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Abstract

We describe a new method to compute renormalized coupling constants in a Monte
Carlo renormalization group calculation. The method can be used for a general class of
models, e.g., lattice spin or gauge models. The basic idea is to simulate a joint system
of block spins and canonical demons. In contrast to the Microcanonical Renormaliza-
tion Group invented by Creutz et al. our method does not suffer from systematical
errors stemming from a simultaneous use of two different ensembles. We present nu-
merical results for the O(3) nonlinear σ-model.
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1 Introduction

The Monte Carlo Renormalization Group (MCRG) [1] combines ideas of the block spin
renormalization group (RG) and Monte Carlo (MC) simulations. In the classical MCRG
one does not actually compute the flow of effective actions (Hamiltonians) or coupling
constants, but instead uses the RG as a tool to define blocked observables that are suitable
for the computation of critical properties. Examples for these techniques are the methods
for the determination of critical exponents from the linearized RG transformation [2] and
the matching method for the calculation of the ∆β function [3].

However, it would be more in the original spirit of the RG to really perform the inte-
grations over the short wavelength degrees of freedom step by step in order to eventually
come close to a fixed point or to arrive at a correlation length of order one. The price to
pay for this is that one has to deal with a possibly complicated action with many coupling
constants which in addition is not easy to compute. Furthermore, little is known on the
effect of the truncations that one has to perform in the number couplings.

In the history of MCRG, some methods have been invented that allow to compute
renormalized couplings with the MC method, some restricted to specific models, some
more generally applicable. For a review on these methods see [4].

Creutz et al. have invented a method for the calculation of renormalized couplings that
uses a microcanonical demon simulation [5]. However, the method suffers from systematic
errors due to the fact that the canonical and microcanonical ensemble are equivalent only
on large lattices.

We here present a modification of the demon method that overcomes this disadvantage.
Our method does not introduce systematic errors. It shares with the Creutz et al. method
the nice feature that one needs just a standard update program for its implementation.

2 Description of the Method

We consider a lattice spin system with spins φx. Denote the action of the spin system by
S. The Boltzmann factor is exp(−S). Assume that the action can be parameterized by

S = −
∑
α

βαSα , (1)

where Sα are interaction terms, and the βα are real numbers. In addition we introduce an
auxiliary system, called demon system, that is given by the action

SD =
∑
α

βαdα , (2)

where the βα are the same as in eq. (1), and the dα are real numbers in the interval
[0, dmax]. In the following we shall consider the joint partition function

Z =

(∏
α

∫ dmax

0
d dα

)∫
Dφ exp(−S − SD) . (3)
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The partition function factorizes in the partition function of the spin system and the
partition functions of the single demons. Hence we can compute the distribution of the
demon variables dα. One gets

< dα >=
1
βα

(
1− βαdmax

exp(βαdmax)− 1

)
(4)

This relation can be numerically solved with respect to βα.
Now let us consider the situation of a numerical RG transformation. We simulate the

spin model with a known action, and apply a certain blocking rule to the configurations on
the fine grid to produce block spin configurations on a coarser grid. By this procedure we
get the blocked configurations with a probability distribution according to their Boltzmann
weight, but without knowing the block effective action explicitly.

Our proposal how to find the effective action is to perform a simulation of the joint
partition function given in eq. (3).

We assume that the action of the blocked spin system is well described by the ansatz
given by eq. (1). The simulation consists of two steps (see figure).

d d′ = d′′

=⇒ ... =⇒
φ φ′ φ′′

↓
trash can

blocking ↑ ↑ blocking

ϕ −→ ... −→ ϕ′

Figure: Scheme of our procedure to simulate the joint system of block spins
and demons. The symbol =⇒ denotes the microcanonical updating of block
spins φ and demons d, the symbol −→ represents the standard updating of
the fine grid spins ϕ.

1. Perform microcanonical updates of the joint system. These updates do not change
the differences Sα − dα. Since also the Boltzmann weight is unchanged, knowledge
of the βα is not required for the update.

