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Abstract

We analyse the general features of the Higgs and supersymmetric particle spectrum
associated with the infrared fixed point solution of the top quark mass in the Minimal
Supersymmetric Standard Model. We consider the constraints on the mass parameters,
which are derived from the condition of a proper radiative electroweak symmetry break-
ing in the low and moderate tan β regime. In the case of universal soft supersymmetry
breaking parameters at the high energy scale, the radiative SU(2)L ×U(1)Y breaking,
together with the top quark Yukawa fixed point structure imply that, for any given
value of the top quark mass, the Higgs and supersymmetric particle spectrum is fully
determined as a function of only two supersymmetry breaking parameters. This result
is of great interest since the infrared fixed point solution appears as a prediction in
many different theoretical frameworks. In particular, in the context of the MSSM with
unification of the gauge and bottom–tau Yukawa couplings, for small and moderate
values of tan β the value of the top quark mass is very close to its infrared fixed point
value. We show that, for the interesting range of top quark mass values Mt ≃ 175± 10
GeV, both a light chargino and a light stop may be present in the spectrum. In ad-
dition, for a given top quark mass, the infrared fixed point solution of the top quark
Yukawa coupling minimizes the value of the lightest CP-even Higgs mass mh. The
resulting upper bounds on mh read mh ≤ 90 (105) (120) GeV for Mt ≤ 165 (175) (185)
GeV.
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1 Introduction

In the present evidence of a heavy top quark, it is of interest to study in greater detail the

phenomenological implications of the infrared fixed point predictions for the top quark mass.

The low energy fixed point structure of the Renormalization Group (RG) equation of the

top quark Yukawa coupling determines the value of the top quark mass independently of

the precise symmetry conditions at the high energy scale. This quasi infrared fixed point

behaviour of the RG solution is present in the Standard Model (SM) [1] as well as in the

Minimal Supersymmetric Standard Model (MSSM) [2], [3], and it is associated with large

values of the top quark Yukawa coupling, which, however, remain in the range of validity of

perturbation theory. Within the MSSM, for a range of high energy values of the top quark

Yukawa coupling, such that it can reach its perturbative limit at some scale MX = 1014–1019

GeV, the value of the physical top quark mass is focused to be

Mt = 190–210 GeV sin β (1)

where tanβ = v2/v1 is the ratio of the two Higgs vacuum expectation values. The above

variation in Mt is due to a variation in the value of the strong gauge coupling, α3(MZ) = 0.11–

0.13.

The infrared fixed point structure is independent of the supersymmetry breaking scheme

under consideration. On the contrary, since the Yukawa couplings – especially if they are

strong – affect the running of the mass parameters of the theory, once the infrared fixed

point structure is present, it will play a decisive role in the resulting (s)particle spectrum of

the theory. In particular, in the low and moderate tanβ regime, in which the effects of the

bottom and tau Yukawa couplings are negligible, it is possible to determine the evolution

of the soft supersymmetry breaking mass parameters of the model as a function of their

boundary conditions at high energy scales and the ratio of the top quark Yukawa coupling

ht to its quasi infrared fixed point value hf [4]–[7], giving definite predictions in the limit

ht → hf [8].

In minimal supergravity grand unified models, the soft supersymmetry breaking mass

parameters proceed from common given values at the high energy scale. In addition, to

assure a proper breakdown of the electroweak symmetry, one needs to impose conditions on

the low energy mass parameters appearing in the scalar potential. This yields interesting

correlations among the free high energy mass parameters of the theory, which then translate

into interesting predictions for the Supersymmetric (SUSY) spectrum [8]–[15].

In the above, we have emphasized the infrared fixed point structure, which determines

the value of the top quark mass as a function of tanβ. There is a small dependence of

the infrared fixed point prediction on the supersymmetric spectrum, which, however, comes

mainly through the dependence on the spectrum of the running of the strong gauge coupling.
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Moreover, considering the MSSM with unification of gauge couplings at a grand unification

scale MGUT [16], the value of the strong gauge coupling is determined as a function of the

electroweak gauge couplings while its dependence on the SUSY spectrum can be charac-

terized by a single effective threshold scale TSUSY [17]-[18]. Thus, the stronger dependence

of the infrared fixed point prediction on the SUSY spectrum can be parametrized through

TSUSY . (There is also an independent effect coming from supersymmetric threshold cor-

rections to the Yukawa coupling, which, for supersymmetric particle masses smaller than 1

TeV or of this order, may change the top quark mass predictions in a few GeV, but without

changing the physical picture [19]).

The infrared fixed point structure of the top quark mass is interesting in itself, due to

the many interesting properties associated with its behaviour. As we shall show below, it

gives a highly predictive framework for the Higgs and supersymmetric particle spectrum.

Moreover, it has recently been observed in the literature that the condition of bottom–tau

Yukawa coupling unification in minimal supersymmetric grand unified theories requires large

values of the top quark Yukawa coupling at the unification scale [17]-[18], [20]-[23]. Most

appealing, in the low and moderate tan β regime, for values of the gauge couplings compatible

with recent predictions from LEP and for the experimentally allowed values of the bottom

mass, the conditions of gauge and bottom–tau Yukawa coupling unification predict values of

the top quark mass within 10% of its infrared fixed point results [17],[24].

In this talk we shall consider approximate analytical solutions to the one–loop RG equa-

tions of the low energy parameters, showing their dependence on the high energy soft su-

persymmetry breaking mass parameters and the top quark Yukawa coupling and analysing

the implications of the infrared fixed point solution in the low and moderate tan β regime.

We shall then incorporate the radiative electroweak symmetry breaking condition, to derive

approximate analytical correlations among the free, independent high energy parameters

of the theory. The analytical results are extremely useful in understanding the properties

derived from the full numerical study, in which a two–loop RG evolution of the gauge and

Yukawa couplings is considered. In the numerical analysis the evolution of the Higgs and

supersymmetric mass parameters are considered at the one–loop level, and the one–loop

radiative corrections to the Higgs quartic couplings are taken into account. We shall then

concentrate on the infrared fixed point predictions for the Higgs and SUSY spectrum as a

function of given values for the top quark mass. We shall also present an analysis of the

results obtained in the context of gauge and bottom–tau Yukawa coupling unification, to

show the proximity of the top quark mass predictions obtained in this framework to the

infrared fixed point top quark mass values as a function of tanβ. We summarize our results

in the last section.
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2 Infrared Fixed Point and the Evolution of the Mass

Parameters

In the Minimal Supersymmetric Standard Model, with unification of gauge couplings at some

high energy scale MGUT ≃ 1016 GeV, the infrared fixed point structure of the top quark

Yukawa coupling may be easily analysed, in the low and moderate tan β regime, 1≤ tan β <

10, considering its analytical one–loop RG solution. As we said before, for such values of

tanβ the effects of the bottom and tau Yukawa couplings are negligible. For large values

of tanβ, instead, the bottom Yukawa coupling becomes large and, in general, a numerical

study of the coupled equations for the couplings becomes necessary even at the one–loop

level. There are, however, particular cases for which, for sizeable effects from the bottom

and top Yukawa couplings, approximate analytical expressions may still be obtained.

