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ABSTRACT

We present a summary of the results of an explicit calculation of the strength of non-

perturbative interactions in matrix models and string effective Lagrangians. These inter-

actions are induced by single eigenvalue instantons in the d = 1 bosonic matrix model. A

well defined approximation scheme is used to obtain induced operators whose exact form

we exhibit. We briefly discuss the possibility that similar instantons in a supersymmetric

version of the theory may break supersymmetry dynamically.
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Recently, it has been shown that matrix models [1] allow the construction of space-

time Lagrangians valid to all orders in the string coupling parameter, at least for noncritical

strings propagating in d = 2 dimensions. These Lagrangians are derived using the techniques

of collective field theory [2, 3]. All order Lagrangians have been constructed, using these

techniques, for both the d = 1 bosonic matrix model [4] and also for the d = 1,N = 2

supersymmetric matrix model [5]. There are two remarkable features of these constructions.

First, when interactions are included to all orders, the induced coupling blows up at finite

points in space and delineates a zone of strong coupling. This is to be contrasted with the

lowest order theory, where the coupling only diverges at spatial infinity. Secondly, since

these all-order Lagrangians are derived from matrix models, they contain additional non-

perturbative information which is directly accessible and computable. The existence of

these new non-perturbative aspects of the theory relies on the observation that the matrix

models contain two distinct sectors. The first of these is the so-called continuous sector,

which consists of a continuous distribution of matrix eigenvalues. The second sector consists

of discrete eigenvalues, which are distinguishable from the continuum eigenvalues. The

classical configurations of the matrix model include time-dependent instanton solutions in

which the discrete eigenvalues tunnel between two continuous eigenvalue sectors. We perform

an explicit calculation of the leading order effects of such single eigenvalue instantons on the

effective theory derived from a d = 1 bosonic matrix model. These consists of a set of

induced operators, whose exact form we compute and exhibit. The results presented here

are a summary of the results contained in [6]. All calculations are presented in painful details

there.

We conjecture that, in the supersymmetric case, the same instantons described in this

talk, and their associated bosonic and fermionic zero modes, provide a mechanism for su-

persymmetry breaking in the associated d = 2 effective superstring theory. It is presumed

that the discrete nature of the single eigenvalues allows a novel circumvention of some no-go

theorems, based on Witten’s index, relevant to non-perturbative dynamical supersymmetry

breaking in d > 1 dimensions. The present calculation is a necessary preliminary ingredient

to the explicit calculation of this effect, which we are pursuing at these very moments and
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hope to report on soon [7]. Non-perturbative effects due to single eigenvalue instantons

and their implications were also discussed elsewhere [8, 9, 10, 11]. Recently, an interesting

complementary approach was suggested [12].

A d = 1 bosonic matrix model has a time-dependent N ×N Hermitian matrix, M(t), as

its fundamental variable. Its dynamics are described by the Lagrangian

L(Ṁ, M) =
1

2
TrṀ2 − V (M). (1)

The potential is taken to be polynomial,

V (M) =
∞∑

n=0

anTrMn, (2)

As N → ∞, if the an are tuned simultaneously and appropriately, the associated partition

function describes an ensemble of oriented two-dimensional Riemann surfaces, including

contributions at all genus. It is argued that, in this limit, the model describes a string

propagating in two space-time dimensions. In the large N limit, the potential may be

written as

V (M) = Tr(NV0 · 1 − 1

2
ω2M2), (3)

where 1 is the N ×N unit matrix. The parameters V0 and ω each have mass dimension one,

and are arbitrary. In (3) the scaling behavior of the coefficients has been made explicit. The

Lagrangian, (1), is invariant under the global U(N) transformation M → U †MU , where U
is an arbitrary N × N unitary matrix. The set of states which do not transform under U
comprise the U(N)-singlet sector of the quantized theory. It can be shown that the physics

of this singlet sector is described equivalently by a theory involving only the N eigenvalues,

λi(t), of the matrix M(t) with the following Lagrangian,

L[λ] =
N∑

i=1

{1

2
λ̇2

i − (V0 −
1

2
ω2λ2

i ) −
1

2

∑

j 6=i

1

(λi − λj)2
}. (4)

The eigenvalues are first restricted to lie in the interval −L
2
≤ λi ≤ L

2
for any i. When we

take the limit N → ∞, we will simultaneously take L → ∞. In this limit, over a given

range, l, to be made explicit below, there exist two possibilities. If n represents the number

of eigenvalues within this range, then the average density is given by ρ = n/l. In the limit
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N → ∞, L → ∞, ρ can remain small, and the eigenvalues populate the region sparsely.

