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ABSTRACT

We show that the continuum limit of one-dimensional N = 2 supersymmetric matrix

models can be described by a two-dimensional interacting field theory of a massless boson

and two chiral fermions. We interpret this field theory as a two-dimensional N = 1 su-

persymmetric theory of two chiral superfields, in which one of the chiral superfields has a

non-trivial vacuum expectation value.
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To use d = 1 matrix models [1, 2] for the purpose of understanding non-perturbative

effects in superstring theory, it is essential to first construct the complete two-dimensional

effective Lagrangian for the associated d = 2 superstring theory. We present the effective

Lagrangian and discuss its properties. Our presentation is based on [3]. More details and

explicit calculations are included there.

A class of d = 1, N = 2 supermatrix models may be defined using a matrix superfield,

Φij = Mij(t) + iθ1Ψ1ij(t) + iθ2Ψ2ij + iθ1θ2Fij(t), (1)

where θ1 and θ2 are real anticommuting parameters, Mij and Fij areN×N bosonic Hermitian

matrices and Ψ1ij and Ψ2ij are N ×N fermionic Hermitian matrices. A manifestly invariant

Lagrangian,

L =
∫

dθ1dθ2

{

1

2
TrD1ΦD2Φ + iW (Φ)

}

, (2)

can be written, using Φ and the covariant derivatives

DI =
∂

∂θI

+ iθI
∂

∂t
, I = 1, 2. (3)

The superpotential W is a real polynomial in Φ,

W (Φ) =
∑

n

bnTrΦ
n. (4)

In terms of the component functions, Lagrangian (2) is the following

L =
∑

ij

{

1

2
(ṀijṀji + FijFji) +

∂W (M)

∂Mij
Fij

}

− i

2

∑

ij

(Ψ1ijΨ̇1ji + Ψ2ijΨ̇2ji) − i
∑

ijkl

Ψ1ij
∂2W (M)

∂Mij∂Mkl
Ψ2kl. (5)

The supersymmetry transformations of the component functions are

δMij = iη1Ψ1ij + iη2Ψ2ij

δΨ1ij = η1Ṁij + η2Fij

δΨ2ij = η2Ṁij − η1Fij

δFij = iη2Ψ̇1ij − iη1Ψ̇2ij , (6)
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where η1 and η2 are anticommuting constants.

The classical theory possesses, in addition to supersymmetry, a global U(N) symmetry.

To verify this fact note that Φij remains a Hermitian matrix of superfields under the trans-

formation Φ → U †ΦU , where U is an arbitrary N × N matrix of complex numbers. The

Lagrangian is invariant under such a transformation, provided that U ∈ U(N).

We restrict our attention to the sector of the theory that is a singlet under the global

U(N) symmetry. After eliminating the auxiliary fields using their equations of motion, the

singlet sector can be described in terms of the eigenvalues λi of the bosonic matrix M , and

their fermionic superpartners χi. χi are the diagonal elements of the matrix χ = UΨU †,

where U is the matrix used to diagonalize M . Note that U diagonalizes M , but that χ is

not diagonal. The Lagrangian for the singlet sector is given by [4, 3]

L =
∑

i

{

1

2
λ̇2

i −
1

2

(

∂W

∂λi

)2

− ∂w
∂λi

∂W

∂λi

− 1

2

(

∂w
∂λi

)2

− i

2
(χ̄iχ̇i − ˙̄χiχi)

}

−
∑

ij

{

∂2W

∂λi∂λj
χ̄iχj +

∂2w
∂λi∂λj

χ̄iχj

}

. (7)

The induced superpotential,

w = −
∑

j 6=i

ln |λi − λj |, (8)

represents a repulsive interaction between the bosonic eigenvalues.

