�1@+gg

�1@�g �
1

4�
P�1@+PP

�1@�P +
1

4�
P�1@+Pg

�1@�g+

+
1

4�
P�1@�Pg

�1@+g +
1

4�
@�gg

�1@+PP
�1
�

1

2�
@�gg

�1Pg�1@+gg
�1P+

+
1

2(4��)2

�
@+

�
gP�1g@�(g

�1Pg�1)
	�2

:

(7:6)

The equation of motion / conservation law (3.6) still holds, as previously proved. From
action (7.6) we can �nd the equations of motion. Notice that the �nal action is a WZW
theory o� the critical point, a principal � model, and current-current type interactions
between them.

For the dual formulation a further interesting structure arises. The constraint is now

@+B = ��(cV + 1)W��1@+(�W
�1) : (7:7)

Similarly to the above, we use (7.7) and (2.6) to introduce S =W�, replacing theW -�eld.
Interesting enough, it is now the dual formulation which is non-local due to the presence
of the B �eld. We arrive again to the WZW theory for S, a principal � model term for �,
current-current type interactions, and principal � model terms for S. The latter are such
that the (wrong) sign of the principal � term in �[S] changes, and we arrive at the WZW
model with a relative minus sign, or �[S�1]!

However, the standard procedure to deal with the constraints is to substitute the

phase space expressions in the Hamiltonian. But in such case, the constraint (6.9) does
not depend upon C�, and leads just to a connection between the right moving current of
the g sector, the left moving current being untouched by such a relation! Therefore, still
in the present case where we witnessed the appearance of second class constraints, their

main role was to assure the positive metric requirement, as we have seen by means of the
change of sign of the WZW action in the dual formulation.

8. Spectrum

Having recognized the role played by the �-action, we pass to discuss the spectrum of the
theory. The �rst and huge step towards understanding of the model was taken by 't Hooft,

who used the Bethe-Salpeter equation in the large N limit to prove that the bound states
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form a Rege trajectory. By adopting the light cone-gauge (A� = 0) and formulating the

Feynman rules in terms of light cone coordinates, the non-linear integral equation

�(p) = �
ie2

2�2

Z
dk�
k2�

Z
dk+

k� + p�

M2 + (k + p)2 + (k� + p�)�(k + p) � i�
; (8:1)

was obtained for the fermion self energy �(p), and the i�-description was used in order

to perform the dk+dk� integrals. The infrared problems are very serious (as we readily

see from the above equations). Using an infrared cut-o� � in order to restrict the k�
integration to k� � � one can perform the integral above. Since k� scales as a boost, the

procedure turns out to be Lorentz invariant. The quark poles are pushed to in�nity as

� ! 1 displaying in a clear fashion the con�ning properties of the theory. The solution

is �(p) = e2

�2
1

p�
, and this leads1 to the above mentioned Regge behavior.

However, the procedure has been subjected to some criticism. In particular, T.T. Wu8

pointed out that the principal value prescription is ambiguos due to its non-commutative
nature. If not enough, the above solution for the self energy function implies a tachyon for
small bare electron mass, as explicited in

SF (p) =
6p+M + e2

2�


�
p�

p2 �M2 + e2

�

: (8:2)

In particular, the massless theory has such a tachyon pole!

T.T. Wu performed a Wick rotation working in the Euclidian space, and after rotating
back to the Minkowki space found a di�erent result for the fermion self energy, namely

�(p) =
1

p�

(
M2
� p2 �

r
(M2 � p2)2 +

4e2

�
p2

)1=2

: (8:3)

The anomalous branch cut re
ects the fact that all rainbow ghaphs has been tested
for the Schwinger model. However, the complex light cone gauge involves a non-unitarity

transformation and the relation between the results remained unclear. By all means, there

are works indicating that in the axial gauge n�A� = 0 ; n�n� = �1, it is inconsistent to
use principal value prescription9.

Some authors have even speculated that QCD2 may exist in two distinct phases26.
In the large N regime (weak coupling) the gluons remain massless, since fermion loops do

not contribute. Such is the 't Hooft's phase. There would exist also a Higgs phase, as in
U(1) gauge interaction (Schwinger model) where the gauge �eld acquires a mass via the
well known Higgs mechanism. In this case the SU(N) symmetry would be broken to the
maximal abelian subgroup of SU(N).

Here we do not intend to provide a de�nite answer to such a complex question, but
some directions may be outlined from the computation we performed. Indeed, we have
appropriate formulation to deal separately with both regimes: the weak coupling regime

described by the �-action may be discussed perturbatively. We will see that in the large
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N limit the relevant mass parameter is the one de�ned by 't Hooft, and we arrive at a pos-

sibility of computing the exact mass spectrum, once the complicated constraint structure
is disentangled.