We refer to this situation as a “low density” or “discrete” distribution of eigenvalues over

the region l. In the second case, ρ becomes very large, and the eigenvalues populate the

region densely. In this case, the eigenvalues can be aggregated into a “collective field”

which describes their collective motion. We refer to this second case as a “high density”

or“continuous” distribution of eigenvalues. We begin by studying the continuous case.

We introduce a continuous real parameter, x, constrained to lie in the interval −L
2
≤ x ≤

L
2
, and over this line segment define a collective field,

∂xϕ(x, t) =
N∑

i=1

δ(x − λi(t)). (5)

It follows from (5) that ∫ x0+l

x0

dx∂xϕ(x, t) = n, (6)

where n is the number of eigenvalues in the range l. Thus, ϕ′ = ∂xϕ is the eigenvalue density.

In the range l, ϕ′ has n degrees of freedom. Provided that n/l → ∞ as N → ∞, L → ∞, the

average density of eigenvalues then becomes infinite, and, modulo some technical subtleties

irrelevant to this discussion, the field ϕ becomes an unconstrained, ordinary two dimensional

field. In effect, ϕ′ ceases to be a sum over delta functions and becomes a continuous eigenvalue

density. It can be shown, in this case, that the eigenvalue Lagrangian, (4), may be rewritten

in terms of the collective field as follows,

L[ϕ] =
∫

dx{ ϕ̇2

2ϕ′
− π2

6
ϕ

′3 − (V0 −
ω2

2
x2)ϕ′}. (7)

The associated action is given by S[ϕ] =
∫

dtL[ϕ]. This expression describes the physics over

all ranges of x where the eigenvalue density is large. The limits on the
∫

dx integral are set

accordingly. Since our interest is in the quantum theory, henceforth we will consider only

the Euclidean version of the action, which is given by

SE [ϕ] =
∫

dxdt{ ϕ̇2

2ϕ′
+

π2

6
ϕ

′3 + (V0 −
ω2

2
x2)ϕ′}. (8)

The equation of motion, obtained by varying (8) is

∂t(
ϕ̇

ϕ′
) − 1

2
∂x

{
ϕ̇2

ϕ′2
+ π2ϕ

′2 − ω2x2

}

= 0. (9)
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The static solution is obtained by taking ϕ̇ = 0, so that (9) reduces to

∂x

{

π2ϕ
′2 − ω2x2

}

= 0. (10)

The solution to this equation is the following,

ϕ̃
′
0(x) =

ω

π

√
x2 − A2, (11)

where A2 is a positive constant. Additional analysis reveals that

A2 = 2V0/ω
2. (12)

Since ϕ′ is now a continuous density of eigenvalues, we may use (6) to determine the

approximate location of the first eigenvalues in the continuum; that is, those two eigenvalues

closest to x = ±A. We focus on the region x ≥ A. There is an identical discussion regarding

the opposite region, x ≤ −A. Given (11), the first eigenvalue must live somewhere in the

region A ≤ x ≤ A + ǫx, where ǫx is determined by the following relation,

1 =
ω

π

∫ A+ǫx

A
dx

√
x2 − A2

=
ωA2

2π

{
x

A

√
(
x

A
)2 − 1 − ln(

x

A
+

√
(
x

A
)2 − 1)

}∣∣∣∣∣

x=A+ǫx

x=A

. (13)

We make the important assumption that ǫx << A. After some algebra, Eq.(13) then becomes

1

2
(

3π

ωA2
)2/3 =

ǫx

A
+ O

(

(
ǫx

A
)2

)

. (14)

For consistency, this requires that (ωA2)−1 << 1. This small dimensionless number will be

central to much of the ensuing analysis, so we give it a special name,

g =
1

ωA2
<< 1. (15)

It is clear that the first eigenvalue does not live precisely at the value x = A. This distinction

will prove a necessary and important regulator on quantities which we will encounter. For

definiteness, we assume henceforth that the first eigenvalue in the static continuum has a

value x = A + ǫx, where

ǫx =
1

2
(3πg)2/3A (16)
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and g is a small, dimensionless number, which, in the present context, parameterizes the

width of the discrete region as well as our ignorance regarding the “graininess” of eigenvalues

near the edge of the continuous distribution, when we adopt a collective field point of view.