In terms of Yt = h2
t/4π, the one–loop solution in the small and moderate tanβ region

reads [4],[6]:

Yt(t) =
2πYt(0)E(t)

2π + 3Yt(0)F (t)
, (2)

with E and F functions of the gauge couplings,

E = (1 + β3t)
16/3b3(1 + β2t)

3/b2(1 + β1t)
13/9b1 , F =

∫ t

0
E(t′)dt′, (3)

where βi = αi(0)bi/4π, bi is the beta function coefficient of the gauge coupling αi, and

t = 2 log(MGUT /Q) 1. As we mentioned above, the fixed point solution, hf (t), is obtained

for values of the top quark Yukawa coupling that become large at the grand unification scale,

that is, approximately,

Yf(t) ≃
2πE(t)

3F (t)
, (4)

where Yf = h2
f/4π. For values of the grand unification scale MGUT ≃ 1016 GeV, the fixed

point value, Eq. (4), is given by Yf ≃ (8/9)α3(MZ). Indeed, since F (Q = MZ) ≃ 300, the

infrared fixed point solution is rapidly reached for a wide range of values of Yt(0) ≃ 0.1–

1. This behaviour is shown in Fig. 1, in which the value of the running top quark mass,

mt(t) = ht(t)v2 = ht(t)v sin β, with v2 = v2
1 + v2

2 , is plotted as a function of the energy

scale, for a moderate value of tan β = 5. For a wide range of high energy values, the value

of ht(mt) tends to hf , implying that the running top quark mass tends to its infrared fixed

point value,

mIR
t (t) = hf(t) v sin β = mIRmax

t (t) sin β, (5)

1 The corresponding solution for the bottom and tau Yukawa couplings in this regime are: Yb(t) =
Yb(0)E(t)′/[1+(3/2π)Yt(0)F (t)]1/6 and Yτ (t) = Yτ (0)Ẽ(t), where E′ may be obtained from E by changing the
exponent coefficient 13/9 by 7/9, and Ẽ(t) can be obtained from E(t) by changing the exponent coefficients
16/3, and 13/9 by 0 and 3, respectively. These expressions are useful only when b–τ Yukawa coupling
unification is to be considered.

4



where for α3(MZ) = 0.11–0.13, mIRmax
t is approximately given by

mIRmax
t (Mt) ≃ 196 GeV [1 + 2(α3(MZ) − 0.12)]. (6)

One should remember that there is a significant quantitative difference between the running

top quark mass and the physical one Mt, defined as the location of the pole in its two–point

function. The main source of difference comes from the QCD corrections, which at the

two–loop level are given by

Mt = mt(Mt)
[

1 + 4α3(Mt)/3π + 11(α3(Mt)/π)2
]

. (7)

In Fig. 1 we present the result of a two–loop RG analysis, showing the stability of the

infrared fixed point under higher order loop contributions.

Fig. 1. Running top quark Yukawa coupling evolution, normalized in order to get the running top

quark mass at low energies, htv2, for different boundary conditions at an energy scale Q ≃ 1016 GeV.

Moreover, using Eq. (4) it follows that:

6Yt(0)F (t)

4π
=

Yt(t)/Yf(t)

1 − Yt(t)/Yf(t)
, (8)

with Yt/Yf the ratio of Yukawa couplings at low energies. The value of the top quark Yukawa

coupling at MGUT , Yt(0), appears in the RG solutions of the soft SUSY breaking parameters,

and the above equation permits to express it as a function of the gauge couplings (through

F) and the ratio Yt/Yf .

A similar analytical study can be done for the large tanβ regime when the bottom and

top Yukawa couplings are equal at the unification scale. Neglecting in a first approxima-

tion the effects of the tau Yukawa coupling and identifying the right-bottom and right-top
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hypercharges, the solution for Y = Yt ≃ Yb reads,

Y (t) =
4πY (0)E(t)

4π + 7Y (0)F (t)
. (9)

Then, if the Yukawa coupling is large at the grand unification scale, at energies of the order

of the top quark mass it will develop an infrared fixed point value approximately given by

Yf(t)
(Yt=Yb) ≃

4πE(t)

7F (t)
≃

6

7
Yf(t)

(low tan β). (10)

Relaxing the unification condition of the bottom and top Yukawa couplings, but still ne-

glecting in a first approximation the effects of the tau Yukawa coupling and identifying

the hypercharges, then, a general approximate analytical expression for Yb and Yt may be

considered:

Yt,b(t) = Yt,b(0)E(t)/ [1 + (3/2π)F (t)(Yt(0) + Yb(0))]1/6 [1 + (3/2π)F (t)Yt,b(0)]5/6 ; (11)

this goes to the correct limits for Yt ≫ Yb as well as for Yb ≫ Yt, while for the case Yb ≃ Yt,

it gives the result for the top and bottom quark masses with an error of the order of 2%.

If both Yukawa couplings are large at the grand unification scale, unlike the two previous

cases, their infrared fixed point expressions depend on the relative values of their boundary

conditions at the high energy scale. In fact, the ratio of the top to bottom Yukawa couplings

at the infrared fixed point depends on the ratio of their boundary conditions as follows,

Y f
t

Y f
b

=

(

Y f
t (0)

Y f
b (0)

)1/6

. (12)

Using the above relation to replace the dependence of the general solutions, Eq. (11), on the

boundary conditions of the Yukawa couplings, we obtain an infrared fixed point contour in

the Yt–Yb plane,
[

(

Y f
t

)6
+
(

Y f
b

)6
]1/6

=
2πE

3F
. (13)

In general, in the large tan β region the bottom quark Yukawa coupling becomes strong

and plays an important role in the RG analysis. There are also possible large radiative cor-

rections to the bottom quark mass coming from loops of supersymmetric particles, which are

strongly dependent on the particular spectrum and are extremely important in the analysis

if unification of bottom and tau Yukawa couplings is to be considered. Moreover, in some

of the minimal models of grand unification, large tanβ values are in conflict with proton

decay constraints [25]. In the special case of tau–bottom–top Yukawa coupling unification,

the infrared fixed point solution for the top quark mass is not achievable unless a relaxation

in the high energy boundary conditions of the mass parameters of the theory is arranged,

and it is necessarily associated with a heavy supersymmetric spectrum. The large tanβ
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regime will be analysed in detail at this workshop, in the presentations of U. Sarid [26] and

C. Wagner [27]. In the following we shall concentrate on the low and moderate tan β region,

which involves interesting phenomenological implications.