In preparation for taking the continuum limit, it is useful to change variables, thus

defining three collective fields,

ϕ(x, t) =
∑

i

Θ(x− λi(t))

ψ(x, t) = −
∑

i

δ(x− λi(t))χi(t)

ψ̄(x, t) = −
∑

i

δ(x− λi(t))χ̄i(t). (9)

Note that (9) is nothing but a change of variables. It does not increase or decrease the

number of dynamical variables. In terms of the collective fields,

L =
∫

dx

{

ϕ̇2

2ϕ′ −
1

2
ϕ′W ′(x)2 +

W ′′(x)

ϕ′ ψ̄ψ
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− 1

2ϕ′ (ψ̄
˙̄ψ + ˙̄ψψ̄) +

i

2

ϕ̇

ϕ′2
(ψ̄ψ′ − ψ̄′ψ)

}

+
1

3

∫

−dxdydzϕ
′(x)ϕ′(y)ϕ′(z)

(x− y)(x− z)
,

+
∫

−dxdyϕ
′(x)ϕ′(y)

(x− y)
W ′(x)

+
∫

− 1

(x− y)

{

ψ̄(x)ψ′(y) − ϕ′′(y)

ϕ′(x)
ψ̄(x)ψ(x)

}

. (10)

The measure of the path integral has, of course, to be changed accordingly. We will not do

that explicitly here, since we will be interested in regions of parameter space in which the

measure takes a simple form.

The continuum limit of bosonic matrix models is known to be a two-dimensional field

theory [5, 6]. We expect, therefore, that the continuum limit of supermatrix models is a

two-dimensional field theory as well. However, we will see that the number of fields that

survive in the continuum limit is larger in the supersymmetric case. Taking the continuum

limit consists of a few separate and independent steps which supply the original supermatrix

models with additional information and should be considered as part the definition of the

theory. At each step some choices have to be made, each determines essential properties of

the resulting models. It is at this juncture that the field content and specific background are

chosen. Previously, some attempts were made, with varying degree of success, to obtain the

correct two-dimensional continuum field theory [4, 7–10]. The first step, necessary to ensure

that the number of dynamical variables is enough to describe a two-dimensional field theory

is simply

N → ∞. (11)

It is useful to think about N as the cutoff, in momentum space, of the theory. Then a

regularization procedure has to be chosen to ensure that all terms in the Lagrangian are

finite as the cutoff is taken to infinity. We use

−
∫ +∞

−∞
dx

φ(x)

x− a
= ±iπφ(a) (12)

to define our regularization scheme. In addition, some dependence of the coupling parameters

in the superpotential W , on the cutoff N , has to be chosen, placing the theory within a
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specific universality class. On general grounds, W = NW ( x√
N

). Our choice is the following

W (x) =
√
Nc1x+

1

6

c3√
N
x3 + · · ·

c1c3 < 0. (13)

The terms denoted by · · · are of higher power in x/
√
N and do not change the universality

class for non-vanishing ci, i = 1, 3. For completeness we list some useful expressions for the

derivatives of W

W ′(x) =
√
Nc1 +

1

2

c3√
N
x2 + · · · ,

W ′(x)2 = Nc21 + c1c3x
2 +

1

3

c1c4√
N
x3 + · · · ,

W ′′(x) =
c3√
N
x+ · · · . (14)

The result of applying all the steps above to the Lagrangian (10), taking (14) into account,

is the continuum Lagrangian

L =
∫

dx

{

ϕ̇2

2ϕ′ ±
π2

6
ϕ

′3 +
1

2
ω2x2ϕ′

− i

2ϕ′ (ψ1ψ̇1 + ψ2ψ̇2) ±
iπ

2
ψ1ψ

′
1 ±

iπ

2
ψ2ψ

′
2

+
i

2

ϕ̇

ϕ′2
(ψ1ψ

′
1 + ψ2ψ

′
2)

}

. (15)

Note that there are still three ambiguous signs in the previous Lagrangian, related to the sign

ambiguity in (12). For the first sign we choose a minus sign, corresponding to Minkowski

spacetime. Our choice is a minus sign for the second and a plus sign for the third. This

choice determines the chiralities of the fermions.