We now turn our attention to the region |x| ≤ A. We assume, in addition to a continuum of

eigenvalues λi for i = 1 to N , that there exists an additional discrete eigenvalue, which we

denote λ0. There are then N + 1 total eigenvalues, and the Euclidean version of Lagrangian

(4) now reads

LE =
N∑

i=0

{1

2
λ̇2

i + (V0 −
1

2
ω2λ2

i ) +
1

2

∑

j 6=i

1

(λi − λj)2
}. (17)

Note that the index i now runs over the N + 1 values from 0 to N . What do we mean by a

discrete eigenvalue? The separation of the continuum eigenvalues nearest to ±A is of order

ǫx. As long as −A ≤ λ0 ≤ A, and

A − |λ0| >> ǫx, (18)

the eigenvalue λ0 is truly distinct from the continuum and, hence, discrete. Assuming that

λ0 satisfies (18), it is useful to rewrite this Lagrangian by separating the λ0 contribution

from the contribution due to the continuum eigenvalues, as follows,

LE =
1

2
λ̇2

0 + (V0 −
1

2
ω2λ2

0) +
∑

i6=0

1

(λ0 − λi)2

+
N∑

i=1

{1

2
λ̇2

i + (V0 −
1

2
ω2λ2

i ) +
1

2

∑

j 6=i

1

(λi − λj)2
}. (19)

As above, we may now rewrite this expression using the definition (5). We thus obtain

LE [λ0; ϕ] =
1

2
λ̇2

0 +
1

2
ω2(A2 − λ2

0) +
∫

dx
ϕ′

(x − λ0)2

+
∫

dx{ ϕ̇2

2ϕ′
+

π2

6
ϕ

′3 +
1

2
ω2(A2 − x2)ϕ′}. (20)

The third term in this expression represents the mutual interaction of the discrete eigenvalue

with the continuum eigenvalues, which are collectively described using the field ϕ. We obtain

the Euclidean equations of motion for λ0 and for ϕ by variation of (20). Respectively, these
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are found to be

λ̈0 + ω2λ0 +
∫

dx
ϕ′

(λ0 − x)3
= 0 (21)

∂t(
ϕ̇

ϕ′
) − 1

2
∂x

{
ϕ̇2

ϕ′2
+ π2ϕ

′2 − ω2x2 +
2

(λ0 − x)2

}

= 0. (22)

We consider first the ϕ equation. It is possible to show, even in the presence of a nontrivial,

but discrete, λ0(t), that the static background, ϕ̃
′
0, derived above is still a valid solution to

leading order in ǫx.

Next, we turn our attention to the λ0 equation, (21). This is the Euclidean equation of

motion,

λ̈0 − V
′
eff(λ0) = 0, (23)

where

Veff (λ0) =
ω

2g

{

−(
λ0

A
)2 + 4g

(λ0/A)
√

1 − (λ0/A)2
tan−1(

(λ0/A)
√

1 − (λ0/A)2
)

}

. (24)

The effect of the second term in (24), is to turn the potential over near λ0 = ±A, where it

adds infinite confining walls. The eigenvalue, λ0 can be treated as discrete, and Veff(λ0) is

well defined, for λ0 sufficiently far from ±A. When λ0 approaches ±A to within order ǫx it

is absorbed into the continuum, and disappears as a discrete entity. Of course, this process

can be reversed. It is possible for the first eigenvalue of the continuum to “leak” out and

become a discrete eigenvalue λ0. We will return to such processes below.

This being said, we would like to find both static and time-dependent solutions for the

Euclidean λ0 equation of motion (23). In the small g limit we can replace (23) by

λ̈0 + ω2λ0 = 0 ; −A < λ0 < A

λ̈0 = 0 ; λ0 = ±A. (25)

We also impose the following boundary conditions, λ0(t → −∞) = ±A and, independently,

λ0(t → +∞) = ±A. There are two static solutions to (25) which satisfy this boundary

condition,

λ̂0± = ±A. (26)
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A simple time-dependent solution is given by

λ̂
(+)
0 (t; t1) =






−A ; t < t1 − π
2ω

+A sin ω(t− t1) ; t1 − π
2ω

≤ t ≤ t1 + π
2ω

+A ; t > t1 + π
2ω

, (27)

where t1 is arbitrary. The solution (27) describes an eigenvalue which rolls (tunnels) from

−A to +A over a time interval of duration π
ω
, centered at an arbitrary time t1. We refer to

this solution as a “kink”. Its mirror image is also a valid solution,

λ̂
(−)
0 (t; t1) =






+A ; t < t1 − π
2ω

−A sin ω(t − t1) ; t1 − π
2ω

≤ t ≤ t1 + π
2ω

−A ; t > t1 + π
2ω

, (28)

It describes an eigenvalue which rolls from +A to −A. It is referred to as an “anti-kink”.