In order to understand the question concerning the spectrum, we �rst have to know

which is the mass of the simplest excitation, or the mass parameter characterizing the

theory. We thus consider the action

S[�] = �[�] +
1

2
�2
Z

d2x
�
@�1
+

(��1@+�)
�2

; (8:4)

and write a background-quantum splitting for the �-�eld as

� = �0e
i� ; (8:5)

after which we have the background-quantum splitting of the action up to second order in
the quantum �eld �. However we have to be careful since in the large N the second term
is the zeroth order lagrangian, from which we suppose that the � �eld acquires a mass �2

to be computed. The WZW term splits as

�[�] = �[�0] +
1

2

Z
d2x ��1

0
@��0 �

$
@�� (g

�� + ���) : (8:6)

Using the fact that �[�] is at the critical point, it is not di�cult to compute the
��1
0
@��0 two-point function at one loop order. We have the zeroth order contribution from

the second term in (8.4), and the one loop contribution, which leads to the result.

��1@+�
�2

p2
+

��1@+� �N
p�p�

p2
(g�� + ���)(g�� + ���)F (p)��1@���

�1@�� ; (8:7)

where

F (p) =
1

2�

s
p2 � 4�2

p2
ln

p
�p2 + 4�2 +

p
�p2p

�p2 + 4�2 �
p
�p2

�
1

�
: (8:8)

For p2 = �2, we �nd

��1
0
@+�0 �

�1
0
@+�0

1

p2
+

�
�2 � 4N�2F (�2)

�
: (8:9)

The zero of the two-point function contribution to the action is at

�2 = fe2N = f
�
e
0tHooft

�2
; (8:10)

where f is a numerical constant, in accordance with 't Hooft's results.
The fact that the second term in (8.4) has an extra factor of N arises from the fact

that the fermion loops are suppressed by a factor 1=N . Since the fermion loops contribute

with a WZW functional, while the � term stems from the gauge �eld self interaction (see
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eqs. (2.17-19)) the factors of N are correct. Moreover, it is exactly the given assignement

that is compatible with the planar expansion. Finally, we have to quote the fact that the 't
Hooft's analysis for the bound state  
+ leads to a Bethe-Salpeter equation compatible

with the previous results, the methods following closely 't Hooft's analysis.

A more detailed information about the spectrum of the theory can be obtained from

the Hamiltonian formulation. From the action

S = �[�] +

Z
d2x

1

2
(@+C�)

2 +

Z
d2x�C��

�1@+� ; (8:11)

we obtain the canonical momentaê
�
�

=
1

4�
@0�

�1 + �C��
�1 ;

�� = @+C� ;

(8:12)

and the Hamiltonian density

H =
1

2
��(�� � 2C 0)� 2�(

ê
�
�

�)2 �
1

8�
(��1�0)2 + 4��

ê
�
�

�C� � 2��2C2

� � ��
�1�0C� :

(8:13)
The important currents are

J
�
+
= ��1@+� = �4�

ê
�
�

� + ��1�0 + 4��C� ;

j
�
� = �@��

�1 + 4���C��
�1 = 4��

ê
�
�

+ �0��1 ;

(8:14)

in terms of which the Hamiltonian density reads (notice that j�� is not related to J��, eqs.
(3.3) and (4.14a))

H� = �
1

16�

��
J
�
+

�2
+
�
j
�
�

�2�
�

1

2
�J

�
+
C� + ��2C2

� +
1

2
� (�� � 2C 0) : (8:15)

From the previously discussed constraint structure (6.9), the current j� is related to

the free right moving fermion current jg� = g@�g
�1, and we will drop it in the discussion

of the spectrum for �. Moreover, from the Sugawara construction of the Virasoro algebra,

in terms of the Kac Moody generators, we know that the Sugawara piece H+ = �1
16�

(J�
+
)2

acquires a factor (cV +1)�1
SU(N)

= (N +1)�1 in the quantum theory. The C2

� terms are not

known, since the C� equation of motion is not easily solvable. Nevertheless, in terms of

C� and its conjugate momentum the Hamiltonian is quadratic. If we take for granted that
the zero mode term is just the squared momentum, and moreover neglecting the C�J+
interaction, the Hamiltonian eigenstates have masses abeying the Regge behavior

m2
� n�2 : (8:16)

Corrections to this equation can be obtained using a large N expansion for the �eld
C�, a procedure which is at least possible upon considering the large N limit of (8.11).
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9. Conclusions

We have achieved several aims in the present work. The �rst concerns the issue

of obtaining a bosonized version of QCD2. In fact, this problem has been solved long

ago2;3;5. Here we use those well known methods in order to rephrase this problem in terms
of perturbations of a set of WZW models. Therefore features concerning integrability of

the original theory are rendered much clearer, and an approach based on higher symmetries

might be envisaged27;28;29.