A classical static solution of the equations of motion derived from (15) is given by

ψ10 = 0

ψ20 = 0

ϕ′
0 =

1

π

√

ω2x2 − 1/g. (16)
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We expand around that classical solution

ϕ = ϕ0(x) +
1√
π
ζ

ψ+ =
21/4

√
π
ψ1

ψ− =
21/4

√
π
ψ2 (17)

and change coordinates,

τ ′(x) =
1

π
(ϕ′

0(x))
−1

=
1

√

ω2x2 − 1/g
, (18)

to obtain

L =
∫

dτ

{

1

2
(ζ̇2 − ζ

′2) − i√
2
(ψ+ψ̇+ − ψ+ψ

′
+) − i√

2
(ψ−ψ̇− + ψ−ψ

′
−)

−1

2

g(τ)ζ̇2ζ ′

1 + g(τ)ζ ′
− 1

6
g(τ)ζ

′3

+
i√
2

g(τ)ζ ′

1 + g(τ)ζ ′
(ψ+ψ̇+ + ψ−ψ̇−)

+
i√
2

g(τ)ζ̇

(1 + g(τ)ζ ′)2
(ψ+ψ

′
+ + ψ−ψ

′
−)

}

+
1

3

∫

dτ
1

g(τ)2
. (19)

The coupling parameter of the theory varies in space

g(τ) = 4
√
πg

1
κ
e−2ω(τ−τ0)

(1 − 1
κ
e−2ω(τ−τ0))2

. (20)

We are now in a position to take stock of the field content of the theory. Looking at

the quadratic terms in the first line of Eq.(19), we observe that the theory contains one

massless bosonic field ζ , and two chiral massless fermions ψ±. The chiralities of the fermions

are determined by the choice of signs in (15). If we choose them as we did they have

opposite chiralities and the field content can be fitted within a chiral superfield of a (1, 1)

two-dimensional supersymmetry.

The Lagrangian (19) is not supersymmetric. It is not even Poincare invariant. Moti-

vated by the expected relation to string theory, and based on our experience in interpreting
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the bosonic theory [12, 11], we interpret it as follows. We assume that the theory really

started out as a two-dimensional supersymmetric theory, containing two superfields, Φ1 and

Φ2. The superfield Φ2 obtains a non-trivial vacuum expectation value (VEV). The VEV

breaks Poincare invariance as well as supersymmetry. Our task then becomes to reconstruct

the original theory as best as we can. As will become obvious, it is not possible to recon-

struct the theory completely. We can, however, capture enough of its features to make the

reconstruction an interesting enterprise.

Of the two chiral superfields of (1, 1) supersymmetry,

Φ1 = ζ + iθ+ψ+ + iθ−ψ− + iθ+θ−Z

Φ2 = α+ iθ+χ+ + iθ−χ− + iθ+θ−A, (21)

it is Φ1 that contains the degrees of freedom in the original Lagrangian. It is straightforward

to write a manifestly invariant kinetic term for Φ1,

L(eff)
01 =

∫

dθ+dθ−D+Φ1D−Φ1

=
1

2
(ζ̇2 − ζ

′2) − iψ+∂−ψ+ − iψ−∂+ψ− + Z2. (22)

Doing the same for the other superfield is a little bit more involved procedure. We expect the

superfield Φ2 to acquire a non-trivial VEV. Based on our experience in the interpretation

of the bosonic theory and motivated by the expected relation with other formulations of

two-dimensional superstring theory, we expect the components of Φ2 to obtain the following

VEV

< α > = e−ω|τ−τ0|

< χ± > = 0

< A > = 0. (23)

Furthermore, we impose that the most singular term in the Lagrangian has a 1/α4 depen-

dence, in agreement with classical string theory. We now desire a manifestly supersymmetric

Lagrangian that (i) has (23) as a solution to its equations of motion, (ii) when the VEV,

(23), of Φ2 is substituted into the Lagrangian, it reduces to the constant term in (19), and
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(iii) the most singular term in the Lagrangian has a 1/α4 dependence. A solution with the

desired properties is given by

L(eff)
02 =

∫

dθ+dθ−
{

F1(Φ2)D+Φ2D−Φ2 −
1

ω2
F2(Φ2)∂−D+Φ2∂+D−Φ2

}

= F1(α)∂+α∂−α− 1

ω2
F2(α)(∂+∂−α)2

+F1(α)A2 − 1

ω2
F2(α)∂+A∂−A

−iF1(α)χ+∂−χ+ − i

ω2
F2(α)∂−χ+∂+∂−χ+

−iF1(α)χ−∂+χ− − i

ω2
F2(α)∂+χ−∂−∂+χ−, (24)

where

F1(Φ2) = − 1

48πκω2g2

(

11

5

κ3

Φ6
2

− 28

3

κ2

Φ4
2

+ 18
κ

Φ2
2

− 4 +
5

3

Φ2
2

κ

)

F2(Φ2) = − 1

48πκω2g2

(

−2

5

κ3

Φ6
2

+
8

3

κ2

Φ4
2

− 12
κ

Φ2
2

− 8 +
2

3

Φ2
2

κ

)

. (25)

This Lagrangian indeed has (23) as a solution of its equation of motion. Obviously, (24)

is not the unique Lagrangian with the desired properties. However, it is the Lagrangian with

the least number of terms. We therefore choose to present it. The fact that we were able to

find any solution to our requirements is not at all trivial.