Taking into account the fact that, when at ±A, the discrete eigenvalue gets reabsorbed

in the continuum, we may rewrite the kink and antikink solutions as follows,

λ
(±)
0 = ±A sin ω(t − t1) ; t1 −

π

2ω
≤ t ≤ t1 +

π

2ω
, (29)

There exist more general solutions than those which we have already discussed, in which

the identity of λ0 is more complex. It is possible, for example, that a kink, which ends with

eigenvalue λ0 attaching to the continuum at +A, could be followed, at some later time, by

an antikink, in which the eigenvalue λ0 separates from the continuum at +A, rolls to −A

and then reattaches there. Such a kink-antikink sequence, which we denote λ
(+−)
0 , would

satisfy the Euclidean equation of motion, (25). It is also possible, however, that a kink,

which ends with the eigenvalue λ0 attaching to the continuum at +A, could be followed, at

some later time, by another kink in which a different eigenvalue detaches from the continuum

at −A, traverses the region between −A and +A, and then reattaches to the continuum at

+A immediately next to the eigenvalue involved in the first kink. This kink-kink sequence,

which we denote λ
(++)
0 , also satisfies (25). There are thus 22 = 4 solutions which involve two

distinct kinks,

λ
(++)
0 =






+A sin ω(t− t1) ; t1 − π
2ω

≤ t ≤ t1 + π
2ω

+A sin ω(t− t2) ; t2 − π
2ω

≤ t ≤ t2 + π
2ω
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λ
(+−)
0 =






+A sin ω(t− t1) ; t1 − π
2ω

≤ t ≤ t1 + π
2ω

−A sin ω(t − t2) ; t2 − π
2ω

≤ t ≤ t2 + π
2ω

λ
(−+)
0 =






−A sin ω(t − t1) ; t1 − π
2ω

≤ t ≤ t1 + π
2ω

+A sin ω(t− t2) ; t2 − π
2ω

≤ t ≤ t2 + π
2ω

λ
(−−)
0 =






−A sin ω(t − t1) ; t1 − π
2ω

≤ t ≤ t1 + π
2ω

−A sin ω(t − t2) ; t2 − π
2ω

≤ t ≤ t2 + π
2ω

(30)

In all four cases t2 ≥ t1 + π
ω
, but both t1 and t2 are otherwise arbitrary. An arbitrary

solution consists of q events which are randomly distributed between kinks and antikinks,

where 0 ≤ q < ∞. For a given q there are 2q distinct instanton configurations. Generically,

we denote the 2q instantons as λ
(q)
0 . There are q zero modes associated with each λ

(q)
0 .

These correspond to the arbitrary times t1, ..., tq, where tq ≥ tq−1 · · · ≥ t1, when the kinks or

antikinks occur. We ignore all cases where several eigenvalues are simultaneously discrete,

since the effect of these solutions is negligible.

The partition function associated with the theory discussed above can be written as a

sum over different instanton sectors,

Z =
∞∑

q=0

Zq (31)

where, schematically,

Zq =
∫

[dϕ]
∫

[dλo]qe
−S[λ0;ϕ]. (32)

In this expression the symbol [dλ0]q indicates that λ0 is expanded around λ
(q)
0 . For notational

convenience we have suppressed a subscript E on the action, but it is assumed throughout

this section that we are in euclidean space. We proceed to define equation (32) in more

precise terms. First of all, remember that λ
(q)
0 generically represents all the 2q instanton

solutions which each have q single eigenvalue kinks-antikinks. Therefore, more specifically,

Zq =
∑

{ki}

Zk1···kq , (33)

where ki = ±, the summation is over all 2q possible sets {k1 · · · kq}, and

Zk1···kq =
∫

[dϕ]
∫

[dλ0]k1···kqe
−S[λ0;ϕ]. (34)
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The symbol [dλ0]k1···kq indicates that λ0 is expanded around λ
(k1···kq)
0 . Thus, Z2 = Z++ +