We shall now consider that the breakdown of supersymmetry comes through the addition

of all possible soft supersymmetry breaking terms. In the framework of minimal supergravity

one considers universal soft supersymmetry breaking parameters at the grand unification

scale. This includes common soft supersymmetry breaking mass terms m0 and M1/2 for

the scalar and gaugino sectors of the theory, respectively, and a common value A0 (B0)

for all trilinear (bilinear) couplings Ai (B) appearing in the full scalar potential, which

are proportional to the trilinear (bilinear) terms in the superpotential. In addition, the

supersymmetric Higgs mass parameter µ appearing in the superpotential takes a value µ0

at the grand unification scale MGUT . Knowing the values of the mass parameters at the

unification scale, their low energy values may be specified by their renormalization group

evolution [4]–[7], which contains also a dependence on the gauge and Yukawa couplings.

In the limit of small tan β, tanβ < 10, the following approximate analytical solutions are

obtained [8],

m2
L = m2

0 + 0.52M2
1/2 , m2

E = m2
0 + 0.15M2

1/2 ,

m2
Q(1,2) = m2

0 + 7.2M2
1/2 , m2

U(1,2) ≃ m2
D ≃ m2

0 + 6.7M2
1/2 ,

m2
Q = 7.2M2

1/2 + m2
0 +

∆m2

3
, m2

U = 6.7M2
1/2 + m2

0 + 2
∆m2

3
, (14)

where E, D and U are the right–handed leptons, down–squarks and up–squarks, respectively,

L and Q = (T B)T are the lepton and top–bottom left–handed doublets, and m2
η, with

η = E, D, U, L, Q are the corresponding soft supersymmetry breaking mass parameters. The

subindices (1,2) are to distinguish the first and second generations from the third one, whose

mass parameters receive the top quark Yukawa coupling contribution to their renormalization

group evolution, singled out in the ∆m2 term:

∆m2 = −
3m2

0

2

Yt

Yf
+ 2.3A0M1/2

Yt

Yf

(

1 −
Yt

Yf

)

−
A2

0

2

Yt

Yf

(

1 −
Yt

Yf

)

+ M2
1/2



−7
Yt

Yf

+ 3

(

Yt

Yf

)2


 . (15)

For the Higgs sector, the mass parameters involved are

m2
H1

= m2
0 + 0.52M2

1/2 and m2
H2

= m2
H1

+ ∆m2 , (16)

which are the soft supersymmetry breaking parts of the mass parameters m2
1 and m2

2 ap-

pearing in the Higgs scalar potential (see section 3). Moreover, the renormalization group
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evolution for the supersymmetric mass parameter µ reads,

µ2 = 2µ2
0

(

1 −
Yt

Yf

)1/2

, (17)

while the running of the soft supersymmetry breaking bilinear and trilinear couplings gives,

B = B0 −
A0

2

Yt

Yf
+ M1/2

(

1.2
Yt

Yf
− 0.6

)

(18)

A = A0

(

1 −
Yt

Yf

)

− M1/2

(

4.2 − 2.1
Yt

Yf

)

, (19)

respectively. Equation (17) shows that the RG evolution of µ, which is a supersymmetry

preserving parameter, does not involve any dependence on the soft supersymmetry breaking

parameters.

The coefficients characterizing the dependence of the mass parameters on the universal

gaugino mass M1/2 depend on the exact value of the gauge couplings. In the above, we

have taken the values of the coefficients that are obtained for α3(MZ) ≃ 0.12. The above

analytical solutions are sufficiently accurate for the purpose of understanding the properties

of the mass parameters in the limit Yt → Yf . We shall then confront the results of our

analytical study with those obtained from the numerical two–loop analysis.

3 Mass Parameter Correlations from Radiative Elec-

troweak Symmetry Breaking

The solutions for the mass parameters may be strongly constrained by experimental and

theoretical restrictions. The experimental contraints come from the present lower bounds

on the supersymmetric particle masses. Concerning the theoretical constraints, many of

them impose bounds on the allowed space for the soft supersymmetry breaking parameters

in model dependent ways to various degrees. The conditions of stability of the effective po-

tential and a proper breaking of the SU(2)L × U(1)Y symmetry are, instead, basic necessary

requirements.

The Higgs potential of the Minimal Supersymmetric Standard Model may be written as

[3], [28]–[30]

Veff = m2
1H

†
1H1 + m2

2H
†
2H2 − m2

3(H
T
1 iτ2H2 + h.c.)

+
λ1

2

(

H†
1H1

)2
+

λ2

2

(

H†
2H2

)2
+ λ3

(

H†
1H1

) (

H†
2H2

)

+ λ4

∣

∣

∣H†
2iτ2H

∗
1

∣

∣

∣

2
, (20)
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with m2
i = µ2 + m2

Hi
, i = 1, 2, and m2

3 = B|µ|, and where at scales at which the theory is

supersymmetric the running quartic couplings λj , with j = 1–4, must satisfy the following

conditions:

λ1 = λ2 =
g2
1 + g2

2

4
=

M2
Z

2 v2
, λ3 =

g2
2 − g2

1

4
, λ4 = −

g2
2

2
=

M2
W

v2
. (21)

Hence, in order to obtain the low energy values of the quartic couplings, they must be evolved

using the appropriate renormalization group equations, as was explained in Refs. [28]–[31].

The mass parameters m2
i , with i = 1–3 must also be evolved in a consistent way and their

RG equations may be found in the literature [4]–[6], [32],[33]. The minimization conditions

∂V/∂Hi|<Hi>=vi
= 0, which are necessary to impose the proper breakdown of the electroweak

symmetry, read

sin(2β) =
2m2

3

m2
A

(22)

tan2 β =
m2

1 + λ2v
2 + (λ1 − λ2) v2

1

m2
2 + λ2v2

, (23)

where mA is the CP-odd Higgs mass,

m2
A = m2

1 + m2
2 + λ1v

2
1 + λ2v

2
2 + (λ3 + λ4) v2. (24)

Considering the one–loop leading order contribution to the running of the quartic cou-

plings, which, in the limit of stop mass degeneracy, transforms λ2 into λ2 + ∆λ2, with

∆λ2 = (3/8π2)h4
t ln(m2

t̃
/m2

t ), the minimization condition Eq. (23) can be written as:

tan2 β =
m2

1 + M2
Z/2

m2
2 + M2

Z/2 + ∆λ2v2
2

. (25)

Therefore, using Eq. (25) and considering the approximate analytical expressions for the

mass parameters mi, Eq. (16), the supersymmetric mass parameter µ is determined as a

function of five parameters:

µ2 = F(m0, M1/2, A0, tan β, Yt/Yf). (26)

Furthermore, the ratio of the top quark Yukawa coupling to its infrared fixed point value

may be expressed as a function of the top quark mass and the angle β,

Yt

Yf
=

(

mt

mIRmax
t

)2
1

sin2 β
, (27)

where the exact value of mIRmax.
t , Eq. (6), depends on the value of the strong gauge coupling

considered and, for the experimentally allowed range, varies approximately between 190 and

200 GeV. Depending on the precise value of the running top quark mass mt and tan β, the

above equation gives a measure of the proximity to the infrared fixed point solution.
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The other minimization condition, Eq. (22), depends on the soft supersymmetry breaking

parameter B and, hence, on its boundary condition B0. Both minimization conditions put

restrictions on the soft supersymmetry breaking parameters. However, B (and thus B0)

is not involved in the renormalization group evolution of the (s)particle masses, implying

that Eq. (22) is not relevant in defining the range of possible mass values of the Higgs and

supersymmetric particle spectra.