So far, we were able to construct a manifestly supersymmetric theory, to lowest order

in the coupling g(τ), using the two superfields and their covariant derivatives. Amazingly

enough, there exist a manifestly supersymmetric Lagrangian that reduces to the full non-

linear interacting two-dimensional field theory. The details of the derivation are given in [3].

We give the final result here,

L(eff) =
∫

dθ+dθ−

{

D+Φ1D−Φ1

+F1(Φ2)D+Φ2D−Φ2 −
1

ω2
F2(Φ2)∂−D+Φ2∂+D−Φ2

−f(Φ2)

ω3Φ3
2

∂(+Φ1∂−)Φ2∂[+Φ1∂−]Φ2

1 + f(Φ2)
ωΦ2

∂(+Φ1∂−)Φ2

D(+Φ1D−)Φ2

+
1

3

f(Φ2)

ω5Φ5
2

(∂[+Φ1∂−]Φ2)
3D+Φ2D−Φ2
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−f(Φ2)

ω5Φ5
2

(∂[+Φ1∂−]Φ2)
2∂(+Φ1∂−)Φ2

1 + f(Φ2)
ωΦ2

∂(+Φ1∂−)Φ2

D+Φ2D−Φ2

}

, (26)

where

f(Φ2) = 4
√
πg

1
κ
Φ2

2

(1 − 1
κ
Φ2

2)
2
. (27)

In components, (26) is given by

L(eff) = +∂+ζ∂−ζ + Z2 − iψ+∂−ψ+ − iψ−∂+ψ−

+F1(α)∂+α∂−α− 1

ω2
F2(α)(∂+∂−α)2

+F1(α)A2 − 1

ω2
F2(α)∂+A∂−A

−iF1(α)χ+∂−χ+ − i

ω2
F2(α)∂−χ+∂+∂−χ+

−iF1(α)χ−∂+χ− − i

ω2
F2(α)∂+χ−∂−∂+χ−

+
∑

n

O(αnχ+χ− + αn−1Aχ+χ−).

−1

2

f(α)ζ̇2ζ ′

1 + f(α)ζ ′
− 1

6
f(α)ζ

′3

+
i√
2

f(α)ζ ′

1 + f(α)ζ ′
(ψ+ψ̇+ + ψ−ψ̇−) +

i√
2

f(α)ζ̇

[1 + f(α)ζ ′]2
(ψ+ψ

′

+ + ψ−ψ
′

−)

+O
{

∂ζ(ψχ+ χχ + Zψχ+ Zχχ+ Aψψ + Aψχ) + ψψχ+ ψχχ

}

. (28)

As can be checked, the general solution of the equations of motion derived from (26) is the

following,

< α > = exp

{

ω[|t− t0| sinh θ0 − |τ − τ0| cosh θ0]

}

< ζ > = constant

< χ± > = η±0 < α >

< ψ± > = 0

< A > = 0

< Z > = 0. (29)
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If this solution is substituted back into (26) and the auxiliary fields are eliminated through

their equations of motion, the result exactly reproduces (19).

The Lagrangian (26) has some interesting properties. First, the superfield Φ1 has only

derivative interactions, and so, in particular, has no superpotential. The interactions of the

superfield Φ2 always contain some derivatives, therefore the superfield Φ2 has no superpo-

tential as well. The coupling parameter of the theory is field-dependent. This is a typical

situation in low-energy effective field theories of string theory. The overall coupling strength

is determined by the parameter g, which is sometimes called the “string coupling constant”.

However, if Φ2 has a space-dependent VEV, as in (23), the coupling strength varies in space-

time and even blows up at some finite point, signalling the possible existence of new physical

phenomena.
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