Z+−+Z−+ +Z−−, and so on. After some lengthy analysis, using a dilute gas approximation,

we arrive at the following general result

Z =
∫

[dϕ]e−Sϕ[ϕ]
∞∑

q=0

1

q!
Mq

q∏

i=1

∫
dti

∑

{ki}

q∏

j=1

e−S
(kj )

I
[ϕ;tj ]

=
∫

[dϕ]e−Sϕ[ϕ]
∞∑

q=0

1

q!

{

M
∫

dt1

(

e−S
(+)
I

[ϕ;t1] + e−S
(−)
I

[ϕ;t1]

)}q

. (35)

The sum over q is now an exponential, so that

Z =
∫

[dϕ]e−Seff [ϕ], (36)

where

Seff [ϕ] = Sϕ[ϕ] + ∆S[ϕ] (37)

is the effective action with the instanton effects systematically incorporated, and

∆S[ϕ] = M
∫

dt1

{

e−S
(+)
I [ϕ;t1] + e−S

(−)
I [ϕ;t1]

}

(38)

is the associated change in the action. The action S
(±)
I is given by

S
(±)
I [ϕ; tj ] =

∫ tj+
π
2ω

tj−
π
2ω

dt
∫

dx

{
ϕ′(x, t)

(x − λ
(±)
0 (t − tj))2

− ϕ′(x, t)

(x − λ
(±)
∅ (t − tj))2

}

. (39)

where

λ
(±)
∅ (t; t1) =






∓A ; t1 − π
2ω

≤ t < t1

±A ; t1 < t ≤ t1 + π
2ω

. (40)

The quantity M is a dimensionful parameter that sets the basic strength for induced non-

perturbative interactions

M = ω

√
π

2g
e−

π
2g . (41)

So far, we have studied the collective field theory expressed in terms of the field ϕ. By

examining equation (8), however, we discover that ϕ does not have a canonically normalized

kinetic energy. We also find that the collective field Lagrangian is neither Lorentz invariant
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nor translation invariant. The first of these problems is solved, in part, by expanding ϕ

around the solution to the euclidean field equation ϕ̃0 given in (11). Thus, we define

ϕ(x, t) = ϕ̃0(x) +
1√
π

ζ(x, t). (42)

As discussed at length elsewhere, a canonical kinetic energy is obtained by expressing the

Lagrangian in terms of a new spatial coordinate τ defined by the following relation,

τ ′(x) =
1

π
(ϕ̃

′
0(x))−1. (43)

Note that τ has mass dimension −1, which is the appropriate mass dimension for a spatial

coordinate, whereas x has mass dimension −1
2
. Expressing the euclidean collective field

action (8) in terms of ζ(τ, t), we find, in the absence of instanton effects, that

Sζ [ζ ] =
∫

dt
∫

dτ

{
1

2
(ζ̇2 + ζ

′2) − 1

2

g(τ)ζ̇2ζ ′

1 + g(τ)ζ ′
+

1

6
g(τ)ζ

′3 − 1

3

1

g(τ)2

}

, (44)

where g(τ) is a space dependent coupling parameter, which we define below, and the τ

integration is over the limits −∞ < τ ≤ τ0 + σ
2

and τ0 + σ
2
≤ τ < ∞, where τ0 and σ are

independent integration constants which arise when solving (43). The reason why there are

two integration constants rather than one, given that (43) is a first-order differential equation,

is that we must solve (43) independently over the two separate regions −∞ < x ≤ A and

A ≤ x < ∞. The region −A < x < A, where there is no continuous collective field theory,

is the low density region. In τ space, this region is given by τ0 − σ
2

< τ < τ0 + σ
2
, so that τ0

is the center of the low density region and σ is the width. The coupling parameter, defined

over −∞ < τ ≤ τ0 − σ
2

and τ0 + σ
2
≤ τ < ∞, is given by g(τ) = (π3/2ϕ̃0(x))−1, and is found

to be

g(τ) = 4
√

π
g

ω

1
κ
e−2ω|τ−τ0|

(1 − 1
κ
e−2ω|τ−τ0|)2

, (45)

where κ is a dimensionless number,

κ = exp(−ωσ), (46)

which relates the width, σ, of the low density region in τ space to the natural length scale

in the matrix model, 1/ω. Notice that the coupling parameter blows up as τ → τ0 ± σ
2
; that

is, at the boundaries of the low density region.
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We would now like to express the change in the effective action due to the instanton

effects, equation (38), in terms of the canonical variable ζ(τ, t). Since S
(±)
I is linear in ϕ, it

follows that

S
(±)
I [ϕ; t1] = S

(±)
I [ϕ̃0] +

1√
π

S
(±)
I [ζ ; τ0, t1]. (47)