2. Replace the block spin configuration by a new, statistically independent one.
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The second step is ergodic and fullfils detailed balance if the simulation of the system on
the fine grid satisfies these conditions. Statistical independence of the block configurations
can be assumed if the configurations are sufficiently well separated in computer time, i.e.,
if the number of sweeps between two subsequent configurations is much larger than the
autocorrelation time of the update algorithm for the fine grid spins.

One may ask whether the statistical independence of the block spin configurations is
really necessary. We studied an exactly solvable toy model and found that correlated block
spin configurations deteriorated the results.

It remains to show that spin-demon update step is ergodic for the demons. For the
concrete update procedure to be described below, this property is not too difficult to show.

3 Numerical Results

We implemented the new method for the O(3) invariant vector model in two dimensions.
In particular we considered an action with 12 interaction terms,

S = −
12∑

α=1

βα

∑
x

Sx,α , (5)

where
Sx,α = 1

2

∑
y∈Yx,α

(sx · sy)n . (6)

The sx are 3-vectors of unit length, and the · denotes the usual scalar product. The sets
Yx,α consist of all lattice points that can be obtained by the obvious symmetry operations
from a representative lattice vector v, and n takes values in {1, 2, 3}. Table 1 gives n and
v for α = 1...12.

α 1 2 3 4 5 6 7 8 9 10 11 12
v 1,0 1,1 2,0 2,1 3,0 1,0 1,1 2,0 2,1 3,0 1,0 1,1
n 1 1 1 1 1 2 2 2 2 2 3 3

Table 1: Labelling of the 12 interaction terms Sx,α

As a first test of the method and the program we tried to reproduce the couplings
on a given lattice. We simulated the model with some ad hoc chosen set of couplings
on an 82 and a 162 lattice. The updates were performed using a tunable version of the
overrelaxation algorithm. The demon-spin update can be described as follows. First, a
new value for a single spin is proposed. The probability for the change is symmetric in the
start value and the proposed value. Then one checks whether the demons dα can put the
changes of the Sα in their backpacks, i.e., whether the sums dα + ∆Sα remain inside the
allowed interval [0, dmax] for all α. If that is the case the proposal for the spin is accepted,
and the demons are updated to the new value. Otherwise spin and demons keep their
values.
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The spin configurations used for the replacement in the spin-demon simulation have to
be separated by a number of update steps that is large compared with the autocorrelation
time. In oder to avoid wasting too many spin configurations we employed 100 indepen-
dent demon systems. Then we generated a sequence of spin configurations, where two
successive configurations were separated by a number of sweeps Ns large compared to the
autocorrelation time divided by 100. The replacement configurations for the 100 demon
systems were then successively taken from this sequence. After a replacement of the spin
configuration, we always performed one lattice spin-demon updating sweep. After a full
cycle through the demon systems the measured demon values were averaged over the 100
systems and written to disk.

couplings L = 8 L = 8, trunc L = 16 L = 16, trunc
β1 1.30 1.3010(23) 1.1399(10) 1.2999(12) 1.1408(7)
β2 0.35 0.3481(12) 0.2993(6) 0.3485(8) 0.3014(4)
β3 0.01 0.0105(9) – 0.0020(6) 0.0098(6) – 0.0017(4)
β4 0.02 0.0190(7) 0.0138(3) 0.0192(4) 0.0149(2)
β5 0.004 0.0045(6) 0.0019(4) 0.0039(5) 0.0022(2)
β6 – 0.200 – 0.2045(30) – 0.2002(18)
β7 – 0.080 – 0.0808(21) – 0.0808(12)
β8 – 0.020 – 0.0201(11) – 0.0188(6)
β9 – 0.01 – 0.0086(6) – 0.0085(4)
β10 – 0.005 – 0.0045(8) – 0.0038(6)
β11 0.02 0.0248(26) 0.0220(14)
β12 0.01 0.0131(19) 0.0114(12)
ξ 57.8(4) 36.7(2)

Table 2: Reproduction of the original coupling constants. The columns
labelled by “trunc” give the result from a truncation to an action with 5
couplings only.

Our results are presented in Table 2. In addition to the reproduction of the 12 original
couplings we studied the truncation to a subset of 5 couplings. The truncation experiment
served for us as preparation for the renormalization group study, where one is always faced
with the necessity to truncate the ansatz for the effective action.