Considering the relation between the physical and the running top quark mass, Eq. (7),

for a given value of the physical top quark mass, the running top quark mass is fixed and

then Eq. (27) fixes the ratio Yt/Yf as a function of sin β. Then, the correlation implied by

the minimization condition, Eqs. (25) and (26), determines the Higgs and supersymmetric

spectrum as a function of four parameters. However, if one is at the infrared fixed point,

Yt → Yf , the model becomes much more predictive. This is partially due to the strong corre-

lation between the top quark mass and the value of tanβ, Eq. (5), which allows a reduction

by one of the number of free parameters. Moreover, there is an additional reduction by one in

the number of effective free parameters, which follows from the infrared fixed point structure

of the theory. Indeed, the expressions for the low energy parameters, Eqs. (14)–(19), show

important properties of the solution when Yt → Yf [8]:

a) The term ∆m2, and hence the mass parameters m2
H2

, m2
Q and m2

U , become very weakly

dependent on the supersymmetry breaking parameter A0. In fact, the dependence on A0

vanishes in the formal limit Yt → Yf . The only relevant dependence on A0 enters through

the mass parameter m2
3, that is to say, through B. This leads to property (b).

b) There is an effective reduction in the number of free, independent, soft supersymme-

try breaking parameters. In fact, the dependence on B0 and A0 of the low energy solutions

is effectively replaced by a dependence on the parameter

δ = B0 −
A0

2
. (28)

c) There is also a very interesting dependence of the low energy mass parameters on m0.

For example, the m0 dependence of the combination m2
Q + m2

H2
vanishes in the formal limit

Yt → Yf . Moreover, the right stop mass m2
U becomes itself independent of m2

0 in this limit,

a property that is very important for the analysis of the bounds on the stop sector.

From properties (a) and (b) it follows that, at the infrared fixed point, the dependence

of the Higgs and supersymmetric spectrum on the parameter A0 is negligible. Indeed, con-

sidering only the one–loop leading order radiative corrections to the quartic couplings, the

minimization condition at the infrared fixed point reads,

µ2 +
M2

Z

2
=
[

m2
0

(

1 + 0.5 tan2 β
)

+ M2
1/2

(

0.5 + 3.5 tan2 β
)

− ωt 0.5 tan2 β
] 1

tan2 β − 1
, (29)
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where we define ωt = 2∆λ2v
2
2, which depends only logarithmically on m0 and M1/2. In the

limit tanβ → 1, one has µ2 ≫ m2
0, M

2
1/2.

Hence, due to the independence of the spectrum on the parameter A0 and the strong

correlation of the top quark mass with tanβ, for a given top quark mass the Higgs and

supersymmetric particle spectrum is completely determined as a function of only two pa-

rameters, m0 and M1/2. It is now possible to perform a scanning of all the possible values for

m0 and M1/2, bounding the squark masses to be, for example, below 1 TeV, and the whole

allowed parameter space for the Higgs and superparticle masses may be studied.

3.1 Colour–breaking Minima

There are several conditions that need to be fulfilled to ensure the stability of the electroweak

symmetry breaking vacuum. In particular, one should check that no charge– or colour–

breaking minima are induced at low energies. A well–known condition for the absence of

colour–breaking minima is given by the relation [34]

A2
t ≤ 3(m2

Q + m2
U + m2

H2
) + 3µ2. (30)

At the fixed point, however, since At ≃ −2.1M1/2 and m2
Q +m2

U +m2
H2

≃ 6M2
1/2, this relation

is trivially fulfilled (see also Ref. [35]).

For values of tan β close to 1, large values of µ are induced, and a more appropriate

relation is obtained by looking for possible colour–breaking minima in the direction 〈H2〉 ≃

〈H1〉 and 〈Q〉 ≃ 〈U〉. The requirement of stability of the physically acceptable vacuum

implies the following sufficient condition

(At − µ)2 ≤ 2
(

m2
Q + m2

U

)

+ m̃2
12 , (31)

where m̃2
12 = (m2

1 + m2
2) (tan β − 1)2/(tan2 β + 1).

If Eq. (31) is not fulfilled, a second sufficient condition is given by

[

(At − µ)2 − 2
(

m2
Q + m2

U

)

− m̃2
12

]2
≤ 8

(

m2
Q + m2

U

)

m̃2
12. (32)

The above relations, Eqs. (31) and (32), are sufficient conditions since they assure that a

colour–breaking minimum lower than the trivial minimum does not develop in the theory. If

the above conditions are violated, a necessary condition to avoid the existence of a colour–

breaking minimum lower than the physically acceptable one is given by

Vcol ≥ Vph , (33)

with

Vcol =
(At − µ)2α2

min

h2
t (2α

2
min + 1)3

[

(m2
Q + m2

U) − 2m̃2
12α

4
min

]

, (34)
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Vph = −
M4

Z

2(g2
1 + g2

2)
cos2(2β), (35)

and

α2
min =

[

(At − µ)2 − 2(m2
Q + m2

U) − m̃2
12

]

/(4m̃2
12). (36)

The above conditions impose strong constraints on the possible fixed point solutions,

particularly for low values of tanβ, for which the value of µ rapidly increases. Therefore, they

have implications in determining the Higgs and supersymmetric particle mass predictions of

the model.

4 Higgs and Supersymmetric Particle Spectrum

The infrared fixed point solution yields, as we said before, a quite predictive framework for

the Higgs and supersymmetric spectrum of the MSSM. Indeed most of the properties of the

masses may be understood analytically through their dependence on the mass parameters m0

and M1/2, which govern their behaviour. Experimental bounds on the sparticle masses, as

well as theoretical restrictions to avoid inconsistencies in the predicted spectrum, are useful

in constraining the allowed values of the defining parameters m0 and M1/2. As a matter of

fact, the only two sectors of the theory that one should be particularly careful about, at the

infrared fixed point, are those related to the Higgs and the stop.

Let us first summarize the results for the relevant low energy mass parameters at the

fixed point solution:

m2
H2

≃ −0.5m2
0 − 3.5M2

1/2 , m2
H1

≃ m2
0 + 0.5M2

1/2 ,

m2
Q ≃ 0.5m2

0 + 6M2
1/2 , m2

U ≃ 4M2
1/2 ,

At ≃ −2.1M1/2 ,

µ2 ≃
[

m2
0

(

1 + 0.5 tan2 β
)

+ M2
1/2

(

0.5 + 3.5 tan2 β
)] 1

tan2 β − 1
. (37)

As we mentioned before, since the whole spectrum may be given as a function of tanβ, µ and

the soft supersymmetry breaking parameters, for low values of tan β and for a given value

of the top quark mass, it is completely determined as a function of two free independent

parameters, which we take to be m0 and M1/2.