The τ0 dependence in the last term of this equation will be made clear presently. From (39),

we find

S
(±)
I [ζ ; τ0, t1] =

∫ t1+ π
2ω

t1−
π
2ω

dt
∫

dτ

{
ζ ′(τ, t)

(x(τ) − λ
(±)
0 (t − t1))2

− ζ ′(τ, t)

(x(τ) − λ
(±)
∅ (t − t1))2

}

, (48)

where the prime now means differentiation with respect to τ , and where

x(τ) =






−A cosh{ω(τ − τ0 + σ/2)} ; τ ≤ τ0 − σ/2

+A cosh{ω(τ − τ0 − σ/2)} ; τ ≥ τ0 − σ/2
. (49)

This last expression is found by integrating (43) to obtain τ(x) and then inverting the result

to obtain x(τ). This function depends explicitly on τ0. This explains why there is an explicit

τ0 in equations (47) and (48). It is straightforward to compute S
(±)
I [ϕ̃0] and we find

S
(±)
I [ϕ̃0] = −23/2

√
A

ǫx

+ ln

√
A

ǫx

+ O(
ǫx

A
). (50)

As discussed above, ǫx is the size of the inter-eigenvalue separation near the edge of the

continuum and so provides the natural regulator for expressions such as (50). From (16) it

follows that, to lowest order in g

e−S
(±)
I

[ϕ̃0] = g1/3eO(g1/3). (51)

Since all x-space integrations are cut-off at a distance ǫx from the edge of the low density

region; that is, at |x| = A + ǫx, it follows that all τ space integrals must be cut-off as well at

a value ǫτ . Specifically, in (48) and in all other expressions which include a
∫

dτ integration,

the following is implied,

∫
dτ =

∫ τ0−
σ
2
−ǫτ

−∞
dτ +

∫ ∞

τ0+ σ
2
+ǫτ

dτ. (52)
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The value of ǫτ is simple to obtain. We require that

x(τ − σ

2
− ǫτ ) = −A − ǫx

x(τ +
σ

2
+ ǫτ ) = A + ǫx. (53)

Using (49) and (16) it follows, to leading order in g, that

ǫτ =
1

ω
√

2
(3πg)1/3. (54)

Now, using (51), substituting (47) into (38), and using (41), we find that

∆S[ζ ] = ωg−1/6e−
π
2g

∫
dt1

{

e−S
(+)
I

[ζ;τ0,t1] + e−S
(−)
I

[ζ;τ0,t1]

}

. (55)

Equation (55) is a significant result. Concisely, it is the induced change in the canonical

collective field theory which results from the systematic inclusion of instanton effects. A

lengthy analysis allows us to calculate from Eq.(55) the induced action as an integral over a

local density. Skipping a lot of details we simply state the results

S
(+)
I =

1

ω
h00(ζ

′
− + ζ

′
+) +

1

ω2
h01(ζ

′′
− − ζ

′′
+) +

1

ω2
h10(ζ̇

′
− − ζ̇

′
+) +

1

ω3
h11(ζ̇

′′
− + ζ̇

′′
+) + · · ·

S
(−)
I =

1

ω
h00(ζ

′
− + ζ

′
+) − 1

ω2
h01(ζ

′′
− − ζ

′′
+) − 1

ω2
h10(ζ̇

′
− − ζ̇

′
+) +

1

ω3
h11(ζ̇

′′
− + ζ̇

′′
+) + · · · .

(56)

where

hmn =
ωm+n+1

m!n!