However QCD2 is a very complex theory. From the di�erent results obatained by

't Hooft, on the one hand and T.T. Wu on the other hand, several authors were led to

support the idea that QCD2 presents two phases, an unbroken weak coupling limit, as

described by 't Hooft, with a mesonic spectrum described by a Regge trajectory, and

a Higgs phase, corresponding to the break of SU(N) symmetry to the maximal abelian
subgroup of SU(N). There is no sign of such spontaneous breakdown for vector like
theories, but this may happen in chiral gauge theories as a consequence of the vacuum
polarization. In order to be able to deal with such a problem, dual formulations valid for
di�erent regimes must be available. In this direction we found the alternatives presented
by the � and W �elds, the �rst being an alternative for the week coupling limit, where
we gave arguments to suport 't Hooft's proof of the Regge behavior. However the W �eld
formulation is more involved, and we could not draw any result based on �rm ground.
In any case, the integrability of both formulations seems to be assured by the existence
of higher conservation laws, which are in fact very similar in both cases. Nevertheless, a
proof of the quantum integrability has only been possible in the � formulation. Whether
this is just a missing technical detail or a sign of some new physics can not be decided but
by speculation.

The integrability of the theory is one of the strongest points in this work. There
have been several signs, in the literature, pointing to the possible integrability of non-

abelian gauge theories in two dimensions. Gorsky and Nekrasov30 have studied the large N
Calogero-type Hamiltonian systems and found interesting relations with two-dimensional
Yang Mills theory. More recently Fadeev and Korchemski31 found that the Lipatov model32

is described by the spin zero limit of a spin system, which in turn is integrable. Our

integrability conditions eqs. (3.4-7) and (3.12) are at the core of the integrability of the
model, proving it. It would be interesting to translate such condition to Colagero-type
hamiltonian systems, as well as to the Lipatov model, or still to the Verlinde's high energy
description of strong interactions33.

We have to point out that gauged WZW models contain a rather non-trivial set of

constraints. As pointed out by [16], although there are non-interacting subsets of �elds
at the lagrangian level, the BRST constraints couple them. Such coupling is essential for

the maintainance of positivity of Hilbert space, due to some wrong sign of a part of the
WZW actions. In the present case some combinations of the constraints are second class,

and the Dirac prodedure has to be used in full detail. However, as it turns out, there is a
decoupling between the non-trivial sector described by the perturbed (o�-critical) WZW

theory, and the constrained sector and the integrability condition turns out to ful�ll the

same algebra for the Dirac as well as for the Poisson algebra. It turns out that such is the
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Kac-Moody algebra, and one component of the current is a realization of the Kac-Moody

algebra.

Using such spliting between the o�-critical J+ current and the constraint j� current,

we can write the hamiltonian in a convenient way, and related the square momentum

eigenstates to the Sugawara hamiltonian eigenstates, supporting the Regge behavior ob-
tained by 't Hooft in the large N limit. The same method does not seem to work in the

W formulation.

There is also a solution to our problem, which is compatible with the classical structure

of the current algebra, mentioned after eq. (4.28), namely

@+J� = 0 ; (9:1)

for both J� and JW . If this is the case, we have to modify the algebraic structure and
impose (9.1) as a constraint, which in terms of the canonical �elds reads


1 = �
1

�(cV + 1)
B � 0 (9:2)

in the W case (for the � case one has to change B ! ��).

Time independence of such a constraint leads to a secondary constraint


2 = j� � (cV + 1)�e�B � 1

2��
B0 � @+@�J

W
� � 0 : (9:3)

There are no further constraints, and the Dirac Q-matrix is

Qij;kl = f
ij ;
klg
�1 =

�
(j�il�kj � j�kj�il)�(x

1
� y1) �il�kj�(x

1
� y1)

��il�kj�(x
1
� y1) 0

�
: (9:4)

In particular, for the conservation relations involving J�, it leads to a Kac-Moody

algebra. Moreover, using the constraints we identify I� with the current itself! Such a
semi classical reasoning misses the central term. The presence of a Kac-Moody algebra in

the QCD2 would be su�ciently astonishing, and we are not able, at the moment, to forsee
neither its consequences, nor even whether such a possibility can indeed be realized in the
present model, or speculate whether it may be so in some conformally invariant phase.
We intend to plunge deeper into the algebraic structure of the model in a subsequent

publication.
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Appendix

In Minkowski space,

x� = (x0; x1) ; @� = @0 � @1 ; x� = x0 � x1 : (A:1)

In Euclidian space

x� = (x1; x2) ; @ = @1 � i@2 � @
E
� ; @ = @1+ i@2 � @E

+
; z = x1 � ix2 ; z = x1 + ix2 : (A:2)

In order to translate from one space to the other, we have x2 = ix0, implying (notice the
importante (�) sign!)

@  !�@� ; @  ! @+ : (A:3)

Notice also that

@

@z
=

1

2
@ ;

@

@z
=

1

2
@ : (A:4)

With these conventions,

F��F�� = 2F 2

12
= �

1

2
F 2

z�z ;

Fz�z = �iF12 + iF21 = �2iF12 :

(A:5)

Path integrals are allways performed in Euclidian space, while in the canonical quan-
tization we use the Minkowski version.
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