4.1 Stop Sector

We shall first analyse the stop sector, considering the stop mass matrix given by

M2
t̃ =

[

m2
Q + m2

t + DtL mt(At − µ/ tanβ)
mt(At − µ/ tanβ) m2

U + m2
t + DtR

]

, (38)
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where DtL ≃ −0.35M2
Z | cos 2β| and DtR ≃ −0.15M2

Z | cos 2β| are the D-term contributions to

the left– and right– handed stops, respectively. The above mass matrix, after diagonalization,

leads to the two stop mass eigenvalues, mt̃1 and mt̃2 . To avoid a tachyon in the theory, it is

necessary to require det M2
t̃
≥ 0. At the infrared fixed point, the values of the parameters

involved in the mass matrix are given in Eq. (37). Already from an analytical study it is

possible to conclude that, for values of tanβ close to 1, the off-diagonal term contribution

will be enhanced, due to the large values of µ associated with such low values of tanβ

and, consequently, the mixing may be sufficiently large to yield a tachyonic solution. Thus,

depending on the hierarchy between m0 and M1/2 and on the sign of µ, important constraints

on the parameter space may be obtained. For example, for tanβ = 1.2, which implies Mt ≃

160 GeV and for which the value of the supersymmetric mass parameter µ2 ≃ 4m2
0 +12M2

1/2,

it is straightforward to show that, if one considers the regime M2
1/2 ≪ m2

0, then for both

signs of µ a tachyon state will develop unless M1/2 ≥ 0.9 mt. If, instead, one considers the

regime M2
1/2 ≫ m2

0, then for µ > 0 it follows that in order to avoid a tachyon it is necessary

to require M1/2 ≥ 1.2 mt. For negative values of µ, since there is a partial cancellation of

the off-diagonal term, which suppresses the mixing, no tachyonic solution may develop and,

hence, no constraint is derived. However, as we shall show below, restrictions coming from

the Higgs sector will constrain this region of parameter space as well. Observe that for these

low values of tan β, the necessary and sufficient conditions to avoid colour–breaking minima,

Eqs. (31), (32) and (33), put strong restrictions on the solutions with large left–right stop

mixing.

For slightly larger values of tanβ ≃ 1.8, which correspond to much larger values of the

top quark mass, Mt ≃ 180 GeV, the value of µ ≃ 1.2m2
0+5.3M2

1/2 is sufficiently small so that,

helped by the factor 1/ tanβ, there is no possibility for a tachyon to develop in this case and,

hence, no constraints on M1/2 are obtained. Of course, this result holds for larger values of

tanβ as well. Is is interesting to notice that, although there is no necessity to be concerned

about tachyons for values of tanβ ≃ 1.8, it is still possible to have light stops, close to the

experimental bound, if the value of M1/2 ≤ 100 GeV. Figure 2 gives the value of the lightest

stop quark mass as a function of the gluino mass, Mg̃ ≃ 3M1/2, while considering various

values of tanβ and Mt close to the infrared fixed point solution, and it shows the results

obtained from the full numerical study [8]. The dots in Fig. 2 denote solutions forbidden

by experimental bounds. In particular, for tan β = 1.2 the restrictions on Mg̃ come through

bounds on M1/2 derived from the fulfilment of the lower bounds on the lightest CP-even

Higgs mass mh (see below). For larger values of tanβ a light stop is no longer possible.

Indeed, for tanβ ≥ 5 the stop mass becomes heavier than the top mass, Mt ≃ 200 GeV,

for most of the parameter space and the experimental bound on the gluino mass, taken as

Mg̃ >120 GeV, becomes an important constraint for the solutions.
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Fig. 2. Running gluino mass Mg̃ as a function of the lightest stop mass mt̃, for different values

of the top quark mass at the infrared fixed point solution: A) Mt = 160 GeV, tan β = 1.2; B)

Mt = 180 GeV, tan β = 1.8; C) Mt = 202 GeV, tan β = 5; D) Mt = 205 GeV, tan β = 10. Crosses

(dots) denote solutions allowed (excluded) experimentally.

4.2 Higgs Spectrum

Other important features of the spectrum at the infrared fixed point are associated with the

Higgs sector. The Higgs spectrum is composed by three neutral scalar states, two CP-even,

h and H , and one CP-odd, A, and two charged scalar states H±. Considering the one–loop

leading order corrections to the running of the quartic couplings –those proportional to m4
t –

and neglecting in a first approximation the squark mixing, the masses of the scalar states

are given by

m2
h,H =

1

2

[

m2
A + M2

Z + ωt

±
√

(m2
A + M2

Z)
2
+ ω2

t − 4m2
AM2

Z cos2(2β) + 2ωt cos(2β) (m2
A − M2

Z)
]

(39)

m2
A + M2

Z = m2
1 + m2

2 + M2
Z +

ωt

2
=
[

3

2
m2

0 + 4M2
1/2 −

ωt

2

]

(1 + tan2 β)

(tan2 β − 1)
(40)
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m2
H± = m2

A + M2
W . (41)

In the above, we have omitted the one–loop contributions proportional to ωt/m
2
t , since for

tanβ > 1 they are negligible with respect to the other contributions. Indeed, the radiative

corrections to the Higgs mass become relevant only for large values of the heaviest stop

mass, m2
t̃
≫ M2

Z . To obtain these stop mass values we need moderate values of the soft

supersymmetry breaking parameters, which for low values of tanβ ≤ 2, induce large values

of the CP-odd mass, m2
A ≫ M2

Z . In this case, the ωt contribution is of order M2
Z and, hence,

it gives a decisive contribution to mh in Eq. (39), but does not give a relevant contribution

to mA, Eq. (40). If m2
A ≫ M2

Z , then mH and mH± are also large, of the order of the CP-odd

mass. If, instead, m2
A = O(M2

Z), then m2
0 and M2

1/2 are also small and, due to the logarithmic

dependence of ωt on these two parameters, its contribution is small, both in Eq. (39) and in

Eq. (40).

For the lightest CP-even mass a finite upper bound on its value, mmax
h , is reached in the

limit of very large values of the CP-odd mass, m2
A ≫ M2

Z ,

(mmax
h )2 = M2

Z cos2(2β) +
3

4π2

m4
t

v2

[

ln

(

mt̃1mt̃2

m2
t

)

+ ∆θ
t̃

]

. (42)

In the above, we have now considered the expression in the case of non-negligible squark

mixing [35]–[37]; ∆θ
t̃

is a function of the left–right mixing angle in the stop sector, and it

vanishes in the limit in which the two mass eigenstates are equal, mt̃1 = mt̃2 . From Eq.

(40) it follows that, for lower values of tanβ, the value of the CP-odd eigenstate mass is

enhanced. This means that in such a case the expression for the lightest Higgs mass is given

by Eq. (42), and it is independent of the exact value of the CP-odd mass. The fact that

values of tan β close to 1 yield larger values of mA, implies as well that the charged Higgs

and the heaviest CP-even Higgs will become heavier in such regime.