∫ π
2

−π
2

dt
∫ −ǫτ

−∞
dτJ (τ, t)τmtn, (57)

ζ± ≡ ζ(τ0 ±
σ

2
, t1) (58)

and

J (τ−τ0+
σ

2
, t−t1) =

1

(x(τ − τ0 + σ
2
) − λ

(±)
0 (t − t1))2

− 1

(x(τ − τ0 + σ
2
) − λ

(±)
∅ (t − t1))2

(59)

It is straightforward to compute the coefficients hmn. We find, for instance, to leading order

in g, that

h00 = −4
√

2

9

h10 = −(
8πg

9
)1/3

h01 = −π
√

2

9
. (60)
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In general, the hmn are found to have the following g dependence,

hmn ∼






gm/3 ; m ≤ 3

g ; m > 3
(61)

Note, from (56) and (61), that, as the first index of hmn increases, that the corresponding

terms in S
(±)
I depend on higher powers of g. However, none of h0n have g dependence for

any value of n. We proceed to analyze the relative impact of these terms on generic N -

point functions. By putting (56) back into (55) we can find all relevant interaction vertices.

These are obtained by Taylor expanding the exponentials in (55). For instance, we obtain

the quadratic vertices 1
ω2 h

2
00ζ

′
−ζ

′
− and 1

ω3 h00h10ζ
′
−ζ

′′
− where, as discussed above, h00 ∼ 1 and

h10 ∼ g1/3. It is clear that the effect of the second vertex, containing h00h10, on any N -point

function, is suppressed by a factor g1/3p/w, where p is a characteristic momentum, when

compared with effects arising solely from the first vertex containing h2
00. This is true at tree

level. At the quantum level, there may be some subtleties to this argument which we will

not discuss. Similar considerations apply to all other induced operators, involving higher

hmn. It can thus be shown, provided

p
<∼ ω, (62)

that, when working to leading order in g, we can consistently drop all but the h0n terms

in (56). Now, of the terms which remain, as n increases, the corresponding terms in S
(±)
I

depend on higher derivatives of ζ . Thus, the effect of any vertex, containing h0n, on any

N -point function, is suppressed by a factor (p/ω)n, relative to effects arising from vertices

containing only h00. If we further restrict momenta, such that

p << ω, (63)

we can then consistently neglect all but the h00 terms in (56). This results in a vast sim-

plification of the final result, so we will assume this approximation. It would be completely

straightforward, however, to lift the restriction (63), and only require (62). One would then

have to keep all h0n terms in (56). It follows from (56), that, to leading order in g,

∆S[ζ ] = 2ωg−1/6e−
π
2g

∫
dt1 exp

{
4
√

2

3ω

(

ζ ′(τ0 +
σ

2
, t1) + ζ ′(τ0 −

σ

2
, t1)

)}

. (64)
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Note however that equation (64) includes nonlocal interactions, since it involves contributions

coming from ζ ′ evaluated simultaneously at τ0 − σ
2

and also at τ0 + σ
2
. This is not surprising

though, since we have arrived at this result by integrating over single eigenvalue instantons,

which link effects on the left-hand side of the low-density region with effects on the the right-

hand side of this region, and because there is a finite separation between these two sectors.

One may wish to find some further approximation which would render the effective theory

local. This can be done as follows. Provided we consider momenta which satisfy (63), and

provided also that ω
<∼ 1

σ
, the effective width of the low density region as seen by any field

will be essentially zero. We therefore Taylor expand ζ ′(τ0 ± σ
2
, t1) around the point (τ0, t1),

thereby taking
1

ω
ζ ′(τ0 ±

σ

2
, t1) =

1

ω
ζ ′(τ0, t1) ±

σω

2ω
ζ ′′(τ0, t1) + · · · . (65)

Then, in a manner identical to the previous discussion, we find that the contributions coming

from vertices which involve σ are always suppressed by (σω)p/ω, where p is a characteristic

momentum. Note that, since we now assume ω
<∼ 1

σ
, the factor (σω) is

<∼ O(1). So, provided

that

p << ω
<∼ 1

σ
, (66)

we may write the lowest order instanton-induced change in the collective field action approx-

imately, in local form, as follows,

∆S[ζ ] = 2ωg−1/6e−
π
2g

∫
dte−

2
√

2
3ω

ζ′(τ0,t). (67)

We have dropped the subscript “1” on t1 because it is now superfluous. This result can be

written as a two-dimensional integral over a density ∆S =
∫

dtdτ∆L, where

∆L = 2ωg−1/6e−
π
2g δ(τ − τ0)e

− 2
√

2
3ω

ζ′(τ,t). (68)

This is the final result of our calculation.
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