For the L = 8 lattice we performed 20000 updates of the 100 demon systems, with
Ns = 1. In the L = 16 case we made 10000 updates, also with Ns = 1. The results show
that the method works nicely. Most of the couplings are reproduced within 1 sigma error
bars.

The last line gives correlation length estimates for the original set of 12 couplings and
also for the couplings obtained from the truncated ansatz. The correlation length estimates
were computed using a single cluster algorithm on a lattice very large compared to the
correlation length. The correlation length of the truncated coupling set is significantly
smaller than the original one. A naive truncation of the original set of couplings (just
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throwing away the couplings β6 to β12) gives a correlation length larger than 200. On an
L = 400 squared lattice we measured ξ = 195.5 ± 2.3.

Next we studied renormalization group transformations, starting from the standard
action with nearest neighbour coupling only. We used a blocking rule that we call “dressed
decimation”. All lattice points that have coordinates x = (i, j) with i and j even are
identified with block sites. The block spin s′ at site x is then defined as

s′x =
wsx + 1

4(1− w)
∑

y.nn.x sy

|wsx + 1
4(1− w)

∑
y.nn.x sy| , (7)

where the sum is over the nearest neighbours of x. Tests with the massless free field theory
revealed that the choice w = 0.8 is a good one in the sense that the effective actions and
especially the fixed point action had good locality properties.

As a first test we started with β1 = 1.9, and all the other couplings put to zero. The
correlation length for this coupling is 121.2(6) [6]. We applied the blocking rule described
above to generate the block configuration used in the replacement step for the demons.
We always blocked a 322 lattice down to 162 lattice. The effective couplings within the
truncation scheme of the 12 couplings given above were then determined from the demon
expectation values. The effective couplings were then used as input for the next iteration
step. Our results for the first 4 steps are presented in Table 3. In the last line we give
again correlation length estimates for the effective theories, again obtained with a single
cluster algorithm on huge lattices.

Note that in case of an exact renormalization transformation the correlation length
should change exactly by the scale factor of the blocking rule, that in our case is two. The
strong deviations that we observe clearly indicate that one should include more couplings
in the ansatz for the effective action.

Note also that there is a very good decay of the couplings with given n with increasing
distance of the spins. We conclude from this and the systematic errors in the correlation
lengths that probably local interactions with higher n and also interactions with more
than two spins cannot be left out. (E.g., 4-point operators proved to be important in the
study of Hasenfratz et al. [7] using the classical approximation.) Careful studies of these
issues, also using alternative methods for the determination of the effective couplings and
other blocking rules are underway [8].
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RG step 0 1 2 3 4
β1 1.9 1.4619(15) 1.1764(11) 0.9785(16) 0.8201(14)
β2 0.0 0.2691(9) 0.3117(8) 0.2892(8) 0.2528(8)
β3 0.0 – 0.0123(6) 0.0107(5) 0.0226(6) 0.0272(4)
β4 0.0 0.0074(4) 0.0132(3) 0.0182(3) 0.0195(4)
β5 0.0 0.0043(5) 0.0031(4) 0.0032(5) 0.0034(4)
β6 0.0 – 0.2213(19) – 0.2611(13) – 0.2257(14) – 0.1689(12)
β7 0.0 – 0.0800(12) – 0.1027(10) – 0.0985(13) – 0.0766(9)
β8 0.0 0.0003(9) – 0.0057(6) – 0.0104(7) – 0.0107(8)
β9 0.0 – 0.0022(5) – 0.0011(5) – 0.0077(5) – 0.0081(5)
β10 0.0 – 0.0005(6) – 0.0011(5) – 0.0014(7) – 0.0015(7)
β11 0.0 0.0659(17) 0.0898(13) 0.0748(18) 0.0470(15)
β12 0.0 0.0327(13) 0.0440(11) 0.0425(15) 0.0301(12)
ξ 121.2(6) 57.0(4) 24.5(2) 10.47(5) 4.78(2)

Table 3: Results for the first four RG steps, starting from the standard action
with β1 = 1.9. The last line gives the correlation lengths for the effective
theories. The successive columns give the results of the subsequent RG steps.
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