Furthermore, the infrared fixed point solution for the top quark mass has explicit impor-

tant implications for the lightest Higgs mass. For a given value of the physical top quark

mass, the infrared fixed point solution is associated with the minimun value of tan β compat-

ible with the perturbative consistency of the theory. For values of tanβ ≥ 1, lower values of

tanβ correspond to lower values of the tree level lightest CP-even mass, mtree
h = MZ | cos 2β|.

Therefore, the infrared fixed point solution minimizes the tree level contribution and after

the inclusion of the radiative corrections it still gives the lowest possible value of mh for a

fixed value of Mt [8], [23], [38]. This property is very appealing, in particular, in relation to

future Higgs searches at LEP2, as we shall show explicitly below.

Due to the specific dependence of the lightest Higgs mass with tan β, it occurs that,

for values of tanβ close to 1, restrictions on the allowed high energy parameter space and,

hence, on the spectrum, may be derived by the requirement that mh is above its experimental

bound. Indeed, if tan β ≃ 1.2 (| cos 2β| ≃ 0.2), the tree level value is very small and, in order
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to satisfy the experimental constraint on mh, it is necessary to impose a bound on the

radiative correction contribution. One may choose to push m0 to large values, but this will

induce a tachyon in the stop spectrum unless M1/2 ≥ mt. If, instead, one keeps moderate

values of m0, values of M1/2 > 100 GeV are needed to generate the appropriate radiative

corrections. Summarizing, for values of tanβ close to one, Mt ≤ 160 GeV (tanβ ≤ 1.2), to

avoid conflicts in the Higgs and stop sectors one needs

M1/2 > mt if µ > 0

M1/2 ≥ 100 GeV if µ < 0. (43)

For larger values of tan β ≃ 1.8, the Higgs sector constraints are still important, although

they do not lead to a lower bound on M1/2 independent of the experimental bounds on the

gaugino sectors. In this case, one has m2
A ≃ 8M2

1/2 + 3m2
0 and for values of the defining

parameters consistent with the experimental constraints in the gaugino and slepton sectors,

the CP-odd mass is still sufficiently large, so that the lightest CP-even mass is given by its

upper bound, Eq. (42). Then, mtree
h ≃ 50 GeV and if m0 ≥ mt ≃ 170 GeV, no bounds on

M1/2 are obtained from the experimental constraint on mh. In Fig. 3 we show the mA–mh

plane for various values of tan β and Mt extremely close to the infrared fixed point, as derived

from the full numerical study [8]. The results from Fig. 3 are in perfect agreement with the

behaviour described above. Moreover, it follows that for values of Mt ≤ 180 GeV the lightest

Higgs mass is expected to be in the 50–100 GeV range, while for larger values of Mt ≃ 200

GeV it is mostly larger than 100 GeV with a range mh ≃ 125±25 GeV. In general, for larger

values of tan β the tree level value becomes larger and the experimental bounds on gauginos

and gluinos also contribute to push the lightest Higgs mass to larger values.

All the above analysis is done under the assumption of being at the infrared fixed point

of the top quark mass. However, it is also interesting to observe how the predictions for the

lightest Higgs mass are altered if one considers a departure from the infrared fixed point so-

lution. As we said before, in this case a fixed value of the top quark mass may be considered

and still the value of tanβ may vary, implying in each case a different degree of departure

from the infrared fixed point solution. In Fig. 4 we show the value of the lightest Higgs mass

as a function of tan β, performing a scanning over all possible values of m0 and M1/2 for a

top quark mass Mt = 175 GeV, so that the squark masses have an upper bound of 1 TeV.

(In this plot we have considered the Higgs mass value obtained from the one–loop effective

potential computation, Eq. (42). The upper bound obtained within this approach differs by

approximately 5 GeV from the one obtained through the RG procedure in which the squark

mixing is directly considered through the matching conditions for the quartic couplings, as

done in Fig. 3. These results show the degree of uncertainty in the Higgs mass computation

[35].)
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Fig. 3. The same as Fig. 2, but for the CP-odd Higgs mass mA vs. the lightest CP-even Higgs

mass mh.

For each value of the top quark mass, the lowest possible value of tanβ is associated with the

infrared fixed point value. The larger values of tanβ, for which the solutions are increasingly

away from the infrared fixed point, show larger values for the lightest Higgs mass, which,

however, become stagnant for values of tanβ close to 10. Away from the infrared fixed point

solution a scanning over A0 is also done. The most remarkable feature, for solutions that

depart from the infrared fixed point, is that not only the upper bound on mh becomes larger,

but the whole set of solutions lies in a region of the parameter space that renders a lightest

Higgs, which is predominantly out of the reach of LEP2. On the contrary, the predictions

from the infrared fixed point solution are very appealing in this respect, since there are good

chances that, for values of the top quark mass experimentally favoured at present, Mt = 174

±16 GeV [40], the lightest Higgs may be within the reach of LEP2.
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Fig. 4. Lightest CP-even Higgs mass for different values of tan β. The lowest value of tan β (crosses)

corresponds to the infrared fixed point solutions for the considered value of the top quark mass,

Mt = 175 GeV.

4.3 Chargino and neutralino spectrum

From the restrictions on M1/2 that follow from the analysis of the Higgs and stop sec-

tors at the infrared fixed point of the top quark mass, a very interesting result can be

obtained. Indeed, due to the large values of the mass parameter µ in this framework, there

is small mixing in the chargino and neutralino sectors. Hence, to a good approximation the

lightest chargino mass and the lightest and next–to–lightest neutralino masses are given by

mχ̃±

l

≃ mχ̃0

2
≃ 2mχ̃0

1
≃ 0.8M1/2. For values of the top quark mass Mt ≤ 160 GeV, light

charginos, with masses very close to its present experimental bounds, are forbidden due to

the lower bounds on the gaugino masses, Eq. (43). Quite generally, we obtain mχ̃±

l

> 70

GeV in this case. On the contrary, due to the large mixing in the stop sector, small values

of the lightest stop mass, mt̃1 ≤ 150 GeV, may be easily achieved (see Fig. 2). For values

of Mt ≥ 185 GeV, the situation is basically reversed. As can be observed in Fig. 2, light

stops are harder to obtain, due to the reduced mixing, while light charginos are possible,

since there is no constraint on M1/2 either from the stop or from the Higgs sector. Most

interesting, just for the phenomenologically preferred region, 165 GeV ≤ Mt ≤ 185 GeV,
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both the charginos and the stops may become light.

Fig. 5. Running lightest stop mass as a function of the lightest chargino mass for a top quark mass

Mt = 175 GeV at the infrared fixed point solution.

Figure 5 shows the correlation between the lightest chargino mass and the lightest stop

mass, for the infrared fixed point solution, for a value of the top quark mass Mt = 175 GeV.

Light stops and charginos are very interesting, both for direct experimental searches and for

indirect searches through deviations from the Standard Model predictions for the leptonic

and hadronic variables measured at LEP.

5 Unification of Couplings and the Infrared Fixed Point

In the above, we have assumed the infrared fixed point solution for the top quark mass, and

we have analysed its implications in the MSSM under the general requirement of unification

of the gauge couplings at some high energy scale MGUT = O(1016) GeV and considering

universal conditions for the soft supersymmetry breaking parameters at the grand unifica-

tion scale. It is now interesting to investigate which physical scenarios may predict the

infrared fixed point solution for the top quark mass. One possibility would be the onset

of non–perturbative physics at scales of the order of MGUT , as it occurs for example in

the supersymmetric extension of the so–called top condensate models [3]. In this case an
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analysis of the non–perturbative effects would be necessary before considering the precise

unification conditions. Other possibility would be perturbative grand unification with the

large values of the top quark Yukawa coupling at the unification scale necessary to induce its

infrared fixed point behaviour, followed by the onset of non-perturbative physics for scales

just above MGUT . Moreover, the infrared fixed point solution also appears as a prediction

in some interesting class of string theories, where the stability of the cosmological constant

against corrections of order M2
SUSY M2

P is ensured [39]. Another option, which may be the

most appealing case to treat, is to have a perturbative theory up to the Planck scale, but

with large values of the top quark Yukawa coupling –close to its perturbative limit– and with

the onset of new physics above the unification scale. In this context it is possible to consider

grand unified models with an SU(5) or SO(10) symmetry, which include also unification of

Yukawa couplings. In particular, as we are going to show, the unification of bottom and

tau Yukawa couplings at the high energy scale yields a very interesting framework, which

naturally renders large values of the top quark Yukawa coupling at MGUT .

The condition of gauge coupling unification in itself gives predictions for the strong

gauge coupling as a function of the electroweak gauge couplings. Considering a two–loop

RG analysis, it is necessary to include the supersymmetric threshold corrections at one–

loop, to take into account the decoupling of the different supersymmetric particles above

MZ . These supersymmetric threshold corrections may be parametrized in terms of a single

effective scale TSUSY [17], which, in the limit of common characteristic values for the masses

of electroweak gauginos, mw̃, gluinos, mg̃, sleptons, ml̃, squarks, mq̃, Higgsinos, mH̃ , and the

heavy Higgs doublet, mH , is given by [18]

TSUSY = mH̃

(

mw̃

mg̃

)28/19




(

ml̃

mq̃

)3/19 (
mH

mH̃

)3/19 (
mw̃

mH̃

)4/19


 . (44)

The above equation shows that the main contribution to the supersymmetric threshold

corrections comes from the gaugino and Higgsino sectors. For the models under study, in

which a common gaugino mass M1/2 at MGUT is assumed and in the case of large values of

µ for which the mixing in the gaugino–Higgsino sector is negligible, Eq. (44) reads

TSUSY ≃ |µ|

(

α2(MZ)

α3(MZ)

)3/2

≃
|µ|

6
. (45)

The strong gauge coupling at MZ can then be computed as follows [17], [18]

1

α3(MZ)
=

1

αSUSY
3 (MZ)

+
19

28π
ln
(

TSUSY

MZ

)

, (46)

where 1/αSUSY
3 (MZ) would be the value of the strong gauge coupling coming from the two–

loop RG running if the theory were supersymmetric all the way down to MZ . The effective

scale TSUSY is quite useful, since it permits to parametrize the uncertainty about the exact
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SUSY spectrum in a very general way. Indeed, to vary TSUSY from 15 GeV to 1 TeV is

equivalent to considering the supersymmetric threshold corrections due to variations in the

sparticle masses within a very conservative wide range.

Performing a complete two–loop numerical analysis, we have as inputs the value of

1/αem = 127.9, which has only a logarithmic dependence on the top quark mass, and the

value of sin2 θW (MZ), which is given by the electroweak parameters GF , MZ and αem as a

function of Mt (at the one–loop level) by the formula,

sin2 θW (MZ) = 0.2324 − 10−7 × GeV−2 ×
(

M2
t − (138 GeV)2

)

± 0.0003 . (47)

Then, the unification condition implies the following numerical correlation [17], [24],

sin2 θW (MZ) = 0.2324 − 0.25 × (α3(MZ) − 0.123) ± 0.0025 . (48)

The above central value corresponds to TSUSY = MZ and the error ±0.0025 is the estimated

uncertainty in the prediction arising from possible supersymmetric threshold corrections and

including also possible effects from threshold corrections at the unification scale and from

higher dimensional operators, but assuming that they are not larger than the supersym-

metric threshold corrections. Thus, considering the α3–sin2 θW correlation predicted by the

unification of the gauge couplings together with the sin2 θw–Mt correlation obtained from

the fit of the experimental data (both within their uncertainties), a band of correlated values

between α3(MZ) and Mt is obtained [24],

α3(MZ) = 0.123 + 4 × 10−7 × GeV−2 ×
(

M2
t − (138 GeV)2

)

± 0.01 . (49)

As we shall show below, this correlation is crucial in the analysis of the top quark mass

predictions coming from bottom–tau Yukawa coupling unification.

For given values of the gauge coupling the requirement of bottom and tau Yukawa cou-

pling unification determines the value of the top quark mass as a function of tan β, depending

on the input value of the bottom quark mass. Indeed, the additional inputs with respect

to the gauge coupling unification analysis are the value of the tau mass, Mτ = 1.78 GeV

and the value of the bottom mass, which involves a large uncertainty. In fact, the range

of experimentally allowed values for the physical bottom quark mass is Mb = 4.6–5.2 GeV

[41]. Moreover, a significant difference, of the order of 12%, between the running bottom

quark mass, which is the one directly related to the bottom Yukawa coupling, and the phys-

ical bottom quark mass arises from QCD corrections. At the two–loop level the relation is

Mb = mb(Mb)[1 + (4/3π)α3(Mb) + 12.4(α3(Mb)/π)2]. Assuming bottom–tau Yukawa cou-

pling unification, the exact range of values to be considered for the physical bottom mass as

well as the appropriate treatment of the difference between the physical and running bottom

quark masses have important consequences on the determination of the top quark Yukawa

coupling. This is due to the fact that the bottom mass fixes the overall scale of the bottom
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quark Yukawa coupling. We shall return to the dependence of our predictions for the exact

value of the bottom mass after presenting the numerical study. The other decisive variable in

the bottom–tau Yukawa unification scheme is the exact value of the strong gauge coupling.

Indeed, for relatively large values of the strong gauge coupling, α3(MZ) ≥ 0.115, large values

of the top quark Yukawa coupling at the high energy scale are needed in order to partially

contravene the strong renormalization effect of the strong gauge coupling in the running of

the bottom quark Yukawa coupling. This is the reason why, for such values of the strong

gauge coupling, the condition of bottom–tau unification yields predictions for the top quark

mass close to its infrared fixed point values –the exact value of Mb defining the precise degree

of closeness.

Fig. 6. Top quark mass predictions as a function of the strong gauge coupling for the condition

of unification of Yukawa couplings hb(MG) = hτ (MG), for different values of tan β. The solid line

shows the infrared fixed point solutions, while the dashed, long-dashed and dot-dashed lines show

the results for Mb = 4.7, 4.9 and 5.2, respectively. Here the unification scale MG is defined as the

scale at which the weak gauge couplings unify and the region to the right of the dashed–long-dashed

line shows the regime of α3(MZ) preferred by the gauge coupling unification condition.

For smaller values of the strong gauge coupling, α3(MZ) ≤ 0.110, which may still be
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compatible with its experimental bound, the necessity of a large top quark Yukawa coupling

becomes weaker and as a result the infrared fixed point prediction for the top quark mass

would not be a necessary outcome of the Yukawa coupling unification condition. However, for

those smaller values of α3(MZ) the condition of gauge coupling unification is not consistent

with the experimentally allowed values for sin2 θW . Therefore, large values of Yt at MGUT ,

which imply the proximity to the infrared fixed point solution for Mt, are always a necessary

outcome in the low and moderate tan β region, if gauge and bottom-tau Yukawa coupling

unification are required [17], [24].

In Fig. 6 we show a detailed numerical study of the degree of proximity to the infrared

fixed point solution implied by the unification conditions. The value of the top quark mass is

plotted as a function of the strong gauge coupling for the exact infrared fixed point solution

as well as for the case of bottom–tau Yukawa coupling unification for three different values

of the bottom quark mass, which define the allowed domain of solutions compatible with

the experimental predictions for Mb. Moreover, the condition of gauge coupling unification,

Eq. (49), implies that the region in α3(MZ) to the right of the dashed–long-dashed curve

is the allowed one. Indeed, Eq. (49) defines a band whose upper bound is α3(MZ)u ≥ 0.13

and, thus, it does not appear on the figure. The intersection of this region with the Mt–α3

curves that follow from hb = hτ at MGUT , for the range Mb = 4.9 ± 0.3 GeV, determines

the predicted values for Mt to be within 10% of its infrared fixed point values. The above is

fulfilled for small and moderate values of tan β. For larger values of tan β ≥ 30, the behaviour

is drastically changed and, as we said, we shall not concentrate in such case here (see Refs.

[26], [27] these proceedings). It is interesting to notice that low values of α3(MZ) ≃ 0.113

are only possible for Mt ≃ 140 GeV (tanβ ≃ 1). For larger values of tan β, the lower bound

on the strong gauge coupling increases together with the top quark mass, which then has

a stronger convergence to its infrared fixed point. For Mt ≃ 180 GeV (tanβ ≃ 2) a value

α3(MZ) ≥ 0.118 is already necessary.

Concerning the relevance of the experimental bounds on the physical bottom quark mass,

it is worth mentioning that, if values of Mb < 4.6 GeV were allowed, it would induce a top

quark Yukawa coupling which may become too large. For a consistent perturbative treatment

of the theory, one requires Yt(MGUT ) ≤ 1, which implies that the two–loop contribution to

the renormalization group evolution of ht is less than 30% of the one–loop one. As a matter

of fact, observe that in Fig. 6 the curves for Mb = 4.7 GeV and Mb = 4.9 GeV do not continue

up to α3(MZ)= 0.13, since the top quark Yukawa coupling would then develop a Landau pole

before reaching the unification scale. Larger values of the bottom mass, Mb > 5.2–5.3 GeV,

would destroy the proximity to the infrared fixed point solution. Let us mention, however,

that a recent analysis based on QCD sum rules, gives values for the perturbative bottom

quark pole mass Mb close to the lower experimental bound considered above (Mb ≃ 4.6 GeV)

[42].
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Concerning possible threshold corrections which may affect the unification of both Yukawa

couplings, it follows that a relaxation in the exact unification condition of the order of 10% for

Mb = 4.9 GeV gives approximately the same behaviour as if one considers exact bottom–tau

unification, but with Mb = 5.2 GeV. Hence, values of Mb ≤ 4.9 GeV secure the infrared fixed

point behaviour even against possible supersymmetric threshold corrections to the Yukawa

couplings. It is necessary to say that, if there are large threshold corrections at the grand

unification scale, then all the above study can be significantly changed. These high energy

threshold corrections depend, however, on the particular physics above the scale MGUT and

may not be computed in a general framework. The study of the Higgs and supersymmetric

spectrum performed in section 4 is only based on the infrared fixed point solution or in the

proximity to it whithin the MSSM, and has general validity. Then, depending on the exact,

complete grand unified model under study, one has to compute the degree of proximity to

the infrared fixed point solution. In this section we showed that provided the threshold cor-

rections at MGUT are not very large, a grand unified gauged theory with the extra ingredient

of bottom–tau Yukawa coupling unification provides a framework in which the infrared fixed

point solution of the top quark mass is realized. Most interesting is the fact that this result

depends crucially on the values of the bottom mass and the electroweak parameters being

exactly within their experimentally allowed range.

6 Conclusions

We have studied the properties of the MSSM with unification of gauge couplings and uni-

versal soft supersymmetry breaking parameters, for the case in which the top quark mass is

close to its infrared quasi fixed point solution and tanβ < 10. To study the regime of the

infrared fixed point solution for mt is of interest for various reasons.

i) It appears as a prediction in many interesting theoretical scenarios. In particular, it has

been shown that for the values of the bottom quark mass and the electroweak parameters

allowed at present, for small and moderate values of tanβ, the conditions of gauge and

bottom–tau Yukawa coupling unification imply a strong convergence of the top quark mass

to its infrared fixed point value.

ii) It gives a very predictive framework in which, given the value of the top quark mass, the

properties of the Higgs and supersymmetric spectrum in the minimal supergravity model are

determined as a function of two high energy parameters, the common scalar mass m0 and

the common gaugino mass M1/2. The implementation of the radiative electroweak symmetry

breaking condition is a crucial ingredient for this result.

iii) For the range of top quark mass values suggested by the recent experimental measure-

ments at CDF [40], Mt = 174 ± 16 GeV, the value of tanβ, within its low and moderate

regime, is bounded to be 1 < tan β < 2.5. For Mt ≤ 175 GeV, the lightest Higgs mass is
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bounded to be mh ≤ 105 GeV, implying that there are good chances to observe it at the

LEP2 experiment. Moreover, light charginos and light stops may appear in the spectrum.

If they are present, they will have many interesting phenomenological implications.

iv) The correlations among the free parameters of the theory derived from the conditions of

a proper breakdown of the electroweak symmetry may be very useful in probing models of

dynamical supersymmetry breakdown, in which the soft supersymmetry breaking parame-

ters are predicted.
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[4] L. Ibañez and C. Lopez, Nucl. Phys. B233 (1984) 511;
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